JPS5943620A - Piezoelectric ceramic element - Google Patents

Piezoelectric ceramic element

Info

Publication number
JPS5943620A
JPS5943620A JP57154204A JP15420482A JPS5943620A JP S5943620 A JPS5943620 A JP S5943620A JP 57154204 A JP57154204 A JP 57154204A JP 15420482 A JP15420482 A JP 15420482A JP S5943620 A JPS5943620 A JP S5943620A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
ceramic element
pair
thickness
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57154204A
Other languages
Japanese (ja)
Inventor
Toshio Ogawa
敏夫 小川
Toshihiko Kikko
橘高 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP57154204A priority Critical patent/JPS5943620A/en
Publication of JPS5943620A publication Critical patent/JPS5943620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type

Abstract

PURPOSE:To obtain a piezoelectric ceramic element having good dielectric constant, high mechanical Q and using the thickness slip vibration basic wave, by adhering a metallic material for mass load to at least one of a pair of counter electrodes opposing with a piezoelectric ceramic. CONSTITUTION:A pair of counter electrodes 12, 13 are formed by clipping a lead titanate piezoelectric ceramic 11. The direction of polarized axis (shown in arrow P) of the piezoelectric ceramic 11 is made perpendicular to the opposing direction of the counter electrodes 12, 13. That is, the piezoelectric ceramic element 10 utilizes the thickness slip energy confinement vibration mode. Further, lead layers 14, 15 as the mass load metallic material are formed on the upper surface of the counter electrodes 12, 13. The piezoelectric ceramic element 10 manufactured in this way has low dielectric constant, high mechanical Q and is excellent in the stability.

Description

【発明の詳細な説明】 この発明は、圧電セラミクス素子に関し、特に厚みすべ
り1ネルギ閉じ込め振動モードを利用するチタン酸鉛系
圧電セラミクス素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric ceramic element, and more particularly to a lead titanate-based piezoelectric ceramic element that utilizes a thickness-shear one-energy confined vibration mode.

従来、フィルタ、発振子などを構成する圧電セラミクス
素子として、PZT系すなわちPb  (Zr 、 J
i> os系セラミクス材料が用いられてきた。PZl
−系セラミクス素子では、厚み縦振動モードおよび厚み
すべり振動L−ドが利用されている。第1図は、厚み縦
振動モードのうち厚み組]−ネルギ閉じ込め振動モード
を利用りる[)ZT系圧電セラミクス素子を概略的に示
づ側面図である。
Conventionally, PZT-based piezoelectric ceramic elements constituting filters, oscillators, etc., namely Pb (Zr, J
i> os ceramic materials have been used. PZl
- type ceramic elements utilize a thickness longitudinal vibration mode and a thickness shear vibration L-mode. FIG. 1 is a side view schematically showing a ZT-based piezoelectric ceramic element that utilizes the thickness group]-energy confined vibration mode among the thickness longitudinal vibration modes.

第1図から明らかなように、厚み縦エネルギ閉じ込め振
動モードを利用する圧電セラミクス素子1では、1対の
対向電極2.3は、その対向方向が分極軸方向Pと同一
となるように形成されている。
As is clear from FIG. 1, in the piezoelectric ceramic element 1 that utilizes the thickness longitudinal energy confinement vibration mode, the pair of opposing electrodes 2.3 are formed so that their opposing direction is the same as the polarization axis direction P. ing.

他方、第2図は、厚みすべり振動モードのうち厚みすべ
りエネルギ閉じ込め振動モードを利用づる従来から用い
られできたP Z T系L1電セラミクス素子5を示す
側面図である。厚みすべりエネルギ閉じ込め振動モード
を利用する圧電セラミクス素子5では、1対の対向電極
2,3の対向方向が、分極軸方向Pと垂直となるように
1対の対向電極2.3が形成されている。ところで、圧
電セラミクス素子をフィルタなどに用いる際には、その
インピーダンスマツチングのためにその誘電率εが小さ
いこと、ならびに安定性を確保するためにQIが大きい
ことなどが要請されるが、従来のP7丁系圧電セラミク
ス素子では、これらの要請を満たずことはできなかった
On the other hand, FIG. 2 is a side view showing a conventionally used PZT-based L1 electroceramic element 5 that utilizes the thickness shear energy trapped vibration mode among the thickness shear vibration modes. In the piezoelectric ceramic element 5 that utilizes the thickness shear energy trapping vibration mode, the pair of opposing electrodes 2 and 3 are formed such that the opposing direction of the pair of opposing electrodes 2 and 3 is perpendicular to the polarization axis direction P. There is. By the way, when piezoelectric ceramic elements are used in filters, etc., they are required to have a small dielectric constant ε for impedance matching, and a large QI to ensure stability. P7-type piezoelectric ceramic elements have not been able to meet these requirements.

他方、近年、低誘電率(ε−300)および高Qmのセ
ラミクス材料として、ブータン酸鉛系セラミクス(1−
T系セラミクス)が開発され、注目を集め−(いる。チ
タン酸鉛系セラミクスでは、誘電率εが小さり、)幾械
的Qが高いため、上述のような従来のP/−[系セラミ
クスの欠点を解消し得る。
On the other hand, in recent years, lead butanate ceramics (1-
Lead titanate ceramics (T-based ceramics) have been developed and have attracted attention because of their small dielectric constant ε and high mechanical Q. can eliminate the drawbacks of

しかしながら、現在のところ、チタン酸鉛系セラミクス
を用いた圧電セラミクス素子では、厚みすべり振動の3
倍波(T’ E 、 rd)を利用したものは公知であ
るが、より大きな振動を得ることがでさるjワみ縦振動
基本波(TEISt>および厚みづべり振動基本波(T
SISt)は、ともに振動エネルギの閉込めが困難であ
り、これらの振動モードを利用づることは未だ実施され
ていない。もつとも、理論的には、チタン酸鉛系圧電セ
ラミクスを用いて、第2図のような厚みづべり振動を利
用する圧電セラミクス素子を構成して、エネルギを閉込
めることは可能ひあるが、実際には、このようにして構
成した圧電セラミクス素子は、第3図で示寸ように、波
形の分割が発生し、側底利用づる(ことはできなかった
However, at present, piezoelectric ceramic elements using lead titanate-based ceramics have three types of thickness-shear vibration.
Those using harmonics (T'E, rd) are well known, but it is possible to obtain larger vibrations using the warp longitudinal vibration fundamental wave (TEISt> and the thickness shear vibration fundamental wave (T
SISt), it is difficult to confine vibration energy, and the use of these vibration modes has not yet been implemented. Theoretically, it is possible to use lead titanate-based piezoelectric ceramics to construct a piezoelectric ceramic element that utilizes thickness vibration as shown in Figure 2, and to trap energy, but in reality it is not possible. In the piezoelectric ceramic element constructed in this way, waveform division occurred as shown in FIG. 3, and it was not possible to use the piezoelectric ceramic element at the bottom of the piezoelectric element.

それゆえに、この発明の目的は、チタンrn@1系セラ
ミクスを用いて、従来のP/[系セラミクスからなる圧
電セラミクス材料の欠点を解消し、りなわち誘電率が低
く、機械的Qが高く、かつj9みJべり振動基本波を利
用する、圧電セラミクス素子を提供することである。
Therefore, an object of the present invention is to eliminate the drawbacks of the conventional piezoelectric ceramic materials made of P/[ type ceramics by using titanium rn@1 type ceramics, which have a low dielectric constant and a high mechanical Q. It is an object of the present invention to provide a piezoelectric ceramic element that utilizes the fundamental wave of oscillation of j9 and j9 oscillations.

この発明は、要約すれば、チタン酸鉛系セラミクスから
なる圧電セラミクスと、この圧電セラミクスを挾んで対
向する1対の対向電極とを尚え、厚みづべりエネルギ閉
じ込め振動モードを利用する圧電セラミクス素子におい
て、1対の対向電極の少なくとも一方に、質量負荷用金
属材料が(−1着されている圧電セラミクス素子である
。Jなわち、この発明の特徴は、圧電セラミクス素子を
挾んで対向する1対の対向電極の少なくとも一方に、質
は負荷用金属材料が+j着されていることにある。
In summary, the present invention is a piezoelectric ceramic element that utilizes a thickness-dependent energy trapping vibration mode, which comprises a piezoelectric ceramic made of lead titanate ceramic, and a pair of opposing electrodes that face each other with the piezoelectric ceramic sandwiched between them. This is a piezoelectric ceramic element in which a mass-loading metal material (-1) is attached to at least one of a pair of opposing electrodes. The quality lies in that a load metal material is deposited on at least one of the pair of opposing electrodes.

質(6)負荷用金属材料としては、l”b、Hf、丁a
Quality (6) Loading metal materials include l”b, Hf, and a
.

W、pt、13iなどの様々な金W!4祠利を用いるこ
とが可能である。好ましくは、Pbが用いられる。
Various gold W such as W, pt, 13i! It is possible to use 4 shrines. Preferably, Pb is used.

Pb表面に生じる酸化膜により、対向電極が保護され、
信頼性が向上覆るからであり、かつ電極に端子をはノυ
だイ→け覆る1県のはんだi=Jけ性が増し、作業性が
向上Jるからである。「質吊負荷用金属月11」のイ」
着につい(は、真空蒸着、スパッタリング、イΔンブレ
ーテイングなどの様々な公知のh法が用いられ19る。
The counter electrode is protected by the oxide film formed on the Pb surface,
Reliability is improved because the terminals are covered and the terminals are not connected to the electrodes.
This is because the solder i = J in one prefecture that covers the surface increases, and the workability improves. "Quality Lifting Load Metal Month 11"
For deposition, various known methods such as vacuum evaporation, sputtering, and incubation can be used.

また、質用工1荷用金属材料は、[少なくとも一方」に
形成されればよい。すなわち、対向電極の双方に形成さ
れでもJ、く、あるいtよ一方のみに形成されてもよい
Further, the metal material for pawn work may be formed on [at least one side]. That is, it may be formed on both sides of the opposing electrodes, or only on one side.

この発明の圧電セラミクス素子は、上述のようなI質量
負荷用金属材料」が1対の対向電極の少なくとも一方に
付着されているため、質燈角荷効果により、完全な■ネ
ルギ閉込め振動をiりることが可能となる。す゛なわち
、従来エネルギの閉込め不可能であった、厚みづべり振
動基本波に基づく振動エネルギを、効果的に閉込めるこ
とが可能となる。また、この発明の圧電セラミクス素子
が、チタン酸鉛系セラミクスを材料とするため、拡がり
振動の電気機械結合係数にとが厚み方向の電気機械結合
係数+<tよりも無視できるほど小さいため、目的の振
動以外の不要な振動が発生しにくく、厚みすべり1ネル
ギ閉じ込め振動モードを利用するため超低スプリアスレ
ベルの圧電セラミクス材料を得ることができる。さらに
、チタン酸鉛系セラミクスでは、上述のように、誘電率
εが小さく、かつ機械的Qが大きいため、素子のハイイ
ンピーダンス化を容易に達成づることができ、かつ安定
度に優れた圧電セラミクス素子を得ることができる。
Since the piezoelectric ceramic element of the present invention has the above-mentioned "metal material for mass loading" attached to at least one of the pair of opposing electrodes, the piezoelectric ceramic element of the present invention can completely suppress energy confinement vibration due to the angular charge effect. It becomes possible to move. In other words, it becomes possible to effectively confine the vibration energy based on the fundamental wave of thickness shear vibration, which was conventionally impossible to confine. Furthermore, since the piezoelectric ceramic element of the present invention is made of lead titanate-based ceramics, the electromechanical coupling coefficient of the spreading vibration is negligibly smaller than the electromechanical coupling coefficient +<t in the thickness direction. It is possible to obtain a piezoelectric ceramic material with an ultra-low spurious level because it is difficult to generate unnecessary vibrations other than the vibrations of , and the thickness-shear one-energy confined vibration mode is used. Furthermore, as mentioned above, lead titanate ceramics have a small dielectric constant ε and a large mechanical Q, so it is easy to achieve high impedance of the element, and piezoelectric ceramics have excellent stability. element can be obtained.

以下、実施例につき説明する。Examples will be described below.

実施例 (P ho3o   L a  c、ツユ )  T 
:  03 →−0,5重量%Mn 02 +0.3m
m%CUOの組成の試料を調合し、混合ミル内で湿式混
合し、次に脱水・乾燥し、ざらに仮焼した後にバインダ
を混合して弱水乾燥・造粒した後に、35mmx35I
x 12mmの大きさに形成した。次に、1250℃で
2時間保持し焼成した後に、分極用の電極を800”C
で焼イ」G′Jで、その後80℃で3KV/mlの直流
電界を1時間印加し分極処理を行ない、スライシングマ
シンによりスライスした。スライスしたセラミクスを次
にラップし、かつ銀を蒸着し−C対向電極を形成した。
Example (Pho3oLac, Tsuyu) T
: 03 →-0.5wt%Mn 02 +0.3m
A sample with a composition of m% CUO was prepared, wet-mixed in a mixing mill, dehydrated and dried, roughly calcined, mixed with a binder, dried in weak water and granulated.
It was formed to a size of 12 mm x 12 mm. Next, after holding and baking at 1250℃ for 2 hours, the polarization electrode was heated to 80”C.
Thereafter, a DC electric field of 3 KV/ml was applied at 80° C. for 1 hour to perform polarization treatment, and sliced using a slicing machine. The sliced ceramics were then lapped and silver deposited to form a -C counter electrode.

ざらに、この1対の対向電極の上面に、それぞれ、Ni
口荷合属材料としての鉛を真空蒸着により付着した。こ
のようにして準備した圧電セラミクス素子10を、第4
図に側面図で示す。
Roughly, Ni
Lead as an additional material was deposited by vacuum evaporation. The piezoelectric ceramic element 10 prepared in this way was
It is shown in side view in the figure.

第4図から明らかなように、(P b、、2a  L 
aθμ )T’i Os +0.5重量%M002 +
0.3重量%CuOの組成からなる圧電セラミクス11
を挾んで1対の対向層tM12.13が形成されている
As is clear from Fig. 4, (P b, 2a L
aθμ ) T'i Os +0.5% by weight M002 +
Piezoelectric ceramics 11 having a composition of 0.3% by weight CuO
A pair of opposing layers tM12 and tM13 are formed between them.

圧電セラミクス11の分極軸方向く矢印Pで記す。The direction of the polarization axis of the piezoelectric ceramic 11 is indicated by an arrow P.

)は、対向電極12.13の対向方向と短歯にされ−C
いる。づなわら、この実施例の圧電セラミクス素子10
は、厚みづべり1ネルギ閉じ込め振動モードを利用する
ものである。また、各対向電極12.13の上面には、
質量負荷金属材料としての鉛層14,15が形成されて
いる。
) is in the opposite direction of the counter electrode 12.13 and short toothed -C
There is. In other words, the piezoelectric ceramic element 10 of this example
utilizes a thickness-thickness one-energy confined vibration mode. Moreover, on the upper surface of each counter electrode 12.13,
Lead layers 14 and 15 are formed as mass-loading metal materials.

以上のようにして製造したこの実施例の圧電セラミクス
素子10についで、減衰a゛−周波数特性を測定した。
The attenuation a-frequency characteristics of the piezoelectric ceramic element 10 of this example manufactured as described above were measured.

この結果を第5図に示す1.第す図から明らかなように
、この実施例によ11ば、厚みリベリJネルギ閉じ込め
振動の基本波には、波形の分割がほとんど生じていない
。このことは、買か負荷用金属材料を只備しないチタン
酸鉛系圧電1!ラミクスについて測定した第3図と比較
づれば、明白に理解されるて゛あろう。
The results are shown in Figure 5.1. As is clear from FIG. 11, in this embodiment, almost no waveform division occurs in the fundamental wave of the thickness-recovery J-energy confined vibration. This means that the lead titanate-based piezoelectric device, which does not have any metal material for the load, can be purchased! This will be clearly understood if you compare it with Figure 3, which was measured for Lamics.

【図面の簡単な説明】[Brief explanation of drawings]

¥51図は、PZT系セラミクスを用いた従来の圧電セ
ラミクス素子の一例の側面図である。第2図は、従来の
圧電セラミクス素子の他の例を示づ側面図である。第3
図(J、チタン酸鉛系セラミクスを用いた従来の圧電セ
ラミクス素子の厚みすべりエネルギ閉じ込め振動基本波
の波形を示すグラフである。第4図は、この発明の一実
施例を示づ側面図である。第5図は、第4図に示した実
施例の厚みすべりエネルギ閉じ込め振動の基本波の波形
を示すグラフである。 図において、10は圧電セラミクス素子、11は圧電セ
ラミクス、12,134よ1対の対向電擾罎、14.1
5は質量負荷用金属材flを示づ。 持n出願人 株式会社村田製伯三i91代  理  人
  弁理士  深  児  久  部 1.′:1′i
]″り+4、− (ほか2名)″−I譬L Q− 糸 11ツ)7,2 3 第2(2)       7.Z
¥51 is a side view of an example of a conventional piezoelectric ceramic element using PZT ceramics. FIG. 2 is a side view showing another example of a conventional piezoelectric ceramic element. Third
Figure (J) is a graph showing the waveform of the thickness-shear energy trapped vibration fundamental wave of a conventional piezoelectric ceramic element using lead titanate-based ceramics. Figure 4 is a side view showing an embodiment of the present invention. Fig. 5 is a graph showing the waveform of the fundamental wave of the thickness-shear energy confined vibration of the embodiment shown in Fig. 4. In the figure, 10 is a piezoelectric ceramic element, 11 is a piezoelectric ceramic element, 12, 134, etc. A pair of opposing electrical cables, 14.1
5 indicates a mass-loading metal material fl. Current applicant Murata Seihakuzo Co., Ltd. Representative Patent attorney Hisabe Fukaji 1. ′:1′i
]"ri+4,- (2 others)"-I example L Q- thread 11) 7, 2 3 2nd (2) 7. Z

Claims (1)

【特許請求の範囲】 チタン酸鉛系セラミクスからなる圧電セラミクスと、こ
の圧電セラミクスを挾んで対向づる1対の対向電極とを
備え、厚みすべりエネルギ閉じ込め振動モードを利用す
る圧電セラミクス素子において、 前記1対の対向電極の少なくとも一方には、質量負荷用
金属材料が付着されている圧電セラミクス素子。
[Scope of Claims] A piezoelectric ceramic element comprising a piezoelectric ceramic made of lead titanate-based ceramics and a pair of opposing electrodes sandwiching the piezoelectric ceramic, and utilizing a thickness shear energy trapping vibration mode, comprising: A piezoelectric ceramic element in which a mass-loading metal material is attached to at least one of a pair of opposing electrodes.
JP57154204A 1982-09-03 1982-09-03 Piezoelectric ceramic element Pending JPS5943620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154204A JPS5943620A (en) 1982-09-03 1982-09-03 Piezoelectric ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154204A JPS5943620A (en) 1982-09-03 1982-09-03 Piezoelectric ceramic element

Publications (1)

Publication Number Publication Date
JPS5943620A true JPS5943620A (en) 1984-03-10

Family

ID=15579115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154204A Pending JPS5943620A (en) 1982-09-03 1982-09-03 Piezoelectric ceramic element

Country Status (1)

Country Link
JP (1) JPS5943620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139909A (en) * 1989-10-25 1991-06-14 Murata Mfg Co Ltd Piezoelectric resonator
JPH0524405A (en) * 1991-07-19 1993-02-02 Reizu Eng:Kk Wheel and wheel assembly for automobile
WO1999037023A1 (en) * 1998-01-16 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Thin film pietoelectric element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327742B2 (en) * 1972-11-24 1978-08-10
JPS54153592A (en) * 1978-05-25 1979-12-03 Nippon Denpa Kogyo Kk Thickness slide vibrator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327742B2 (en) * 1972-11-24 1978-08-10
JPS54153592A (en) * 1978-05-25 1979-12-03 Nippon Denpa Kogyo Kk Thickness slide vibrator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139909A (en) * 1989-10-25 1991-06-14 Murata Mfg Co Ltd Piezoelectric resonator
JPH0524405A (en) * 1991-07-19 1993-02-02 Reizu Eng:Kk Wheel and wheel assembly for automobile
WO1999037023A1 (en) * 1998-01-16 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Thin film pietoelectric element

Similar Documents

Publication Publication Date Title
JP3259678B2 (en) Piezoelectric ceramic composition
JP3282576B2 (en) Piezoelectric ceramic composition
JP2000151351A (en) Surface acoustic wave element
JP3931513B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP4281726B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic and piezoelectric ceramic element
JP3750507B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
KR100515557B1 (en) Piezoelectric ceramic and surface wave device using the same
JPS5943620A (en) Piezoelectric ceramic element
JP2001039766A (en) Piezoelectric element
JP3198613B2 (en) Surface wave device
JPH11349380A (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP2004323325A (en) Piezoelectric ceramic and piezoelectric ceramic element using the same
JPS61154211A (en) Ceramic resonator
KR100397136B1 (en) Piezoelectric device
JP3198589B2 (en) Surface wave device
JP3617411B2 (en) Piezoelectric ceramic vibrator
JP2967437B2 (en) Laminated piezoelectric element porcelain composition
JPH0993078A (en) Piezoelectric device
JP2010093598A (en) Piezoelectric vibrator and method of manufacturing the same
EP0156312A2 (en) A piezo-electric ceramic composition for resonator in electrical wave filters
JP4479089B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JPH0745336B2 (en) Piezoelectric porcelain composition
TW486863B (en) Piezoelectric device
JPS641946B2 (en)
JPS5885614A (en) Monolithic ceramic filter