JPS5942750A - Focal point detector for charged particle beam scanning type microscope - Google Patents

Focal point detector for charged particle beam scanning type microscope

Info

Publication number
JPS5942750A
JPS5942750A JP15246482A JP15246482A JPS5942750A JP S5942750 A JPS5942750 A JP S5942750A JP 15246482 A JP15246482 A JP 15246482A JP 15246482 A JP15246482 A JP 15246482A JP S5942750 A JPS5942750 A JP S5942750A
Authority
JP
Japan
Prior art keywords
focal point
detected
component
scanning
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15246482A
Other languages
Japanese (ja)
Inventor
Yuji Mori
森 優治
Kazuo Koyanagi
和夫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP15246482A priority Critical patent/JPS5942750A/en
Publication of JPS5942750A publication Critical patent/JPS5942750A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Abstract

PURPOSE:To permit an AC component to always appear even whenever a sample surface with directivity such as a metal frictional surface is scanned and accurately detect a focal point by forming the trace of a scanning line on the sample surface into a closed curve when the focal point is detected. CONSTITUTION:A picture signal is input to a rectifying and smoothing circuit 9 through a preamplifier 7 and a capacitor 8 for cutting a DC component and the strength of the DC omponent is detected by the same circuit. A lens current and such control circuit 10 controls a scanning signal circuit 11 and adds a sine wave signal to an x-direction deflection coil 4 and a sine wave signal that shifts the phase by 90 deg. to a y-direction deflection coil 5 and then deflects an electron beam 1 on the surface of a sample 2 along the circumference when a focal point is detected. The trace of a scanning line when the focal point is detected can be formed into a closed curve, for example, a circle, an ellipse, or an 8-shaped curve and the AC component can be obtained even for lateral fringes. In addition, the trace becomes useful when scratches, spots, etc. are observed at the center of a screen.

Description

【発明の詳細な説明】 (()発明の分野 本発明は走査型電子顕微鏡のように金属表面などを荷電
粒子ビームで走査することにより試別に関する情報を得
る装置における対物レンズの焦点検出装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (() Field of the Invention The present invention relates to a focus detection device for an objective lens in an apparatus such as a scanning electron microscope that obtains information regarding discrimination by scanning a metal surface with a charged particle beam. It is something.

(ロ) 従来技術とその問題点 一般にこの種の顕微鏡の焦点検出には、試料面を走査し
て得られる映像信号中の交流成分が最大になる点を検出
するという方法が用いられている0しかしこの従来方式
においては、焦点検出時にも試料観察時と同様に試料面
を走査しているので、例えば研磨された金属表面のよう
に試別面の状態に方向性があるとき、その方向性がX方
向と平行に対物レンズ電流が合焦値の点を通過すると、
正しい合焦対物レンズ電流が検出できないという問題が
あった。
(b) Prior art and its problems In general, focus detection in this type of microscope uses a method of scanning the sample surface and detecting the point where the alternating current component in the image signal obtained is maximum. However, in this conventional method, the sample surface is scanned during focus detection in the same way as during sample observation, so when the condition of the specimen surface has a directionality, such as a polished metal surface, the directionality When the objective lens current passes through the focus value point parallel to the X direction,
There was a problem that the correct focusing objective lens current could not be detected.

(ハ)発明の目的 本発明は焦点検出時には試料観察時とは異なる走査信号
を使用するようにし、焦点検出時における走査線は方向
性をもだないように構成することにより、上述の問題点
を解決することを目的とするものである。
(C) Purpose of the Invention The present invention solves the above-mentioned problems by using a scanning signal different from that used in sample observation during focus detection, and by configuring the scanning line during focus detection to have no directionality. The purpose is to solve the following problems.

(ニ)実施例の説明 第1図は本発明の一実施例を示す。1は試料照射電子ビ
ーム、2は試料、3は電磁対物レンズ、4はX方向走査
用偏向コイル、5はy方向走査用偏向コイル、6は試料
2かも放出される2次電子等を検出する検出器でその出
力が映像信号である。
(d) Description of Embodiment FIG. 1 shows an embodiment of the present invention. 1 is a sample irradiation electron beam, 2 is a sample, 3 is an electromagnetic objective lens, 4 is a deflection coil for scanning in the X direction, 5 is a deflection coil for scanning in the y direction, and 6 detects secondary electrons etc. emitted from the sample 2. The output of the detector is a video signal.

この映像信号はプリアンプ7および直流分カット用コン
デンザ8を介して整流平滑回路9に入力さ青信号回路1
1を制御してX方向偏向コイル4に正弦波信号を加え、
y方向偏向コイル5に位相を900ずらせた正弦波信号
を加えて・電子ビームlを試料2面上で円周に沿って振
らせる。寸だ同時に制御回路10は対物レンズ電流電源
装置12を制御して対物レンズ電流を所定範囲でゆっく
りと変化させる。
This video signal is input to a rectifying and smoothing circuit 9 via a preamplifier 7 and a DC component cutting capacitor 8.
1 to apply a sine wave signal to the X direction deflection coil 4,
A sine wave signal whose phase is shifted by 900 is applied to the y-direction deflection coil 5, and the electron beam l is swung along the circumference on the surface of the sample 2. At the same time, the control circuit 10 controls the objective lens current power supply 12 to slowly change the objective lens current within a predetermined range.

第2図は対物レンズの励磁電流りを変化させたときの交
流成分の強さEの変化を示しだもので、交流成分Eが最
大値Kmをとるときのレンズ電流のLOを合焦点として
レンズ電流をこの値に七゛ソ卜する。以上で焦点検出動
作は終り、つきに走査信号回路11を切拠えて通常のX
方向、y方向の走査を行わせるのである。
Figure 2 shows the change in the strength E of the AC component when the excitation current of the objective lens is changed. Set the current to 7° to this value. This completes the focus detection operation, and finally the scanning signal circuit 11 is turned off and the normal
This causes scanning to be performed in the y-direction and the y-direction.

第3図において矢印は走査方向を示すものであシ、aは
試料面の方向性により交流成分が現れ易い例を示し、同
図すは交流成分の現れにくい例を示しだものである。第
4図は本発明による焦点検出時の走査線の軌跡を示した
もので、同図aに示すように円または楕円にすれば第3
図すのような横縞に対しても交流成分を得ることができ
、また第4図すのように走査線を8の字型にすれば画面
の中央で傷や斑点などを観察する場合に有利である。
In FIG. 3, arrows indicate the scanning direction, and arrow a shows an example in which alternating current components are likely to appear depending on the directionality of the sample surface, and figure a shows an example in which alternating current components are difficult to appear. Figure 4 shows the locus of the scanning line during focus detection according to the present invention.
It is possible to obtain AC components even for horizontal stripes as shown in Figure 4, and if the scanning line is shaped like a figure 8 as shown in Figure 4, it is advantageous when observing scratches or spots in the center of the screen. It is.

(ホ)発明の効果 本発明は上述のように、焦点検出時における試料面上の
走査線の軌跡を円や8の字のような閉曲線としだので、
金属研磨面のように方向性のある試料面を走査する場合
でも、−走査中に必ず交流成分が現れて確実に焦点検出
を行うことができるという利点がある。また従来のX方
向走査の場合は交流成分の最大となる点が帰線区間に入
ったときに焦点位置を誤って検出するという欠点がちつ
だが、本発明では走査線が閉曲線となっているのでその
ようなおそれもない。
(e) Effects of the Invention As described above, the present invention makes the locus of the scanning line on the sample surface during focus detection a closed curve like a circle or figure 8.
Even when scanning a directional sample surface such as a polished metal surface, there is an advantage that an alternating current component always appears during scanning and focus detection can be performed reliably. In addition, in the case of conventional X-direction scanning, there is a drawback that the focal position is incorrectly detected when the point with the maximum AC component enters the flyback section, but in the present invention, the scanning line is a closed curve. There is no such fear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示すブロック図、第2
図は同」二のレンズ電流と交流成分の強さとの関係を示
すグラフ、第3図a、  bは従来例の試料面上の走査
線の軌跡を示す上面図、第4図a、bは本発明の試料面
上の走査線の軌跡を示す上面図。 l・・・荷電粒子ビーム、2・・・試料、ト・・zJ物
レンズ、4,5・・・偏向コイル、6・・・検出器、7
・・・プリアンプ、8・・・直流分カット用コンデンサ
、9・・・整流平滑回路、10・・・レンズ電流制御回
路、■]−・・・走査信号回路、12・・・対物レンズ
電流電源装置。 代理人 弁理士  縣   浩  介
FIG. 1 is a block diagram showing one embodiment of the device of the present invention, and FIG.
The figure is a graph showing the relationship between the lens current and the strength of the alternating current component, Figures 3a and b are top views showing the trajectory of the scanning line on the sample surface in the conventional example, and Figures 4a and b are graphs showing the relationship between the lens current and the strength of the AC component. FIG. 3 is a top view showing the trajectory of a scanning line on a sample surface according to the present invention. l... Charged particle beam, 2... Sample, G... ZJ object lens, 4, 5... Deflection coil, 6... Detector, 7
... Preamplifier, 8 ... DC component cutting capacitor, 9 ... Rectifier and smoothing circuit, 10 ... Lens current control circuit, ■] - ... Scanning signal circuit, 12 ... Objective lens current power supply Device. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 試料面を荷電粒子ビームで走査し、試別1iriより発
生する二次電子により映像信号を得るようにしたビーム
走査型顕微鏡において、試別面を走査しながら対物レン
ズ電流を変化させて映像信号中の交流成分が最大になる
点を合焦値として検出するようにし、焦点検出時におけ
る試t1面一ヒの走査線の軌跡を適宜の閉曲線としたこ
とを特徴とする荷電粒子ビーム走査型顕微鏡の焦点検出
装置。
In a beam scanning microscope that scans the specimen surface with a charged particle beam and obtains an image signal using secondary electrons generated from the specimen 1iri, the objective lens current is changed while scanning the specimen surface to obtain the video signal. A charged particle beam scanning microscope characterized in that the point at which the alternating current component of Focus detection device.
JP15246482A 1982-08-31 1982-08-31 Focal point detector for charged particle beam scanning type microscope Pending JPS5942750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15246482A JPS5942750A (en) 1982-08-31 1982-08-31 Focal point detector for charged particle beam scanning type microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15246482A JPS5942750A (en) 1982-08-31 1982-08-31 Focal point detector for charged particle beam scanning type microscope

Publications (1)

Publication Number Publication Date
JPS5942750A true JPS5942750A (en) 1984-03-09

Family

ID=15541078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15246482A Pending JPS5942750A (en) 1982-08-31 1982-08-31 Focal point detector for charged particle beam scanning type microscope

Country Status (1)

Country Link
JP (1) JPS5942750A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264866A (en) * 1975-11-25 1977-05-28 Shimadzu Corp Focus detection unit of scanning-type electronic line equipment
JPS54100661A (en) * 1978-01-25 1979-08-08 Jeol Ltd Focusing unit of electron-beam device
JPS5576558A (en) * 1978-12-06 1980-06-09 Hitachi Ltd Astigmatism compensating and focusing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264866A (en) * 1975-11-25 1977-05-28 Shimadzu Corp Focus detection unit of scanning-type electronic line equipment
JPS54100661A (en) * 1978-01-25 1979-08-08 Jeol Ltd Focusing unit of electron-beam device
JPS5576558A (en) * 1978-12-06 1980-06-09 Hitachi Ltd Astigmatism compensating and focusing device

Similar Documents

Publication Publication Date Title
KR20090115029A (en) Pattern invariant focusing of a charged particle beam
JP3602646B2 (en) Sample size measuring device
EP1276134A2 (en) A method for determining depression/protrusion of sample and charged particle beam apparatus therefor
US20080015813A1 (en) Pattern measurement apparatus and pattern measuring method
JP2005310602A (en) Charged particle beam adjustment method and charged particle beam device
JP3101114B2 (en) Scanning electron microscope
JPH05190132A (en) Automatic focusing of scan type electron microscope
JP2008311216A (en) Autofocus method of scanning charged-particle beam device
JPS5942750A (en) Focal point detector for charged particle beam scanning type microscope
JP2019169433A (en) Charged particle beam alignment device, charged particle beam radiation device, and charged particle beam alignment method
JPH01120749A (en) Automatic focusing device for electron microscope
JPS58214258A (en) Focal point detection device for scanning type electron microscope and the like
JP2003007247A (en) Automatic image drift correction system for scanning electron microscope
JP4871350B2 (en) Pattern dimension measuring method and pattern dimension measuring apparatus
JPH07312195A (en) Scanning electron microscope
CN110926333A (en) Electronic scanning method and electronic scanning device
JPS58106746A (en) Axis alignment process of electron lens
JP2007287561A (en) Charged particle beam device
JP2003045370A (en) Scanning electron microscope
JP2008282826A (en) Charged particle beam adjustment method, and charged particle beam device
JP3114335B2 (en) Focusing method in scanning electron microscope
JP2006190693A (en) Charged particle beam device
JPH05283028A (en) Image signal treating method in charged particle beam device
JP2000277046A (en) Automatic focusing method in scanning electronic microscope
JPH0243089Y2 (en)