JP2000277046A - Automatic focusing method in scanning electronic microscope - Google Patents

Automatic focusing method in scanning electronic microscope

Info

Publication number
JP2000277046A
JP2000277046A JP11086176A JP8617699A JP2000277046A JP 2000277046 A JP2000277046 A JP 2000277046A JP 11086176 A JP11086176 A JP 11086176A JP 8617699 A JP8617699 A JP 8617699A JP 2000277046 A JP2000277046 A JP 2000277046A
Authority
JP
Japan
Prior art keywords
value
detection value
objective lens
direction detection
information signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11086176A
Other languages
Japanese (ja)
Other versions
JP3428487B2 (en
Inventor
Eiji Yahagi
栄司 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP08617699A priority Critical patent/JP3428487B2/en
Publication of JP2000277046A publication Critical patent/JP2000277046A/en
Application granted granted Critical
Publication of JP3428487B2 publication Critical patent/JP3428487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To always obtain a focused point and automatically performs a focus match of a scanning type electronic microscope regardless of the presence of non-point aberra tion and a distribution state of each edge in the sample, etc. SOLUTION: An (x) direction detection value and (y) direction detection value are obtained for a current value of each objective lens by changing the current value of the objective lens (steps S1 to S5). A maximum value of the (x) direction detection value and a maximum value of the (y) direction detection value are detected, then a focused point is obtained based on the maximum value of the (x) direction detection values and the maximum value of the (y) direction detection value (step S6). The focus match is then performed (step S7). The (x) direction detection value is calculated that the (y) direction integration information signal obtained by integrating the information signal along (y) direction is used as a unit information value, by using a predetermined arithmetic equation. The (y) direction detection value is calculated that the (x) direction integration information signal obtained by integrating an information signal along the (x) direction is used as a unit information value, by using a predetermined arithmetic equation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、走査型電子顕微
鏡における自動焦点合わせ方法に関する。
The present invention relates to an automatic focusing method for a scanning electron microscope.

【0002】[0002]

【従来の技術】この種の走査型電子顕微鏡における自動
焦点合わせは、従来、図9に示すような構成で行われて
いる。
2. Description of the Related Art Conventionally, automatic focusing in this type of scanning electron microscope has been performed with a configuration as shown in FIG.

【0003】図9において、符号1は鏡筒、2は電子銃
であり、電子銃2から放出された電子は収束レンズ3で
収束され、走査回路4に制御される走査コイル5で2次
元的に走査されるとともに、対物レンズ6により絞られ
て電子プローブ7として試料8上に照射され、これによ
って試料8から2次電子が放出される。試料8から放出
された2次電子は検出器9で検出され、高域成分抽出フ
ィルタ10により高周波数成分の信号が抽出されて2次
電子像(情報信号)を得て、A/D変換器11によりデ
ジタル信号に変換されて情報信号記憶部12に記憶され
る。
In FIG. 9, reference numeral 1 denotes a lens barrel, 2 denotes an electron gun, and electrons emitted from the electron gun 2 are converged by a converging lens 3 and are two-dimensionally scanned by a scanning coil 5 controlled by a scanning circuit 4. And is squeezed by the objective lens 6 and radiated onto the sample 8 as an electron probe 7, whereby secondary electrons are emitted from the sample 8. The secondary electrons emitted from the sample 8 are detected by a detector 9, and a high-frequency component signal is extracted by a high-frequency component extraction filter 10 to obtain a secondary electron image (information signal), and the A / D converter The signal is converted into a digital signal by 11 and stored in the information signal storage unit 12.

【0004】情報信号記憶部12には、電子プローブ7
が走査された試料8上の各位置に対応して、図10に示
すような2次元の各位置(x,y)ごとの情報信号群が
記憶される。
The information signal storage unit 12 includes an electronic probe 7
A two-dimensional information signal group for each two-dimensional position (x, y) as shown in FIG. 10 is stored corresponding to each position on the sample 8 scanned by.

【0005】検出値演算部100は、情報信号記憶部1
2に記憶された2次元の情報信号群に基づき、対物レン
ズ6に現在供給されている電流(現在の対物レンズ電流
値)Iに対する検出値S(I)を求める。この演算は、
従来、各位置(x,y)ごとの情報信号h(x,y)を
単位情報値として所定の演算式を用いて求めている。こ
の演算式としては、例えば、各単位情報値の2乗和(以
下の式(P1))や、隣接する単位情報値の差分の2乗
和(以下の式(P2)または式(P3))などが用いら
れる。
[0005] The detection value calculation unit 100 includes an information signal storage unit 1
Based on the two-dimensional information signal group stored in 2, a detection value S (I) for the current I (current objective lens current value) currently supplied to the objective lens 6 is obtained. This operation is
Conventionally, an information signal h (x, y) for each position (x, y) is determined as a unit information value using a predetermined arithmetic expression. As the arithmetic expression, for example, the sum of squares of each unit information value (the following expression (P1)) or the sum of squares of the difference between adjacent unit information values (the following expression (P2) or expression (P3)) Are used.

【0006】 S(I)=ΣyΣx{h(x,y)}2 … (P1) S(I)=ΣyΣx{h(x,y)−h(x−1,y)}2 …(P2) S(I)=ΣyΣx{h(x,y)−h(x,y−1)}2 …(P3)S (I) = ΣyΣx {h (x, y)} 2 (P1) S (I) = ΣyΣx {h (x, y) -h (x−1, y)} 2 (P2) S (I) = {y} x {h (x, y) -h (x, y-1)} 2 (P3)

【0007】求められた検出値S(I)は、現在の対物
レンズ電流値Iと関連付けて検出値記憶部110に記憶
される。
The detected value S (I) is stored in the detected value storage unit 110 in association with the current objective lens current value I.

【0008】検出値演算部100は、1つの対物レンズ
電流値Iに対する検出値S(I)を求めて検出値記憶部
110に記憶すると、対物レンズ電流出力回路13を制
御して対物レンズ5へ供給する電流値Iを変え、上述と
同様のプロセスで新たな対物レンズ電流値Iに対する検
出値S(I)が検出値記憶部110に記憶される。以後
同様にして対物レンズ電流値Iを順次変えながら、各対
物レンズ電流値Iに対する検出値S(I)を検出値記憶
部110に記憶していく。
When the detected value calculating section 100 obtains a detected value S (I) for one objective lens current value I and stores it in the detected value storage section 110, it controls the objective lens current output circuit 13 to send the objective lens 5 The supplied current value I is changed, and the detected value S (I) for the new objective lens current value I is stored in the detected value storage unit 110 in the same process as described above. Thereafter, the detection value S (I) for each objective lens current value I is stored in the detection value storage unit 110 while sequentially changing the objective lens current value I in the same manner.

【0009】合焦点位置決定部120は、検出値記憶部
110に記憶された各対物レンズ電流値Iに対する検出
値S(I)に基づき合焦点位置を求める。すなわち、対
物レンズ電流値Iの違いによって電子プローブ7の焦点
位置が変わり、これに応じて、検出値S(I)の値が変
化する。
The in-focus position determination section 120 determines the in-focus position based on the detected value S (I) for each objective lens current value I stored in the detected value storage section 110. That is, the focal position of the electronic probe 7 changes depending on the difference in the objective lens current value I, and the value of the detection value S (I) changes accordingly.

【0010】例えば、非点収差がない状態では、図11
(a)に示すように、電子プローブ7はPに集まり、電
子プローブ7の焦点位置が試料8上に合うと、試料8上
で電子プローブ7の径が最小となり、このとき、検出値
S(I)は最大となる。すなわち、非点収差がない状態
における各対物レンズ電流値Iに対する検出値S(I)
をグラフ化すると、図12(a)に示すように、各対物
レンズ電流値Iに対する検出値S(I)の変化特性は単
峰性を示し、検出値S(I)の最大値が合焦点位置とな
り、その合焦点位置の対物レンズ電流値Ifが求められ
る。
For example, when there is no astigmatism, FIG.
As shown in (a), when the electron probe 7 converges on P and the focus position of the electron probe 7 is on the sample 8, the diameter of the electron probe 7 on the sample 8 becomes minimum, and at this time, the detection value S ( I) is maximum. That is, the detection value S (I) for each objective lens current value I without astigmatism
12A, as shown in FIG. 12A, the change characteristic of the detection value S (I) with respect to each objective lens current value I shows a unimodal characteristic, and the maximum value of the detection value S (I) is focused. And the objective lens current value If at the in-focus position is obtained.

【0011】また、非点収差がある状態では、図11
(b)に示すように、子午面に平行なu軸上の電子プロ
ーブ7はメリジオル像位置のP1に集まり、u軸に直交
するv軸上の電子プローブ7はサジタル像位置のP2に
集まる。P1とP2との間隔は非点隔差と呼ばれ、P1
とP2との中間位置(非点隔差の1/2)が最小錯乱円
の位置Pであり、非点収差がある状態ではこの最小錯乱
円の位置Pが合焦点位置となる。ここで、非点収差があ
る状態における各対物レンズ電流値Iに対する検出値S
(I)をグラフ化すると、図12(b)に示すように、
各対物レンズ電流値Iに対する検出値S(I)の変化特
性はP1、P2に対応した2つのピークが形成される双
峰性を示す。そして、この2つのピークの中間点が最小
錯乱円の位置Pに対応した合焦点位置となり、その合焦
点位置の対物レンズ電流値Ifが求められる。
In a state where there is astigmatism, FIG.
As shown in (b), the electron probes 7 on the u axis parallel to the meridian plane gather at P1 at the meridional image position, and the electron probes 7 on the v axis orthogonal to the u axis gather at P2 at the sagittal image position. The distance between P1 and P2 is called astigmatic difference, and P1
An intermediate position (1 / of the astigmatism difference) between P and P2 is the position P of the circle of least confusion, and the position P of the circle of least confusion is the focal point position in a state where there is astigmatism. Here, the detection value S for each objective lens current value I in a state where there is astigmatism
When (I) is graphed, as shown in FIG.
The change characteristic of the detection value S (I) with respect to each objective lens current value I shows a bimodal property in which two peaks corresponding to P1 and P2 are formed. Then, an intermediate point between the two peaks becomes a focal point corresponding to the position P of the circle of least confusion, and the objective lens current value If at the focal point is obtained.

【0012】以上のようにして求められた合焦点位置の
対物レンズ電流値Ifを対物レンズ6に出力すれば、焦
点を自動的に合わせることができる。
If the objective lens current value If at the in-focus position obtained as described above is output to the objective lens 6, the focus can be adjusted automatically.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、このよ
うな構成を有する従来例の場合には、次のような問題が
ある。試料8上において、エッジのような構造が存在す
ることにより、情報信号の分布が、合焦状態と非合焦状
態とで相違し、この差が、合焦状態の検出値S(I)と
非合焦状態との検出値S(I)の大小差を生じさせてい
る。
However, the prior art having such a structure has the following problems. Due to the existence of an edge-like structure on the sample 8, the distribution of the information signal differs between the in-focus state and the out-of-focus state, and this difference is different from the detection value S (I) of the in-focus state. This causes a difference in detection value S (I) from the out-of-focus state.

【0014】非点収差のある状態において、各対物レン
ズ電流値Iに対する検出値S(I)の変化特性には2つ
のピークが形成されると説明したが、一方のピークの大
きさは、試料8内の各エッジのうち、u軸方向の成分を
有するエッジの量や大きさによって決まり、他方のピー
クの大きさは、試料8内の各エッジのうち、v軸方向の
成分を有するエッジの量や大きさによって決まる。
It has been described that in a state where there is astigmatism, two peaks are formed in the change characteristic of the detection value S (I) with respect to each objective lens current value I. 8, the magnitude of the other peak having a component in the u-axis direction is determined by the amount and magnitude of the edge having a component in the u-axis direction. It depends on the amount and size.

【0015】すなわち、試料8内の各エッジのうち、u
軸方向の成分を有するエッジの量等とv軸方向の成分を
有するエッジの量等との分布が均一であれが、2つのピ
ークが明瞭に形成されるが、各軸方向の成分を有するエ
ッジの量等の分布に偏りがあれば、図13に示すよう
に、2つのピークの大きさに著しい格差が生じて、一方
のピークが他方のピークに吸収され、2つのピークが明
瞭に形成されなくなる。図13の場合、検出値S(I)
の最大値は一方のピークであって合焦点位置とは相違す
るし、2つのピークを検出することができないので、そ
の中間点が検出できず、その結果、合焦点位置が求めら
れないことになる。
That is, among the edges in the sample 8, u
If the distribution of the amount of the edge having the component in the axial direction and the like and the amount of the edge having the component in the v-axis direction are uniform, two peaks are clearly formed, but the edge having the component in each axial direction If there is a bias in the distribution of the amounts of the two peaks, as shown in FIG. 13, a significant difference occurs in the size of the two peaks, one peak is absorbed by the other peak, and the two peaks are clearly formed. Disappears. In the case of FIG. 13, the detection value S (I)
Is the maximum value of one of the peaks, which is different from the focus position, and the two peaks cannot be detected. Therefore, the intermediate point cannot be detected. As a result, the focus position cannot be obtained. Become.

【0016】この発明は、このような事情に鑑みてなさ
れたものであって、非点収差の有無や試料内の各エッジ
の分布状態などにかかわらず、常に合焦点位置を求める
ことができる走査型電子顕微鏡における自動焦点合わせ
方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and a scanning method capable of always finding a focused position regardless of the presence or absence of astigmatism and the distribution state of each edge in a sample. It is an object of the present invention to provide an automatic focusing method in a scanning electron microscope.

【0017】[0017]

【課題を解決するための手段】この発明は、このような
目的を達成するために、次のような構成をとる。すなわ
ち、この発明は、電子銃から放出された電子線を収束さ
せるとともに2次元的に走査して試料面上に照射し、前
記電子線の照射に基づいて試料から得られた2次元の情
報信号群を検出して合焦点位置を求める走査型電子顕微
鏡における自動焦点合わせ方法において、前記2次元の
情報信号群に対して、その2次元のうちの一方側の方向
(x方向)に沿ったx方向検出値を、前記x方向と直交
する方向(y方向)に沿った情報信号を積分したy方向
積分情報信号を単位情報値とし所定の演算式を用いて算
出するものとし、また、前記y方向に沿ったy方向検出
値を、前記x方向に沿った情報信号を積分したx方向積
分情報信号を単位情報値とし所定の演算式を用いて算出
するものとして、対物レンズ電流値を変化させながら、
各対物レンズ電流値に対する前記x方向検出値と前記y
方向検出値とを得て、前記x方向検出値の最大値と前記
y方向検出値の最大値とを検出し、それらx方向検出値
の最大値とy方向検出値の最大値とに基づき合焦点位置
を求めて、焦点合わせを行うことを特徴とするものであ
る。
The present invention has the following configuration to achieve the above object. That is, according to the present invention, a two-dimensional information signal obtained from a sample based on the irradiation of the electron beam is obtained by converging an electron beam emitted from an electron gun and irradiating the sample with a two-dimensional scan on a sample surface. In an automatic focusing method in a scanning electron microscope for detecting a group and obtaining a focal point position, the two-dimensional information signal group is subjected to x along one direction (x direction) of the two dimensions. The direction detection value is calculated using a predetermined arithmetic expression with a y-direction integrated information signal obtained by integrating information signals along a direction (y direction) orthogonal to the x direction as a unit information value. Assuming that the detected value in the y direction along the direction is calculated using a predetermined arithmetic expression with the x direction integrated information signal obtained by integrating the information signal along the x direction as a unit information value, the objective lens current value is changed. While
The x-direction detection value and the y value for each objective lens current value
A direction detection value is obtained, a maximum value of the x-direction detection value and a maximum value of the y-direction detection value are detected, and a sum is calculated based on the maximum value of the x-direction detection value and the maximum value of the y-direction detection value. It is characterized in that focusing is performed by obtaining a focal position.

【0018】〔作用〕この発明の作用は次のとおりであ
る。電子銃から放出された電子線を収束させるとともに
2次元的に走査して試料面上に照射し、電子線の照射に
基づいて試料から得られた2次元の情報信号群に対し
て、その2次元のうちの一方側の方向(x方向)に沿っ
たx方向検出値を、x方向と直交する方向(y方向)に
沿った情報信号を積分したy方向積分情報信号を単位情
報値とし従来と同様の演算式を用いて算出するものと
し、また、y方向に沿ったy方向検出値を、x方向に沿
った情報信号を積分したx方向積分情報信号を単位情報
値とし従来と同様の演算式を用いて算出するものとす
る。
[Operation] The operation of the present invention is as follows. The electron beam emitted from the electron gun is converged, two-dimensionally scanned and irradiated onto the sample surface, and a two-dimensional information signal group obtained from the sample based on the irradiation of the electron beam is subjected to the second step. Conventionally, a detected value in the x direction along one direction (x direction) of the dimension is used as a unit information value using a y direction integrated information signal obtained by integrating an information signal along a direction (y direction) orthogonal to the x direction. Calculated using the same arithmetic expression as above, and the y-direction detection value along the y-direction is defined as an x-direction integrated information signal obtained by integrating the information signal along the x-direction as a unit information value. It shall be calculated using an arithmetic expression.

【0019】このようにして得られるx方向検出値によ
れば、非合焦状態におけるボケのうち、x方向だけのボ
ケを検出できるので、x方向の焦点状態が評価できる。
また、y方向検出値によれば、非合焦状態におけるボケ
のうち、y方向だけのボケを検出できるので、y方向の
焦点状態が評価できる。
According to the x-direction detection value obtained in this manner, among the blurs in the out-of-focus state, only the x-direction blur can be detected, so that the focus state in the x-direction can be evaluated.
Further, according to the y-direction detection value, among the blurs in the out-of-focus state, only the y-direction blur can be detected, so that the focus state in the y direction can be evaluated.

【0020】そして、対物レンズ電流値を変化させなが
ら、各対物レンズ電流値に対する上記x方向検出値と上
記y方向検出値とを得る。次に、各対物レンズ電流値に
対する各x方向検出値のうちの最大値と、各対物レンズ
電流値に対する各y方向検出値のうちの最大値とを検出
する。そして、それらx方向検出値の最大値とy方向検
出値の最大値とに基づき合焦点位置を求めて、焦点位置
に対する対物レンズ電流値を特定して焦点合わせを行
う。
Then, the x-direction detection value and the y-direction detection value for each objective lens current value are obtained while changing the objective lens current value. Next, the maximum value of the x-direction detection values for each objective lens current value and the maximum value of each y-direction detection value for each objective lens current value are detected. Then, the in-focus position is obtained based on the maximum value of the x-direction detection value and the maximum value of the y-direction detection value, and the focusing is performed by specifying the objective lens current value with respect to the focus position.

【0021】各対物レンズ電流値に対する各x方向検出
値は、x方向の焦点状態に対応した検出値の特性変化を
示し、各対物レンズ電流値に対する各y方向検出値は、
y方向の焦点状態に対応した検出値の特性変化を示す。
Each detected value in the x direction for each objective lens current value indicates a characteristic change of the detected value corresponding to the focus state in the x direction, and each detected value in the y direction for each objective lens current value is
5 shows a characteristic change of a detection value corresponding to a focus state in the y direction.

【0022】非点収差がない状態では、各対物レンズ電
流値に対する各x方向検出値のうちの最大値はx方向の
合焦点位置に対応し、各対物レンズ電流値に対する各y
方向検出値のうちの最大値はy方向の合焦点位置に対応
する。また、非点収差がない状態では、x方向の合焦点
位置とy方向の合焦点位置とは同じであるので、x方向
検出値の最大値位置(に対応する対物レンズ電流値)と
y方向検出値の最大値位置(に対応する対物レンズ電流
値)とは同じになる。
In a state where there is no astigmatism, the maximum value among the detected values in each x direction for each current value of the objective lens corresponds to the focal position in the x direction, and each y value for each current value of the objective lens.
The maximum value of the direction detection values corresponds to the focus position in the y direction. Further, when there is no astigmatism, the focus position in the x direction and the focus position in the y direction are the same, so the maximum value position of the detected value in the x direction (the objective lens current value corresponding to) and the y direction It is the same as the maximum value position of the detection value (the objective lens current value corresponding to the position).

【0023】非点収差がある状態では、各対物レンズ電
流値に対する各x方向検出値のうちの最大値は、合焦点
位置を挟んで等距離にある2つの焦点位置のうちの一方
の焦点位置に対応した位置に現れ、各対物レンズ電流値
に対する各y方向検出値のうちの最大値は、上記2つの
焦点位置のうちの他方の焦点位置に対応した位置に現れ
る。そして、x方向検出値の最大値位置(に対応した対
物レンズ電流値)とy方向検出値の最大値位置(に対応
した対物レンズ電流値)との中間位置(に対応した対物
レンズ電流値)が合焦点位置に対応する。
In the state where there is astigmatism, the maximum value among the x-direction detection values for each objective lens current value is one of two focal positions equidistant with respect to the in-focus position. And the maximum value of the detected values in the y direction for each objective lens current value appears at a position corresponding to the other of the two focal positions. Then, an intermediate position (objective lens current value corresponding to) between the maximum value position of the x-direction detection value (objective lens current value corresponding to) and the maximum value position of the y-direction detection value (objective lens current value corresponding to). Corresponds to the in-focus position.

【0024】従って、x方向検出値の最大値位置(に対
応した対物レンズ電流値)とy方向検出値の最大値位置
(に対応した対物レンズ電流値)とを加算した結果を2
で割り算すれば、非点収差の有無にかかわらず、合焦点
位置(に対応した対物レンズ電流値)を算出することが
できる。
Accordingly, the result of adding the maximum value position of the x-direction detection value (objective lens current value corresponding to) and the maximum value of the y-direction detection value (objective lens current value corresponding to) is 2
By dividing by, the in-focus position (the objective lens current value corresponding to) can be calculated regardless of the presence or absence of astigmatism.

【0025】[0025]

【発明の実施の形態】以下、図面を参照してこの発明の
実施の形態を説明する。図1はこの発明の一実施例に係
る走査型電子顕微鏡における自動焦点合わせ方法を実現
する装置構成を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an apparatus configuration for realizing an automatic focusing method in a scanning electron microscope according to one embodiment of the present invention.

【0026】図1において、符号1ないし13で示す構
成要素は従来装置(図9)と同じである。この実施例で
は、従来装置の検出値演算部100と検出値記憶部11
0と合焦点位置決定部120とに代えて、x方向検出値
演算部20とy方向検出値演算部21とx方向検出値記
憶部22とy方向検出値記憶部23と合焦点位置決定部
24とを備えている。また、1つの対物レンズ電流値I
に対するx方向検出値Sx(I)とy方向検出値Sy
(I)とが求められてそれぞれx方向検出値記憶部22
とy方向検出値記憶部23とに記憶すると、対物レンズ
電流出力回路13から対物レンズ5へ供給する電流値I
を変えるように構成している。
In FIG. 1, components denoted by reference numerals 1 to 13 are the same as those of the conventional apparatus (FIG. 9). In this embodiment, the detection value calculation unit 100 and the detection value storage unit 11 of the conventional device are used.
0, instead of the in-focus position determination section 120, the x-direction detection value calculation section 20, the y-direction detection value calculation section 21, the x-direction detection value storage section 22, the y-direction detection value storage section 23, and the in-focus position determination section 24. In addition, one objective lens current value I
X-direction detection value Sx (I) and y-direction detection value Sy
(I) are obtained, and the x-direction detection value storage unit 22
And the y-direction detection value storage unit 23, the current value I supplied from the objective lens current output circuit 13 to the objective lens 5
Is configured to change.

【0027】x方向検出値演算部20は、情報信号記憶
部12に記憶された2次元の情報記憶群(図10参照)
から、図2に示すように、まず、各x座標ごとに、y方
向に沿った情報信号h(x,y)を積分したy方向積分
情報信号Ry(x)(=Σy〔h(x,y)〕)を求
め、このy方向積分情報信号Ry(x)を単位情報値と
して従来と同様の演算式、例えば、各単位情報値Ry
(x)の2乗和(以下の式(1))などを用いて、1つ
の対物レンズ電流値Iに対するx方向検出値Sx(I)
を得る。
The x-direction detection value calculation section 20 is a two-dimensional information storage group stored in the information signal storage section 12 (see FIG. 10).
As shown in FIG. 2, first, for each x-coordinate, a y-direction integrated information signal Ry (x) (= Σy [h (x, x, y) obtained by integrating the information signal h (x, y) along the y-direction. y)]), and using the y-direction integral information signal Ry (x) as a unit information value, the same arithmetic expression as in the past, for example, each unit information value Ry
Using the sum of squares of (x) (formula (1) below) or the like, the x-direction detection value Sx (I) for one objective lens current value I
Get.

【0028】 Sx(I)=Σx{Ry(x)}2 =Σx{Σy〔h(x,y)〕}2 … (1)Sx (I) = {x {Ry (x)} 2 = {x {Σy [h (x, y)]} 2 (1)

【0029】このようにして得られるx方向検出値Sx
(I)によれば、非合焦状態におけるボケのうち、x方
向だけのボケを検出できるので、x方向の焦点状態が評
価できる。
The x-direction detection value Sx thus obtained
According to (I), among the blurs in the out-of-focus state, the blur in only the x direction can be detected, so that the focus state in the x direction can be evaluated.

【0030】y方向検出値演算部21は、情報信号記憶
部12に記憶された2次元の情報記憶群から、図3に示
すように、まず、各y座標ごとに、x方向に沿った情報
信号h(x,y)を積分したx方向積分情報信号Rx
(y)(=Σx〔h(x,y)〕)を求め、このx方向
積分情報信号Rx(y)を単位情報値として従来と同様
の演算式、例えば、各単位情報値Rx(y)の2乗和
(以下の式(2))などを用いて、1つの対物レンズ電
流値Iに対するy方向検出値Sy(I)を得る。
As shown in FIG. 3, the y-direction detection value calculating section 21 first obtains information along the x-direction for each y coordinate from the two-dimensional information storage group stored in the information signal storage section 12, as shown in FIG. An x-direction integration information signal Rx obtained by integrating the signal h (x, y)
(Y) (= Σx [h (x, y)]) is obtained, and this x-direction integral information signal Rx (y) is used as a unit information value, and the same arithmetic expression as in the past, for example, each unit information value Rx (y) The y-direction detection value Sy (I) for one objective lens current value I is obtained using the sum of squares of the following (formula (2) below).

【0031】 Sy(I)=Σy{Rx(y)}2 =Σy{Σx〔h(x,y)〕}2 … (2)Sy (I) = {y {Rx (y)} 2 = Σy {Σx [h (x, y)]} 2 (2)

【0032】このようにして得られるy方向検出値Sy
(I)によれば、非合焦状態におけるボケのうち、y方
向だけのボケを検出できるので、y方向の焦点状態が評
価できる。
The y-direction detection value Sy thus obtained is
According to (I), among the blurs in the out-of-focus state, only the blur in the y direction can be detected, so that the focus state in the y direction can be evaluated.

【0033】x方向検出値記憶部22には、対物レンズ
電流値Iを順次変えながら、得られた各対物レンズ電流
値Iに対するx方向検出値Sx(I)が対物レンズ電流
値Iと関連付けて記憶され、y方向検出値記憶部23に
は、対物レンズ電流値Iを順次変えながら、得られた各
対物レンズ電流値Iに対するy方向検出値Sy(I)が
対物レンズ電流値Iと関連付けて記憶される。
In the x-direction detection value storage section 22, the x-direction detection value Sx (I) for each obtained objective lens current value I is associated with the objective lens current value I while sequentially changing the objective lens current value I. The y-direction detection value storage unit 23 stores the obtained y-direction detection value Sy (I) for each objective lens current value I in association with the objective lens current value I while sequentially changing the objective lens current value I. It is memorized.

【0034】各対物レンズ電流値Iに対する各x方向検
出値Sx(I)は、x方向の焦点状態に対応した検出値
の特性変化を示し、各対物レンズ電流値Iに対する各y
方向検出値Sy(I)は、y方向の焦点状態に対応した
検出値の特性変化を示す。
Each detected value Sx (I) in the x direction for each objective lens current value I indicates a characteristic change of the detected value corresponding to the focus state in the x direction.
The direction detection value Sy (I) indicates a characteristic change of the detection value corresponding to the focus state in the y direction.

【0035】図4は非点収差がない状態における各対物
レンズ電流値Iに対する各x方向検出値Sx(I)と各
y方向検出値Sy(I)とをそれぞれグラフ化した図で
ある。
FIG. 4 is a graph showing each detected value in the x direction Sx (I) and each detected value in the y direction Sy (I) with respect to each objective lens current value I in a state where there is no astigmatism.

【0036】図4に示すように、非点収差がない状態で
は、各対物レンズ電流値Iに対する各x方向検出値Sx
(I)のうちの最大値はx方向の合焦点位置に対応し、
各対物レンズ電流値Iに対する各y方向検出値Sy
(I)のうちの最大値はy方向の合焦点位置に対応す
る。また、非点収差がない状態では、x方向の合焦点位
置とy方向の合焦点位置とは同じであるので、x方向検
出値Sx(I)の最大値位置(に対応する対物レンズ電
流値Ix=If)とy方向検出値Sy(I)の最大値位
置(に対応する対物レンズ電流値Iy=If)とは同じ
になる。
As shown in FIG. 4, when there is no astigmatism, each x-direction detection value Sx for each objective lens current value I
The maximum value of (I) corresponds to the focal position in the x direction,
Each y direction detection value Sy for each objective lens current value I
The maximum value in (I) corresponds to the focus position in the y direction. Further, in a state where there is no astigmatism, the focus position in the x direction and the focus position in the y direction are the same, so that the objective lens current value corresponding to the maximum value position of the x direction detection value Sx (I) ( Ix = If) and the maximum value position (corresponding to the objective lens current value Iy = If) of the y-direction detection value Sy (I) are the same.

【0037】図5は非点収差がある状態における各対物
レンズ電流値Iに対する各x方向検出値Sx(I)と各
y方向検出値Sy(I)の一例をそれぞれグラフ化した
図である。
FIG. 5 is a graph showing an example of each detected value Sx (I) in the x direction and each detected value Sy (I) in the y direction with respect to each current value I of the objective lens in a state where there is astigmatism.

【0038】図5に示すように、非点収差がある状態で
は、各対物レンズ電流値Iに対する各x方向検出値Sx
(I)のうちの最大値は、合焦点位置を挟んで等距離に
ある2つの焦点位置(図11(b)のP1、P2)のう
ちの一方の焦点位置に対応した位置に現れ、各対物レン
ズ電流値Iに対する各y方向検出値Sy(I)のうちの
最大値は、上記2つの焦点位置のうちの他方の焦点位置
に対応した位置に現れる。そして、x方向検出値Sx
(I)の最大値位置(に対応した対物レンズ電流値I
x)とy方向検出値Sy(I)の最大値位置(に対応し
た対物レンズ電流値Iy)との中間位置(に対応した対
物レンズ電流値If)が合焦点位置に対応する。
As shown in FIG. 5, when there is astigmatism, each x-direction detection value Sx for each objective lens current value I
The maximum value of (I) appears at a position corresponding to one of two focal positions (P1 and P2 in FIG. 11B) equidistant from the in-focus position. The maximum value of the y-direction detection values Sy (I) for the objective lens current value I appears at a position corresponding to the other of the two focal positions. Then, the x direction detection value Sx
Objective lens current value I corresponding to the maximum value position (I)
An intermediate position (corresponding to the objective lens current value If) corresponding to the maximum value position (corresponding to the objective lens current value Iy) of the x-direction detection value Sy (I) corresponds to the in-focus position.

【0039】ここで、図11(b)の焦点位置P1、P
2に対応したピークは、電子プローブ7のu軸方向の径
Duが最小となったときと、電子プローブ7のv軸方向
の径Dvが最小となったときに形成される。一方で、こ
のuv座標とxy座標とは必ずしも一致しない。x方向
検出値Sx(I)はy方向に沿って情報信号を積分した
ものなので、そのピークは電子プローブ7のx方向の幅
Dxが最小となる位置に形成される。また、y方向検出
値Sy(I)はx方向に沿って情報信号を積分したもの
なので、そのピークは電子プローブ7のy方向の幅Dy
が最小となる位置に形成される。例えば、図7(a)に
示すように、uv座標とxy座標とが一致している場
合、従来方法で得られる2つのピーク(図12(b)参
照)と同様に、図5に示すように、x方向検出値Sx
(I)の最大値が現れる位置と、y方向検出値Sy
(I)の最大値が現れる位置とは合焦点位置から最も離
れた位置になる。また、図7(b)に示すように、uv
座標とxy座標とが45°ずれていた場合、DxとDy
は常に等しくなるので、この場合は、図6に示すよう
に、x方向検出値Sx(I)の最大値が現れる位置と、
y方向検出値Sy(I)の最大値が現れる位置とは共に
合焦点位置に一致する。そして、x方向検出値Sx
(I)の最大値が現れる位置と、y方向検出値Sy
(I)の最大値が現れる位置とは、uv座標とxy座標
とのズレ角度に応じて、図5に示す位置と図6に示す位
置との間の位置になる。また、uv座標とxy座標とが
どのような角度でずれていても、x方向検出値Sx
(I)の最大値が現れる位置と、y方向検出値Sy
(I)の最大値が現れる位置とは、常に、合焦点位置か
ら等間隔になる。
Here, the focal positions P1, P in FIG.
The peak corresponding to 2 is formed when the diameter Du of the electron probe 7 in the u-axis direction becomes minimum and when the diameter Dv of the electron probe 7 in the v-axis direction becomes minimum. On the other hand, the uv coordinates and the xy coordinates do not always match. Since the x direction detection value Sx (I) is obtained by integrating the information signal along the y direction, its peak is formed at a position where the width Dx of the electron probe 7 in the x direction becomes minimum. Since the y-direction detection value Sy (I) is obtained by integrating the information signal along the x-direction, its peak is the width Dy of the electron probe 7 in the y-direction.
Is formed at the position where the minimum value is obtained. For example, as shown in FIG. 7A, when the uv coordinate and the xy coordinate coincide with each other, as shown in FIG. 5, like the two peaks obtained by the conventional method (see FIG. 12B). The x-direction detection value Sx
The position where the maximum value of (I) appears, and the y-direction detection value Sy
The position where the maximum value of (I) appears is the position farthest from the focal point position. Also, as shown in FIG.
When the coordinates and the xy coordinates are shifted by 45 °, Dx and Dy
Is always equal, in this case, as shown in FIG. 6, the position where the maximum value of the x-direction detection value Sx (I) appears,
The position where the maximum value of the y-direction detection value Sy (I) appears coincides with the in-focus position. Then, the x direction detection value Sx
The position where the maximum value of (I) appears, and the y-direction detection value Sy
The position where the maximum value of (I) appears is a position between the position shown in FIG. 5 and the position shown in FIG. 6 according to the deviation angle between the uv coordinate and the xy coordinate. Also, no matter what angle the uv coordinate and the xy coordinate are shifted, the x direction detection value Sx
The position where the maximum value of (I) appears, and the y-direction detection value Sy
The position where the maximum value of (I) appears is always equidistant from the in-focus position.

【0040】以上に基づき、合焦点位置算出部24は、
まず、x方向検出値記憶部22に記憶された各対物レン
ズ電流値Iに対する各x方向検出値Sx(I)のうちの
最大値(に対応した対物レンズ電流値Ix)と、y方向
検出値記憶部23に記憶された各対物レンズ電流値Iに
対する各y方向検出値Sy(I)のうちの最大値(に対
応した対物レンズ電流値Iy)とを検出する。そして、
以下の式(3)のように、それらx方向検出値Sx
(I)の最大値(に対応した対物レンズ電流値Ix)と
y方向検出値Sy(I)の最大値(に対応した対物レン
ズ電流値Iy)とを加算した結果を2で割り算して、合
焦点位置(に対応した対物レンズ電流値If)を算出す
る。
Based on the above, the in-focus position calculating section 24
First, the maximum value (corresponding to the objective lens current value Ix) of each x-direction detection value Sx (I) for each objective lens current value I stored in the x-direction detection value storage unit 22 and the y-direction detection value The maximum value (corresponding to the objective lens current value Iy) of the respective y-direction detection values Sy (I) for each objective lens current value I stored in the storage unit 23 is detected. And
As shown in the following equation (3), the x-direction detection values Sx
The result of adding the maximum value of (I) (the objective lens current value Ix corresponding to) and the maximum value of the y-direction detection value Sy (I) (the objective lens current value Iy) is divided by two, The in-focus position (object lens current value If corresponding to) is calculated.

【0041】If=(Ix+Iy)/2 … (3)If = (Ix + Iy) / 2 (3)

【0042】なお、上記式(3)によれば、例えば、図
4、図6に示すようにx方向検出値Sx(I)の最大値
(に対応した対物レンズ電流値Ix)とy方向検出値S
y(I)の最大値(に対応した対物レンズ電流値Iy)
とが合焦点位置(に対応した対物レンズ電流値If)に
一致する場合でも、合焦点位置(に対応した対物レンズ
電流値If)が得られる。
According to the above equation (3), for example, as shown in FIGS. 4 and 6, the maximum value (corresponding to the objective lens current value Ix) of the x-direction detection value Sx (I) and the y-direction detection value Value S
Maximum value of y (I) (objective lens current value Iy corresponding to)
Even if and coincides with the in-focus position (the objective lens current value If corresponding to), the in-focus position (the objective lens current value If corresponding to) can be obtained.

【0043】合焦点位置(に対応した対物レンズ電流値
If)が得られれば、その対物レンズ電流値Ifを対物
レンズ6に出力すれば、焦点を自動的に合わせることが
できる。
If (the objective lens current value If corresponding to) is obtained, the objective lens current value If is output to the objective lens 6, the focus can be adjusted automatically.

【0044】上記実施例の処理手順を図8に示す。な
お、処理手順としては、ステップS5のステップ幅を、
最初は大きなステップ幅に設定して、その大きなステッ
プ幅で対物レンズ電流値Iを順次変えながら粗い焦点合
わせを行い、その結果、合焦点位置と判定した対物レン
ズ電流値If付近について、次に、細かいステップ幅で
対物レンズ電流値Iを順次変えながら詳細な焦点合わせ
を行えば、焦点合わせの精度を向上させることができ
る。
FIG. 8 shows the processing procedure of the above embodiment. In addition, as a processing procedure, the step width of step S5 is
Initially, a large step width is set, and coarse focusing is performed while sequentially changing the objective lens current value I with the large step width. As a result, about the objective lens current value If determined to be the in-focus position, By performing detailed focusing while sequentially changing the objective lens current value I with a small step width, the accuracy of focusing can be improved.

【0045】以上のように、この実施例によれば、x方
向の焦点状態とy方向の焦点状態とに分けて焦点状態を
評価し、非点収差がある状態において、合焦点位置を挟
んで等距離にある2つの焦点位置(P1、P2)に対応
したピークを別々に検出するようにしたので、試料8内
の各エッジの分布に偏りがあって、2つのピークの大き
さに著しい格差が生じて、一方のピークが他方のピーク
に比べて小さい場合でも、2つのピークを検出すること
ができ、合焦点位置(に対応した対物レンズ電流値I
f)を求めることができる。また、非点収差がない状態
でも、非点収差がある状態と同じ処理で合焦点位置を求
めることもできる。従って、非点収差の有無や試料8内
の各エッジの分布状態などにかかわらず、常に合焦点位
置を求めることができるとともに、常に同じ処理で合焦
点位置を求めることができる。
As described above, according to this embodiment, the focus state is evaluated separately for the focus state in the x direction and the focus state in the y direction, and in a state where there is astigmatism, the focus state is sandwiched. Since the peaks corresponding to the two equidistant focal positions (P1, P2) are separately detected, the distribution of each edge in the sample 8 is biased, and the difference between the two peaks is significantly different. Occurs, and even if one peak is smaller than the other peak, two peaks can be detected and the objective lens current value I corresponding to the in-focus position (
f) can be determined. Further, even when there is no astigmatism, the in-focus position can be obtained by the same processing as when there is no astigmatism. Therefore, regardless of the presence or absence of astigmatism and the distribution state of each edge in the sample 8, the in-focus position can always be obtained, and the in-focus position can always be obtained by the same processing.

【0046】なお、上記実施例では、x方向検出値Sx
(I)とy方向検出値Sy(I)とを求める演算式とし
て各単位情報値(Ry(x)、Rx(y))の2乗和を
用いたが、例えば、以下の式(4)、(5)に示すよう
に、隣接する単位情報値(Ry(x)、Rx(y))の
差分の2乗和を用いてもよいし、従来、検出値S(I)
の算出に用いられているその他の演算式を用いてもよ
い。
In the above embodiment, the x-direction detection value Sx
The sum of squares of each unit information value (Ry (x), Rx (y)) was used as an arithmetic expression for calculating (I) and the y-direction detection value Sy (I). For example, the following expression (4) , (5), the sum of squares of the differences between adjacent unit information values (Ry (x), Rx (y)) may be used, or the detection value S (I)
May be used.

【0047】 Sx(I)=Σx{Ry(x)−Ry(x−1)}2 Σx{Σy〔h(x,y)〕−Σy〔h(x−1,y)〕}2 …(4) Sy(I)=Σy{Rx(y)−Rx(y−1)}2 Σy{Σx〔h(x,y)〕−Σx〔h(x,y−1)〕}2 …(5)Sx (I) = {x {Ry (x) −Ry (x−1)} 2 Σx {Σy [h (x, y)] − Σy [h (x−1, y)]} 2 ... ( 4) Sy (I) = Σy {Rx (y) -Rx (y-1)} 2 Σy {Σx [h (x, y)] -? x [h (x, y-1)]} 2 (5 )

【0048】また、図1の構成では、情報信号記憶部1
2にデジタル化した2次元の情報信号群を記憶した後
に、x方向検出値Sx(I)とy方向検出値Sy(I)
とを求めるようにしたが、この発明はその構成に限定さ
れない。
In the configuration of FIG. 1, the information signal storage unit 1
After storing the digitized two-dimensional information signal group into two, the x direction detection value Sx (I) and the y direction detection value Sy (I)
However, the present invention is not limited to this configuration.

【0049】例えば、電子プローブ7の2次元的な走査
を、電子プローブ7をy方向に沿った走査を順次x方向
の位置を変えながら行えば、y方向に沿った走査ごとに
y方向積分情報信号Ry(x)をアナログ信号で求める
ことができ、さらに、x方向検出値Sx(I)もアナロ
グ信号で求めることができる。また、電子プローブ7の
2次元的な走査を、電子プローブ7をx方向に沿った走
査を順次y方向の位置を変えながら行えば、x方向に沿
った走査ごとにx方向積分情報信号Rx(y)をアナロ
グ信号で求めることができ、さらに、y方向検出値Sy
(I)もアナログ信号で求めることができる。従って、
1つの対物レンズ電流値Iに対して、最初の走査では、
電子プローブ7をy方向に沿った走査を順次x方向の位
置を変えながら行い、2回目の走査では、電子プローブ
7をx方向に沿った走査を順次y方向の位置を変えなが
ら行うというようにして、1つの対物レンズ電流値Iに
対して、電子プローブ7の2次元的な走査を走査方向を
変えて2回行えば、1つの対物レンズ電流値Iに対する
x方向検出値Sx(I)とy方向検出値Sy(I)とを
アナログ信号で求める回路を組み込んだ構成でもこの発
明に係る方法を実現することができる。
For example, if the two-dimensional scanning of the electronic probe 7 is performed while sequentially changing the position of the electronic probe 7 in the y direction while changing the position in the x direction, the integration information in the y direction is obtained for each scanning in the y direction. The signal Ry (x) can be determined by an analog signal, and the x-direction detection value Sx (I) can also be determined by an analog signal. Further, if the two-dimensional scanning of the electronic probe 7 is performed while changing the position of the electronic probe 7 in the x direction sequentially in the y direction, the x direction integration information signal Rx ( y) can be obtained from an analog signal, and furthermore, the y-direction detection value Sy
(I) can also be obtained from an analog signal. Therefore,
For one objective lens current value I, in the first scan,
The electronic probe 7 scans along the y direction while sequentially changing the position in the x direction. In the second scan, the electronic probe 7 scans along the x direction while sequentially changing the position in the y direction. If two-dimensional scanning of the electronic probe 7 is performed twice for one objective lens current value I while changing the scanning direction, the x-direction detection value Sx (I) for one objective lens current value I is obtained. The method according to the present invention can also be realized with a configuration in which a circuit for obtaining the y-direction detection value Sy (I) with an analog signal is incorporated.

【0050】また、情報信号としては、2次電子に限ら
ず、反射電子など試料8から得られるその他の情報信号
を検出する場合でも、この発明の方法は同様に適用する
ことができる。
The information signal is not limited to secondary electrons, and the method of the present invention can be similarly applied to other information signals obtained from the sample 8 such as reflected electrons.

【0051】[0051]

【発明の効果】以上の説明から明らかなように、この発
明によれば、x方向の焦点状態とy方向の焦点状態とに
分けて焦点状態を評価し、非点収差がある状態におい
て、合焦点位置を挟んで等距離にある2つの焦点位置に
対応したピークを別々に検出するようにしたので、試料
内の各エッジの分布に偏りがあっても合焦点位置を求め
ることができる。また、この発明によれば、非点収差が
ない状態でも、非点収差がある状態と同じ処理で合焦点
位置を求めることもできる。従って、非点収差の有無や
試料内の各エッジの分布状態などにかかわらず、常に合
焦点位置を求めることができるとともに、常に同じ処理
で合焦点位置を求めることができる。
As is apparent from the above description, according to the present invention, the focus state is evaluated separately for the focus state in the x direction and the focus state in the y direction. Since the peaks corresponding to the two focal positions equidistant from the focal position are separately detected, the in-focus position can be obtained even if the distribution of each edge in the sample is biased. Further, according to the present invention, even when there is no astigmatism, the in-focus position can be obtained by the same processing as when there is astigmatism. Therefore, regardless of the presence or absence of astigmatism and the distribution state of each edge in the sample, the in-focus position can always be obtained, and the in-focus position can always be obtained by the same process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例に係る走査型電子顕微鏡に
おける自動焦点合わせ方法を実現する装置構成を示す図
である。
FIG. 1 is a diagram showing an apparatus configuration for realizing an automatic focusing method in a scanning electron microscope according to one embodiment of the present invention.

【図2】y方向積分情報信号の算出方法を説明するため
の図である。
FIG. 2 is a diagram for explaining a method of calculating a y-direction integral information signal.

【図3】x方向積分情報信号の算出方法を説明するため
の図である。
FIG. 3 is a diagram for explaining a method of calculating an x-direction integration information signal.

【図4】非点収差がない状態における各対物レンズ電流
値に対する各x方向検出値と各y方向検出値とをそれぞ
れグラフ化した図である。
FIG. 4 is a graph showing each detected value in the x direction and each detected value in the y direction with respect to each objective lens current value in a state where there is no astigmatism.

【図5】非点収差がある状態における各対物レンズ電流
値に対する各x方向検出値と各y方向検出値の一例をそ
れぞれグラフ化した図である。
FIG. 5 is a graph showing an example of each detected value in the x direction and each detected value in the y direction with respect to each objective lens current value in a state where there is astigmatism.

【図6】非点収差がある状態における各対物レンズ電流
値に対する各x方向検出値と各y方向検出値の他の例を
それぞれグラフ化した図である。
FIG. 6 is a graph showing another example of each detected value in the x direction and each detected value in the y direction with respect to each objective lens current value in a state where astigmatism is present.

【図7】uv座標とxy座標との位置関係を示す図であ
る。
FIG. 7 is a diagram showing a positional relationship between uv coordinates and xy coordinates.

【図8】実施例の自動焦点合わせ方法の処理手順を示す
フローチャートである。
FIG. 8 is a flowchart illustrating a processing procedure of an automatic focusing method according to the embodiment.

【図9】走査型電子顕微鏡における自動焦点合わせ方法
を実現する従来の装置構成を示す図である。
FIG. 9 is a diagram showing the configuration of a conventional apparatus for realizing an automatic focusing method in a scanning electron microscope.

【図10】2次元の情報信号群を示す図である。FIG. 10 is a diagram showing a two-dimensional information signal group.

【図11】非点収差がない状態とある状態での電子プロ
ーブの集光状態を示す図である。
FIGS. 11A and 11B are diagrams showing a focusing state of the electron probe in a state without astigmatism and in a state with astigmatism. FIGS.

【図12】従来の検出値をグラフ化した図である。FIG. 12 is a graph of a conventional detection value.

【図13】従来技術の問題点を説明するための図であ
る。
FIG. 13 is a diagram for explaining a problem of the related art.

【符号の説明】[Explanation of symbols]

2:電子銃 3:収束レンズ 5:走査コイル 6:対物レンズ 7:電子プローブ 8:試料 h(x,y):情報信号 Ry(x):y方向積分情報信号 Rx(y):x方向積分情報信号 Sx(I):x方向検出値 Sy(I):y方向検出値 I:対物レンズ電流値 Ix:x方向検出値の最大値に対応する対物レンズ電流
値 Iy:y方向検出値の最大値に対応する対物レンズ電流
値 If:合焦点位置に対応する対物レンズ電流値
2: electron gun 3: converging lens 5: scanning coil 6: objective lens 7: electron probe 8: sample h (x, y): information signal Ry (x): y-direction integration information signal Rx (y): x-direction integration Information signal Sx (I): Detected value in x direction Sy (I): Detected value in y direction I: Objective lens current value Ix: Objective lens current value corresponding to the maximum value of detected value in x direction Iy: Maximum detected value in y direction Object current value corresponding to value If: Object lens current value corresponding to focus position

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電子銃から放出された電子線を収束させ
るとともに2次元的に走査して試料面上に照射し、前記
電子線の照射に基づいて試料から得られた2次元の情報
信号群を検出して合焦点位置を求める走査型電子顕微鏡
における自動焦点合わせ方法において、前記2次元の情
報信号群に対して、その2次元のうちの一方側の方向
(x方向)に沿ったx方向検出値を、前記x方向と直交
する方向(y方向)に沿った情報信号を積分したy方向
積分情報信号を単位情報値とし所定の演算式を用いて算
出するものとし、また、前記y方向に沿ったy方向検出
値を、前記x方向に沿った情報信号を積分したx方向積
分情報信号を単位情報値とし所定の演算式を用いて算出
するものとして、対物レンズ電流値を変化させながら、
各対物レンズ電流値に対する前記x方向検出値と前記y
方向検出値とを得て、前記x方向検出値の最大値と前記
y方向検出値の最大値とを検出し、それらx方向検出値
の最大値とy方向検出値の最大値とに基づき合焦点位置
を求めて、焦点合わせを行うことを特徴とする走査型電
子顕微鏡における自動焦点合わせ方法。
An electron beam emitted from an electron gun is converged and two-dimensionally scanned and irradiated on a sample surface, and a two-dimensional information signal group obtained from the sample based on the electron beam irradiation. In the automatic focusing method in the scanning electron microscope for detecting the focus position by detecting the two-dimensional information signal group, the x-direction along the direction (x-direction) on one side of the two-dimensional information signal group A detected value is calculated using a predetermined arithmetic expression with a y-direction integrated information signal obtained by integrating information signals along a direction (y direction) orthogonal to the x direction as a unit information value, and the y direction is calculated. The y-direction detection value along is calculated as a unit information value using the x-direction integration information signal obtained by integrating the information signal along the x direction using a predetermined arithmetic expression, while changing the objective lens current value. ,
The x-direction detection value and the y value for each objective lens current value
A direction detection value is obtained, a maximum value of the x-direction detection value and a maximum value of the y-direction detection value are detected, and a sum is calculated based on the maximum value of the x-direction detection value and the maximum value of the y-direction detection value. An automatic focusing method in a scanning electron microscope, wherein a focusing position is determined and focusing is performed.
JP08617699A 1999-03-29 1999-03-29 Automatic focusing method in scanning electron microscope Expired - Lifetime JP3428487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08617699A JP3428487B2 (en) 1999-03-29 1999-03-29 Automatic focusing method in scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08617699A JP3428487B2 (en) 1999-03-29 1999-03-29 Automatic focusing method in scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2000277046A true JP2000277046A (en) 2000-10-06
JP3428487B2 JP3428487B2 (en) 2003-07-22

Family

ID=13879460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08617699A Expired - Lifetime JP3428487B2 (en) 1999-03-29 1999-03-29 Automatic focusing method in scanning electron microscope

Country Status (1)

Country Link
JP (1) JP3428487B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214009A (en) * 2006-02-10 2007-08-23 Topcon Corp Image sharpness evaluation method and astigmatism evaluation method of charged particle beam apparatus, charged particle beam apparatus using these methods, and computer program
JP2008117643A (en) * 2006-11-06 2008-05-22 Topcon Corp Automatic focusing method of charged particle beam device, computer program, and recording medium
KR100846635B1 (en) 2007-03-26 2008-07-16 삼성전자주식회사 Method for auto focusing in scanning electron microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214009A (en) * 2006-02-10 2007-08-23 Topcon Corp Image sharpness evaluation method and astigmatism evaluation method of charged particle beam apparatus, charged particle beam apparatus using these methods, and computer program
JP4762745B2 (en) * 2006-02-10 2011-08-31 株式会社トプコン Image sharpness evaluation method of charged particle beam apparatus, astigmatism evaluation method, charged particle beam apparatus using these methods, and computer program
JP2008117643A (en) * 2006-11-06 2008-05-22 Topcon Corp Automatic focusing method of charged particle beam device, computer program, and recording medium
KR100846635B1 (en) 2007-03-26 2008-07-16 삼성전자주식회사 Method for auto focusing in scanning electron microscope

Also Published As

Publication number Publication date
JP3428487B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US7973282B2 (en) Charged particle beam apparatus and dimension measuring method
JP4261743B2 (en) Charged particle beam equipment
JP2877624B2 (en) Objective lens alignment control apparatus and control method for scanning electron microscope
US20030010914A1 (en) Method for determining depression/protrusion of sample and charged particle beam apparatus therefor
JP4563049B2 (en) Ion beam processing method using FIB-SEM composite apparatus
JP5603421B2 (en) Charged particle beam equipment with automatic aberration correction method
JP2005310602A (en) Charged particle beam adjustment method and charged particle beam device
US10332721B2 (en) Aberration computing device, aberration computing method, image processor, image processing method, and electron microscope
JP2005063678A (en) Automatic focus correction method and automatic astigmatism correction method in charged particle beam device
JP2009218079A (en) Aberration correction device and aberration correction method of scanning transmission electron microscope
TWI813618B (en) Autofocusing method for scanning electron microscope
JP6914977B2 (en) Scanning transmission electron microscope and aberration correction method
JP3402868B2 (en) Astigmatism correction and focusing method for charged particle optical column
JPH05190132A (en) Automatic focusing of scan type electron microscope
JP3428487B2 (en) Automatic focusing method in scanning electron microscope
JP3340327B2 (en) Astigmatism correction method and astigmatism correction device
JP2002216684A (en) Electron beam apparatus, method for detecting displacement of axis of electron beam and method for manufacturing device using electron beam apparatus
JP3369894B2 (en) Astigmatism correction method and astigmatism correction device
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP4871350B2 (en) Pattern dimension measuring method and pattern dimension measuring apparatus
JP2006190693A (en) Charged particle beam device
JP6882097B2 (en) How to verify operating parameters of scanning electron microscope
JP5111077B2 (en) Automatic focus / auto astigmatism setting method and auto focus / auto astigmatism setting program
JP4246311B2 (en) Beam processing method and focused ion beam apparatus
JP2007194060A (en) Method and device for adjusting automatic axis of electron lens of scanning electron microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

EXPY Cancellation because of completion of term