JPS594231A - High-speed logical circuit - Google Patents

High-speed logical circuit

Info

Publication number
JPS594231A
JPS594231A JP11173082A JP11173082A JPS594231A JP S594231 A JPS594231 A JP S594231A JP 11173082 A JP11173082 A JP 11173082A JP 11173082 A JP11173082 A JP 11173082A JP S594231 A JPS594231 A JP S594231A
Authority
JP
Japan
Prior art keywords
circuit
signal
input signal
transistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11173082A
Other languages
Japanese (ja)
Inventor
Masaaki Nishi
正明 西
Hiroyuki Itou
以頭 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11173082A priority Critical patent/JPS594231A/en
Publication of JPS594231A publication Critical patent/JPS594231A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/082Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using bipolar transistors
    • H03K19/086Emitter coupled logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To decrease remarkably the circuit delay time, the rising and falling time, by providing a differentiating circuit at the base of a transistor(TR), connecting the circuit to a reference power supply via a resistive element and applying a signal inverting the input signal via a capacitive element. CONSTITUTION:The delay time of the circuit is defined as a time from the 50% value of an input signal amplitude to the 50% value of an output signal amplitude, and a delay time from an input signal 21 to an output signal 25 in a conventional circuit is denoted by tpdout. The base voltage of the TR1 is a common mode input signal voltage 21 itself, but the base voltage of a TR2 is a differentiating signal 23 of an inverted input signal voltage 22, then the operation starting point of the circuit is changed from the conventional point B to a point A, the operation is started earlier by DELTAt, and the delay time t'p'dout from the input signal 21 to the output signal 24 is almost tpdout-DELTAt. Further, the circuit is operated equally with the case that a signal having a half the falling and rising time is applied to the input of a conventional circuit, the rising and falling time of an output signal 24 is smaller than the output signal 25.

Description

【発明の詳細な説明】 本発明はディジタル論理回路に係シ、特にコンピュータ
等の超高速論理動作を必要とする分野に好適な高速論理
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to digital logic circuits, and more particularly to a high-speed logic circuit suitable for fields such as computers that require ultra-high-speed logic operations.

近年ますます論理回路の高速化が望まれている。In recent years, there has been an increasing desire for faster logic circuits.

従来から論理回路を高速化する常套手段として、寄生容
量の充放電を速く完了させるために信号振幅を小さくす
るとか、能動素子に流す電流を大きくするとか、あるい
は各素子を微細に作ることで寄生容量を小さくし伝搬時
間を小さくすることが考えられているが、マージンの確
保や消費電力の制限、あるいは微細加工技術の制限のた
めに、上記の方法にはおのずと限界がある。従来、高速
論理回路としては、いわゆるエミッタ結合論理回路(E
CL回路)が多く用いられてきた。第1図に、この回路
の主要部である電流切換え部(カレントスイッチと称す
る)を示す。出力電圧は2個の入力端子12.13に加
えられる電圧の比較によって決定され乙。通常、一方の
入力端子に基準電圧VBBを与え、他方の入力端子にの
み入力信号を印加する。このため、入力が切換わる際、
入力信号電圧が基準電圧に達するまでの時間は電流は切
換わらず回路の切換わり動作が遅れてしまう。このよう
な遅れを小さくするためVBBは与えないで、入力端子
12.13に互いに反転した入力信号を加えるいわゆる
差動入力する方法をとることもめる。しかし、差動人力
は、単独では否定以外の論理が取れず、他の論理が取れ
る論理回路との混在使用が必要となる。また、差動入力
では1一般的には信号振幅を小さくするので他の論理回
路と直接結合できない。
Conventional methods for speeding up logic circuits include reducing the signal amplitude to quickly complete charging and discharging of parasitic capacitance, increasing the current flowing through active elements, or making each element smaller to reduce parasitic capacitance. Although attempts have been made to reduce the capacitance and propagation time, the above-mentioned methods naturally have limitations due to securing margins, limiting power consumption, or limiting microfabrication technology. Conventionally, so-called emitter-coupled logic circuits (E
CL circuit) has been widely used. FIG. 1 shows a current switching section (referred to as a current switch) which is the main part of this circuit. The output voltage is determined by comparing the voltages applied to the two input terminals 12.13. Normally, a reference voltage VBB is applied to one input terminal, and an input signal is applied only to the other input terminal. Therefore, when the input is switched,
The current is not switched during the time until the input signal voltage reaches the reference voltage, and the switching operation of the circuit is delayed. In order to reduce such a delay, it is also possible to adopt a so-called differential input method in which mutually inverted input signals are added to the input terminals 12 and 13 without applying VBB. However, differential human power alone cannot perform logic other than negation, and requires mixed use with logic circuits that can perform other logics. Furthermore, since the differential input generally reduces the signal amplitude, it cannot be directly coupled to other logic circuits.

本発明の目的は、従来のカレントスイッチ回路に比べ、
回路遅延時間と立ち上りおよび立ち下シ時間を大幅に短
縮できる論理回路を提供することにある。
The purpose of the present invention is to
An object of the present invention is to provide a logic circuit that can significantly reduce circuit delay time and rise and fall times.

本発明は、第1図に示す従来のカレントスイッチ回路1
6において、単に基準電源VBHに接続していたトラン
ジスタ2のベース側に新たに微分回路を設け、抵抗素子
を介して基準電源に接続し、さらに入力信号を反転した
信号を容量素子を介して印加することによって、上記ト
ランジスタのベースに、基準電圧の他に、入力信号の逆
相の微分信号を重畳して印加したものである。これによ
り、交流的には、実質的に、入力信号の立ち上りおよび
立ち下9時間を1/2にした場合と同等な動作をさせる
ことになるため、出力信号の立ち上りおよび立ち下り時
間を短縮でき、さらに、回路の遅延時間を短縮できる。
The present invention is based on the conventional current switch circuit 1 shown in FIG.
In step 6, a new differentiating circuit is installed on the base side of transistor 2, which was simply connected to the reference power supply VBH, and connected to the reference power supply via a resistive element, and a signal obtained by inverting the input signal is applied via a capacitive element. By doing so, in addition to the reference voltage, a differential signal of the opposite phase of the input signal is superimposed and applied to the base of the transistor. As a result, in terms of AC, the operation is essentially the same as when the input signal rise and fall times are halved, so the output signal rise and fall times can be shortened. , Furthermore, the delay time of the circuit can be shortened.

以下、図面を参照して本発明の実施例について詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明の第1の実施例を第2図に示す。これは、第1図
におけるカレントスイッチ16と抵抗素子17、容量素
子18からなる微分回路とから構成される。
A first embodiment of the invention is shown in FIG. This is comprised of a differentiating circuit consisting of a current switch 16, a resistive element 17, and a capacitive element 18 in FIG.

次に、本実施例の動作について説明する。第3図は本発
明の高速論理口論の動作及び効果を示す図である。同図
において21,22,23.24はそれぞれ、第2図に
おけるVBl、VB2゜VB3.VO2(7)電圧波形
でおり、25はm1図における逆相出力電圧波形である
。VH,VL。
Next, the operation of this embodiment will be explained. FIG. 3 is a diagram showing the operation and effect of the high-speed logic argument of the present invention. In the same figure, 21, 22, 23.24 are respectively VBl, VB2°VB3. VO2 (7) is the voltage waveform, and 25 is the negative phase output voltage waveform in the m1 diagram. VH, VL.

VB B u 論理のハイレベル、ローレベル及び基準
E圧をそれぞれ示す。いま、第3図において回路の遅延
時間を入力信号振幅の50%値から出力信号振幅の50
%値までの時間と定義し、第1図に示ノ す従来の回路構成で入力信号21から出力信号25まで
の遅延時間をt pd ou t とする。このとき、
第2図に示す本発明の回路では、トランジスターのベー
ス電圧は同相入力信号電圧21そのものであるが、トラ
ンジスタ20ペース電圧は逆相入力信号電圧22の微分
信号23になるため、回路の動作開始点は従来は点Bで
あったのが点Aになり、時間Δtだけ早く動作が開始す
る。従って、本実施例によれば、入力信号21から出力
信号24までの遅延時間tpdoutはほぼt pd 
ou t−Δtとなる。
The high level, low level and reference E pressure of VB B u logic are shown respectively. Now, in Figure 3, the delay time of the circuit is calculated from 50% of the input signal amplitude to 50% of the output signal amplitude.
% value, and the delay time from the input signal 21 to the output signal 25 in the conventional circuit configuration shown in FIG. 1 is defined as t pd out . At this time,
In the circuit of the present invention shown in FIG. 2, the base voltage of the transistor is the in-phase input signal voltage 21 itself, but the base voltage of the transistor 20 is the differential signal 23 of the negative-phase input signal voltage 22, so the circuit starts operating. The conventional point B is now the point A, and the operation starts earlier by the time Δt. Therefore, according to this embodiment, the delay time tpdout from the input signal 21 to the output signal 24 is approximately t pd
out - Δt.

また、微分回路の時定数を十分に太き(、VBBをVH
とVLの中間値にすれば、入力信号の立ち上なり、回路
の遅延時間を人力信号の立ち上がりあくすることができ
る。また、従来の回路の入力にを印加した場合と同等の
動作となるため、波形整形効果が太きくなシ、本実施例
の出力信号24の立ち上がシおよび立ち下がシ時間を従
来回路の出力信号25より小さくできる。さらに、特に
回路の高速化を望まない場合には、逆相入力を使用しな
いで従来の論理回路として扱うことができ、また、信号
振幅は変らないので、他の論理回路との混在使用が可能
である。
Also, make the time constant of the differentiating circuit sufficiently thick (, VBB to VH
If the value is set to an intermediate value between VL and VL, the rise of the input signal and the delay time of the circuit can be made equal to the rise of the human input signal. In addition, since the operation is the same as when applying 0 to the input of a conventional circuit, the waveform shaping effect is not as thick, and the rising and falling edges of the output signal 24 of this embodiment are longer than those of the conventional circuit. can be made smaller than the output signal 25 of . Furthermore, if you do not particularly want to speed up the circuit, it can be treated as a conventional logic circuit without using reverse phase input, and since the signal amplitude does not change, it can be used in combination with other logic circuits. It is.

次に、本発明による他の実施例について述べる。Next, another embodiment according to the present invention will be described.

第4図は本発明を多入力論理回路に適用した場合である
。第4図では入力26.27に対応して、容量素子34
.35を付加し、入力26.27に与える信号の反転信
号をそれぞれ37.38に印加する。回路の動作は第2
図と同様である。
FIG. 4 shows a case where the present invention is applied to a multi-input logic circuit. In FIG. 4, capacitive element 34 corresponds to input 26.27.
.. 35 is added, and the inverted signals of the signals applied to inputs 26 and 27 are applied to inputs 37 and 38, respectively. The operation of the circuit is the second
It is similar to the figure.

このように、本発明によれば、消費電力を増加させるこ
となく、かつ信号振幅を小さくすることなく、従来の回
路で立ち上がりおよび立ち下がり時間を1/2にした信
号を入力した場合と同等の動作をさせることができ、立
ち上がり、立ち下がシ時間および回路の遅延時間を小さ
くすることができる。
As described above, according to the present invention, without increasing power consumption or reducing signal amplitude, it is possible to achieve the same result as when inputting a signal with half the rise and fall times in a conventional circuit. The rise and fall times and circuit delay times can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来より用いられているカレントスイッチ回路
の構成図、第2図は本発明の一実施例の高速論理回路の
構成図、第3図は同じく高速論理回路の動作及び効果を
示す図、第4図は同じく高速論理回路を多入力とする場
合の構成図である。 1.2,26.27・・・トランジスタ、5.8゜17
.31・・・抵抗素子、18.33〜35・・・容鎗素
子、10・・・定電流回路、16.30・・・カレント
YJ 3 口 ′f′J4− 図 ■
Fig. 1 is a block diagram of a conventionally used current switch circuit, Fig. 2 is a block diagram of a high-speed logic circuit according to an embodiment of the present invention, and Fig. 3 is a diagram showing the operation and effects of the high-speed logic circuit. , FIG. 4 is a block diagram of a high-speed logic circuit having multiple inputs. 1.2, 26.27...transistor, 5.8°17
.. 31... Resistance element, 18.33-35... Capacity element, 10... Constant current circuit, 16.30... Current YJ 3 Port 'f' J4- Figure ■

Claims (1)

【特許請求の範囲】[Claims] 1、互いのエミッタおよびコレクタが共通接続され、そ
れぞれのペースに入力信号を加えるようにした複数個の
トランジスタよシ成るトラ/ジス2群と、上記トランジ
スタ群のエミッタにエミッタを接続しペースに基準電圧
を加えた第1のトランジスタと上記トランジスタ群の共
通接続されたコレクタおよび第1のトランジスタのコレ
クタと高電位電源との間にそれぞれ接続された負荷抵抗
と、上記共通接続されたエミッタと低電位電源との間に
接続された定電流回路とからなるエミッタ結合論理回路
において、第1のトランジスタのベースに抵抗素子を介
して基準電圧を供給し、かつそれぞれの入力信号の反転
信号を複数個の容量素子を介して第1のトランジスタの
ベースに印加することを特徴とする高速論理回路。
1. Two groups of transistors/diss, each consisting of a plurality of transistors whose emitters and collectors are connected in common and input signals applied to each pace, and a transistor whose emitters are connected to the emitters of the above transistor groups and which are referenced to the pace. A first transistor to which a voltage is applied and the commonly connected collectors of the transistor group; a load resistor connected between the collector of the first transistor and a high potential power supply; and a load resistor connected between the commonly connected emitter and the low potential. In an emitter-coupled logic circuit consisting of a constant current circuit connected between a power source and a constant current circuit, a reference voltage is supplied to the base of a first transistor via a resistor element, and an inverted signal of each input signal is supplied to a plurality of A high-speed logic circuit characterized in that a voltage is applied to the base of a first transistor via a capacitive element.
JP11173082A 1982-06-30 1982-06-30 High-speed logical circuit Pending JPS594231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11173082A JPS594231A (en) 1982-06-30 1982-06-30 High-speed logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11173082A JPS594231A (en) 1982-06-30 1982-06-30 High-speed logical circuit

Publications (1)

Publication Number Publication Date
JPS594231A true JPS594231A (en) 1984-01-11

Family

ID=14568716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11173082A Pending JPS594231A (en) 1982-06-30 1982-06-30 High-speed logical circuit

Country Status (1)

Country Link
JP (1) JPS594231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626889A (en) * 1983-12-23 1986-12-02 Hitachi, Ltd. Stacked differentially driven transmission line on integrated circuit
JPS62285787A (en) * 1986-06-03 1987-12-11 Mitsui Toatsu Chem Inc Gene expression vector containing heat shock protein gene hsp83 and inductive gene expression using said vector
US4717843A (en) * 1984-07-28 1988-01-05 Fujitsu Limited Phase changing circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626889A (en) * 1983-12-23 1986-12-02 Hitachi, Ltd. Stacked differentially driven transmission line on integrated circuit
US4717843A (en) * 1984-07-28 1988-01-05 Fujitsu Limited Phase changing circuit
JPS62285787A (en) * 1986-06-03 1987-12-11 Mitsui Toatsu Chem Inc Gene expression vector containing heat shock protein gene hsp83 and inductive gene expression using said vector

Similar Documents

Publication Publication Date Title
EP0219867B1 (en) Logic circuit
EP0239762B1 (en) Buffer circuit
JPH0154890B2 (en)
US4287435A (en) Complementary transistor inverting emitter follower circuit
JP3530582B2 (en) Integrated logic circuit with single-ended input logic gate
US5059827A (en) ECL circuit with low voltage/fast pull-down
JPS594231A (en) High-speed logical circuit
JP2547893B2 (en) Logic circuit
JP2760017B2 (en) Logic circuit
JPH1093419A (en) Emitter coupled logic output circuit
JPH07303037A (en) Emitter-coupled logic circuit
US5113419A (en) Digital shift register
JP2737729B2 (en) ECL circuit
JPS59214327A (en) Logical circuit device
JP2689628B2 (en) Driver circuit
JPH01157119A (en) Semiconductor circuit
JP2547791B2 (en) Voltage comparison circuit
JPH0221176B2 (en)
JPH0683061B2 (en) Semiconductor logic circuit
JPS58136138A (en) Semiconductor logical circuit
JPH0537350A (en) Ecl circuit
JPH02246614A (en) Logic circuit
JPS63177614A (en) Logic circuit device
JPH03224315A (en) Ecl circuit
JPH01303923A (en) Semiconductor device