JPS5942042B2 - Blast furnace operating method - Google Patents

Blast furnace operating method

Info

Publication number
JPS5942042B2
JPS5942042B2 JP15860581A JP15860581A JPS5942042B2 JP S5942042 B2 JPS5942042 B2 JP S5942042B2 JP 15860581 A JP15860581 A JP 15860581A JP 15860581 A JP15860581 A JP 15860581A JP S5942042 B2 JPS5942042 B2 JP S5942042B2
Authority
JP
Japan
Prior art keywords
basicity
furnace
distribution
ore
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15860581A
Other languages
Japanese (ja)
Other versions
JPS5861204A (en
Inventor
明 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15860581A priority Critical patent/JPS5942042B2/en
Publication of JPS5861204A publication Critical patent/JPS5861204A/en
Publication of JPS5942042B2 publication Critical patent/JPS5942042B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Description

【発明の詳細な説明】 本発明は高炉操業方法に関するものであり、とくに装入
鉱石を塩基度の異なる複数種のものに分けて夫々炉内半
径方向の異なる位置に装入することにより、炉内羽口レ
ベルにおける化学反応を制御するようにした方法につい
ての提案である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for operating a blast furnace, and in particular, the present invention relates to a method for operating a blast furnace. This is a proposal for a method to control chemical reactions at the inner tuyere level.

高炉炉頂への鉱石等原料の装入の如何は、炉況に直接的
な影響を及ばずのできわめて慎重な制御が望まれる。
The charging of raw materials such as ore to the top of the blast furnace requires extremely careful control since it does not directly affect the furnace condition.

従来のその制御の主流は、炉の半径方向における鉱石、
コークス層厚分布とか、粒度分布とかを対象にしたもの
であり、例えば第1図−aに示すような鉱石層厚分布は
ガス流れ分布ひいては融着帯形状に影響を与え、高炉の
燃料比、安定操業を支配する重要な一要因である。
The mainstream of conventional control is the ore in the radial direction of the furnace,
It targets the coke layer thickness distribution and particle size distribution. For example, the ore layer thickness distribution as shown in Figure 1-a affects the gas flow distribution and the shape of the cohesive zone, and the fuel ratio of the blast furnace, This is an important factor governing stable operations.

また、第1図−bに示すような鉱石粒度分布は通気性や
還元性に影響を及ぼす。
Moreover, the ore particle size distribution as shown in FIG. 1-b affects air permeability and reducibility.

このことから、従来の高炉ではもっばら鉱石層厚分布、
粒度分布の制御によって高炉操業を行つているが、これ
らの従来方法では大きな温度分布をもつ羽目部でのレー
スウェイから炉芯までの化学反応そのものを制御するの
ではないから、終局的な溶銑成分の直接的な調整はでき
ない。
For this reason, in conventional blast furnaces, the ore layer thickness distribution,
Blast furnace operations are carried out by controlling particle size distribution, but these conventional methods do not control the chemical reaction itself from the raceway to the furnace core in the siding area, which has a large temperature distribution, so it is difficult to control the final hot metal composition. cannot be directly adjusted.

例えばSiO2の還元反応を羽口部の半径方向のどの部
分(どの温度帯)で活発化させるかは、溶銑中の(Si
)濃度に影響するのであるが、この点従来の方法では炉
半径方向に対する積極的なSiO2量の分布調整はでき
ず、鉄鉱石は均一に装入されるのが普通であり、その必
要が生じたとき、すなわち(Si)濃度を調整するため
に、炉熱レベルやスラグの塩基度を調整する方法で実施
してきた。
For example, in which part (temperature range) in the radial direction of the tuyere should the reduction reaction of SiO2 be activated?
) In this respect, conventional methods cannot actively adjust the distribution of the amount of SiO2 in the radial direction of the furnace, and iron ore is normally charged uniformly, so this is necessary. In other words, in order to adjust the (Si) concentration, methods have been used to adjust the furnace heat level and the basicity of the slag.

しかし、高炉の場合〔Si〕濃度と炉熱レベルは正の相
関があることが知られており、炉熱レベルが高く、且つ
(Si)濃度が低いという操業は困難である。
However, in the case of a blast furnace, it is known that there is a positive correlation between the [Si] concentration and the furnace heat level, and it is difficult to operate in a situation where the furnace heat level is high and the (Si) concentration is low.

本発明は上述の従来高炉操業方法の欠点を克服すること
を目的とするもので、高炉装入鉱石を予め塩基度が異な
る複数種のものに分別し、そのように分別した各鉱石を
、羽口レベルの温度分布などに応じて炉半径方向の異な
る位置に装入することによって、例えば羽口レベルのレ
ースウェイから炉芯までの各部分に滴下するスラグの塩
基度に分布を与え、もって(Sin2)を主体とする羽
口レベルでの化学反応を制御し、目標溶銑成分に調整す
るようにする方法である。
The purpose of the present invention is to overcome the drawbacks of the conventional blast furnace operating method described above, and the ore charged in the blast furnace is separated in advance into multiple types of ore with different basicities, and each of the ores thus separated is By charging the slag at different positions in the radial direction of the furnace depending on the temperature distribution at the mouth level, for example, the basicity of the slag dripping from the raceway at the tuyere level to the furnace core can be distributed. This is a method of controlling the chemical reaction at the tuyere level, which is mainly composed of Sin2), and adjusting the hot metal composition to the target.

以下本発明の構成の詳細について説明する。The details of the configuration of the present invention will be explained below.

本発明は、羽口レベルにおける炉内温度分布に応じ、塩
基度の異なる複数種の装入鉱石を炉内半径方向の異なっ
た位置に装入し、該炉内半径方向の装入物塩基度分布を
制御するための方法であり、鉱石装入に塩基度分布を与
える具体的な方法は次のような方法を好適例として採用
する。
The present invention charges a plurality of types of charge ores with different basicities at different positions in the furnace radial direction according to the temperature distribution in the furnace at the tuyere level, and This is a method for controlling the basicity distribution, and the following method is preferably adopted as a specific method for giving basicity distribution to ore charging.

■ まず、装入予定の鉱石を塩基度別に3種類位ツクル
ーフ(B2a、B11.B2゜)ニ分別シテオキ、別々
に装入コンベヤで炉頂へ送る。
■ First, the ore to be charged is sorted into three types of basicity (B2a, B11.B2°) and sent separately to the top of the furnace using a charging conveyor.

■ 次に、ベル高炉にあってはムーバブルアーマのその
アーマ角度を、またベルレス高炉にあたっては旋回シュ
ート傾動角を調節して、上記のように予め分別した塩基
変態の各鉱石を、半径方向の所定の位置にそれぞれ区分
して落下させる。
■ Next, adjust the armature angle of the movable armor for a bell blast furnace, or the tilting angle of the rotating chute for a bellless blast furnace, to move each base-transformed ore that has been pre-separated as described above into a predetermined position in the radial direction. Separate them and drop them at different locations.

第2図はそうした装入法の採用によって堆積させた装入
物分布の一例である。
FIG. 2 is an example of the charge distribution deposited by adopting such a charging method.

実際の装入が図示のようになっているかどうかは装入物
プロフィル計を用いて時折調査する。
Whether the actual charge is as shown in the diagram is checked from time to time using a charge profile meter.

第3図は上述の塩基変則装入によって得られる炉内装入
物層の塩基度分布の一例であり、炉壁部の方を中心部の
塩基度よりも高くなるようにしたものである。
FIG. 3 shows an example of the basicity distribution of the furnace charge layer obtained by the above-mentioned irregular base charging, in which the basicity of the furnace wall is higher than that of the center.

この装入物層の降下に伴う半径方向への相互移動は小さ
く分別装入の効果を減殺することはなく、羽口レベルで
も同じような塩基度分布が維持されている。
This mutual movement in the radial direction accompanying the descent of the charge layer is small and does not reduce the effect of separate charging, and the same basicity distribution is maintained at the tuyere level.

今、羽口レベルの温度分布2が第4図に示すように、炉
壁の方が高い周辺流操業となっているとき、■第2図で
示すような塩基度分布が得られる鉱石装入をした場合(
本発明法)と、■塩基度分布が全くない第1図で示すよ
うな鉱石装入をした場合(従来法)とを比較する。
Now, when the temperature distribution 2 at the tuyere level is higher at the furnace wall, as shown in Figure 4, in peripheral flow operation, ■ ore charging to obtain the basicity distribution as shown in Figure 2. If you do (
The method of the present invention) will be compared with (1) the case of charging ore as shown in FIG. 1 with no basicity distribution (conventional method).

なお、羽口レベルの温度分布は必要に応じ実測あるいは
モデル計算で求める。
Note that the temperature distribution at the tuyere level will be determined by actual measurements or model calculations, if necessary.

スラグ中の(Sin2)が還元される反応は、(Si0
2)+2C→(S i ) + 2COであり、還元が
進行するほど溶銑中の(Si、lが増加することになる
The reaction in which (Sin2) in the slag is reduced is (Si0
2) +2C→(S i ) + 2CO, and the more the reduction progresses, the more (Si,l) in the hot metal increases.

ところで上記の反応はスラグ中の(SiO□)濃度が高
いすなわち塩基度(Ca O/ S io 2 )が低
いという条件、および/または温度が高いという条件で
、進行しやすい。
By the way, the above reaction tends to proceed under the conditions that the (SiO□) concentration in the slag is high, that is, the basicity (Ca O / S io 2 ) is low, and/or the temperature is high.

■の本発明例の場合、羽口レベルでの炉壁近傍で高温で
あるが、この部分では塩基度が高いため5i02の還元
反応が抑制され、中心部では低塩基度ではあるが、温度
が低いため(SiO2)の還元反応はあまり進行しない
In the case of example (2) of the present invention, the temperature is high near the furnace wall at the tuyere level, but the reduction reaction of 5i02 is suppressed due to the high basicity in this area, and the temperature is low in the center, although the basicity is low. Because of the low concentration (SiO2), the reduction reaction does not proceed much.

これに対し■の従来法の場合には高温部には装入鉱石平
均の塩基度(本発明より相対的に低い)のスラグが入る
ため、本発明の場合より(8102)の還元反応は著し
く進行する。
On the other hand, in the case of the conventional method (■), slag with the average basicity of the charged ore (relatively lower than that of the present invention) enters the high temperature section, so the reduction reaction of (8102) is significantly lower than that of the present invention. proceed.

このため従来例よりも本発明例の方が溶銑中の(Si、
lを低くすることができる。
Therefore, in the example of the present invention, (Si,
l can be lowered.

以上実例で示したように、炉半径方向に塩基度分布を与
えると、炉熱レベル、羽口1前レースウエイ3付近の平
均塩基度を一定に制御することにより、溶銑成分の調整
を行うことができる。
As shown in the examples above, if a basicity distribution is given in the radial direction of the furnace, the hot metal components can be adjusted by controlling the furnace heat level and the average basicity near the raceway 3 in front of the tuyere 1 to a constant value. Can be done.

なお、第3図では、炉壁側に高塩基度、中心部で低塩基
度の場合について説明したが、必ずしも上記分布に限定
されるものではない。
In addition, although FIG. 3 describes the case where the basicity is high on the furnace wall side and the basicity is low in the center, the distribution is not necessarily limited to the above distribution.

例えば、上述第3図の場合と逆の塩基度分布を与えた場
合、すなわち炉壁部の方を中心部より塩基度が低くなる
ように鉱石を装入すると、(Si)が上昇し、高Si銑
を、溶銑温度を高くすることなく製造することができる
For example, if the basicity distribution is reversed to that shown in Figure 3 above, that is, if ore is charged so that the basicity is lower at the furnace wall than at the center, (Si) increases and Si pig iron can be produced without increasing the hot metal temperature.

上述の例では、鉱石の塩基度をB2a、B2b、B!2
゜の3種類に分けた場合について説明したが、塩基度の
分割数は2種類以上であれば有効であるが余り多分割に
するのは貯鉱槽からの切出し操作が煩雑になるなどのデ
メリットもあるので、実用上は5種類を上限として分割
すれば好適である。
In the above example, the basicity of the ore is B2a, B2b, B! 2
We have explained the case of dividing into three types of basicity, but it is effective if the basicity is divided into two or more types, but dividing it into too many types has disadvantages such as making the cutting operation from the storage tank complicated. Therefore, in practice, it is preferable to divide the types into five types at most.

また、上記のように分別したそれぞれの群の塩基度の差
をどのくらいにするかは、塩基度の分割数、目標(Si
)、操業条件などによって変わるが、塩基度差は0.0
1〜2.0の範囲が好適である。
In addition, the difference in basicity between each group separated as above is determined by the number of basicity divisions, the target (Si
), the difference in basicity is 0.0, although it varies depending on operating conditions etc.
A range of 1 to 2.0 is suitable.

その差が0.01以下では4種類の塩基度を使用する場
合でもその効果が期待できず、また2、0以上とするこ
とは原料事情から得策できない。
If the difference is less than 0.01, no effect can be expected even when four types of basicity are used, and if the difference is more than 2.0, it is not advisable due to raw material circumstances.

すなわち、最も高B2焼結鉱と、低B2生鉱石を組み合
わせた場合でも2.0種度以上とすることは難しいから
である。
That is, even when the highest B2 sintered ore and the lowest B2 raw ore are combined, it is difficult to achieve a grade of 2.0 or more.

次に、本実施例について説明する。Next, the present embodiment will be explained.

従来1チヤージ80tの鉱石の平均塩基度1.25を投
入していたのを、塩基度1.6の鉱石を40tと、塩基
度0.9のものを40tとの2つに分け、別々に装入す
る。
Conventionally, one charge of 80 tons of ore with an average basicity of 1.25 was divided into two, 40 tons of ore with a basicity of 1.6 and 40 tons of ore with a basicity of 0.9. Charge.

まずムーバブルアーマ−(MA)を用いて塩基度1.6
のものを装入する時には、第2図のMAノツチ4aで、
炉壁側に装入する。
First, using movable armor (MA), basicity 1.6
When charging the material, use the MA notch 4a in Fig. 2.
Charge to the furnace wall side.

次いで、塩基度0.9のものを装入するときは4b(押
し出し距離Im)を用いて炉中心側に装入する。
Next, when charging the material with a basicity of 0.9, use 4b (extrusion distance Im) and charge it to the center side of the furnace.

その結果、炉壁部には高塩基度の鉱石がまた炉中心部に
は低塩基度の鉱石が集まり、先に述べた理由で、羽口レ
ベルにおいて従来と同一炉熱レベルで低(Si)化する
ことができる。
As a result, ores with high basicity gather on the furnace wall and ores with low basicity gather in the furnace center. can be converted into

本発明を用いず、従来の方法で装入すれば、塩基度分布
は均一で、その時の溶銑中の(Si)は0.35%であ
ったが、上記の方法で実施した結果、溶銑温度は一定で
あったが、(Si)はo、2s%まで低下した。
If charging was done by the conventional method without using the present invention, the basicity distribution was uniform and the (Si) content in the hot metal was 0.35%. was constant, but (Si) decreased to 0.2s%.

次頁の表1に本発明法と従来法とを比較したものを示す
が、本発明法の場合、低(Si)銑操業に対して十分そ
の目的が達成されており、例えば(si)%について炉
熱レベルの制御とは離れたコントロールが可能である。
Table 1 on the next page shows a comparison between the method of the present invention and the conventional method. In the case of the method of the present invention, the purpose has been sufficiently achieved for low (Si) pig operation, for example, (Si)% It is possible to control this separately from the control of the furnace heat level.

【図面の簡単な説明】[Brief explanation of drawings]

図面の第1図は鉱石装入に当って層厚分布aと粒度分布
すを調整したときの炉頂プロフィルの路線図、第2図は
鉱石を塩基変態に分別装入したときの炉頂プロフィルの
路線図、第3図は炉内装入物層の塩基度分布図、第4図
は炉内温度分布を示す路線図である。
Figure 1 of the drawings is a route map of the furnace top profile when the layer thickness distribution a and particle size distribution A are adjusted during ore charging, and Figure 2 is the furnace top profile when ore is charged separately for base transformation. Figure 3 is a basicity distribution map of the charge layer in the furnace, and Figure 4 is a route map showing the temperature distribution in the furnace.

Claims (1)

【特許請求の範囲】[Claims] 1 羽口レベルにおける炉内温度分布に応じ、塩基度の
異なる複数種の装入鉱石を炉内半径方向の異なった位置
に装入し、該炉内半径方向の装入物塩基度分布を制御す
ることを特徴とする高炉操業方法。
1. According to the temperature distribution in the furnace at the tuyere level, multiple types of charge ores with different basicities are charged at different positions in the radial direction of the furnace, and the basicity distribution of the charge in the radial direction of the furnace is controlled. A blast furnace operating method characterized by:
JP15860581A 1981-10-07 1981-10-07 Blast furnace operating method Expired JPS5942042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15860581A JPS5942042B2 (en) 1981-10-07 1981-10-07 Blast furnace operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15860581A JPS5942042B2 (en) 1981-10-07 1981-10-07 Blast furnace operating method

Publications (2)

Publication Number Publication Date
JPS5861204A JPS5861204A (en) 1983-04-12
JPS5942042B2 true JPS5942042B2 (en) 1984-10-12

Family

ID=15675347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15860581A Expired JPS5942042B2 (en) 1981-10-07 1981-10-07 Blast furnace operating method

Country Status (1)

Country Link
JP (1) JPS5942042B2 (en)

Also Published As

Publication number Publication date
JPS5861204A (en) 1983-04-12

Similar Documents

Publication Publication Date Title
CN101896627B (en) Self-fluxing pellets for use in a blast furnce and process for the production of the same
JP2004107794A (en) Method for charging raw material into bell-less blast furnace
JP6167829B2 (en) Blast furnace operation method
JPS5942042B2 (en) Blast furnace operating method
JP4765723B2 (en) Method of charging ore into blast furnace
JP4759985B2 (en) Blast furnace operation method
JP6627718B2 (en) Raw material charging method for blast furnace
KR100376480B1 (en) Burden distribution control method in blast furnace by using coke
JP2797917B2 (en) Blast furnace operation method
JP3700457B2 (en) Blast furnace operation method
JP3014549B2 (en) Blast furnace operation method
JPS5920412A (en) Inside swiveling chute for top charger of bell-less furnace
JP3700458B2 (en) Low Si hot metal manufacturing method
SU981371A1 (en) Method for conducting blast furnace smelting
JP6627717B2 (en) Raw material charging method for blast furnace
JP3536509B2 (en) Blast furnace operation method for producing low Si pig
JP2600803B2 (en) Blast furnace raw material charging method
JP3779815B2 (en) Blast furnace operation method
JPH11217605A (en) Method for charging charging material into blast furnace
JPS6156212A (en) Method for operating blast furnace
JP2006089773A (en) Method for charging raw material into blast furnace
JPS61270320A (en) Method for operating blast furnace to attain low si
JPS621809A (en) Method for operating blast furnace
JPH06256818A (en) Operation of blast furnace
JP2808344B2 (en) Blast furnace charging method