JP2006089773A - Method for charging raw material into blast furnace - Google Patents

Method for charging raw material into blast furnace Download PDF

Info

Publication number
JP2006089773A
JP2006089773A JP2004273751A JP2004273751A JP2006089773A JP 2006089773 A JP2006089773 A JP 2006089773A JP 2004273751 A JP2004273751 A JP 2004273751A JP 2004273751 A JP2004273751 A JP 2004273751A JP 2006089773 A JP2006089773 A JP 2006089773A
Authority
JP
Japan
Prior art keywords
coke
charging
ore
blast furnace
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004273751A
Other languages
Japanese (ja)
Other versions
JP4244335B2 (en
Inventor
Yoshiyuki Matsui
良行 松井
Muneyoshi Sawayama
宗義 沢山
Tomohito Tagawa
智史 田川
Akihiro Nishiguchi
昭洋 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004273751A priority Critical patent/JP4244335B2/en
Publication of JP2006089773A publication Critical patent/JP2006089773A/en
Application granted granted Critical
Publication of JP4244335B2 publication Critical patent/JP4244335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a method for charging a raw material into a blast furnace, which secures a stable central flow operation even when having employed an ore blended with a pellet as ore to be charged, and can continue an operation of a low coke ratio and/or a high tapping ratio while maintaining a stable furnace condition. <P>SOLUTION: This charging method comprises the steps of: charging coke by using a chute 2 for charging coke only into an axial core part, so that the ratio of the coke can be increased in the axial core part, and simultaneously by using a bell type charging device 3 so that a coke layer C2 can form a heap having a peak P at a position closer to the axial core part than a furnace wall; and then charging the ore onto the coke layer C2 at two divisional times, wherein the ratio of the pellet blended in ore O1 to be charged at first is controlled so as to be lower than the average ratio of the pellet blended in the whole ore. Thereby, it is inhibited that one part of the coke layer C2 is carried away to the axial core side by the charged ore, and the pellet consequently intrudes into a coke-packed part CP formed around the axial core part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高炉操業の安定化および効率化に寄与し得る原料装入技術に関し、詳しくは本出願人の開発に係るコークス軸芯装入(またはコークス中心装入)技術の改良に関する。   The present invention relates to a raw material charging technique that can contribute to the stabilization and efficiency of blast furnace operation, and more particularly, to an improvement in a coke shaft core charging (or coke center charging) technique developed by the present applicant.

本出願人は、高炉操業の安定化および効率化を実現すべく、いわゆる中心流操業の安定化ないし確実化を向上させるコークス軸芯装入技術を確立し(たとえば特許文献1参照)、さらに低コークス比操業下においてもコークス軸芯装入操業の実施効果を確実に発揮できる改良技術を完成した(特許文献2参照)。   The present applicant has established a coke shaft core charging technique for improving so-called stabilization or reliability of the central flow operation in order to realize stabilization and efficiency improvement of the blast furnace operation (see, for example, Patent Document 1). An improved technology that can reliably demonstrate the effect of the coke shaft charging operation under the coke ratio operation has been completed (see Patent Document 2).

上記特許文献2に記載の発明は、「コークスを高炉の軸芯部へ集中的に投入するコークス軸芯装入手段と、コークスおよび鉱石を高炉の周縁部側へ投入する周縁装入手段とを備えてなる高炉内へ、コークスおよび鉱石を装入する方法において、前記コークス軸芯装入手段によって高炉軸芯部のコークス比率を高めるとともに、前記周縁装入手段によって炉壁から0.02R〜0.6R(但しRは高炉半径)の位置にピーク高さを有するように山状に装入されたコークス層に対し、鉱石装入の少なくとも初期段階で投入される鉱石の投入位置を、前記周縁装入手段によって前記ピーク位置よりも遠心側に設定することにより、前記山状装入コークス層の少なくとも山頂部を含む高地部を崩して高炉軸芯部側へ押し流す様に構成してなることを特徴とする高炉への原料装入方法。」である。   The invention described in Patent Document 2 described above includes: “coke shaft core charging means for intensively charging coke into the shaft core portion of the blast furnace; and peripheral charging means for charging coke and ore to the peripheral edge side of the blast furnace. In the method for charging coke and ore into the blast furnace provided, the coke ratio of the blast furnace shaft core portion is increased by the coke shaft core charging means, and 0.02R-0 from the furnace wall by the peripheral charging means. .6R (where R is the radius of the blast furnace), the ore charging position at least in the initial stage of the ore charging is set to the peripheral edge of the coke layer charged in a mountain shape so as to have a peak height. By setting to the centrifugal side with respect to the peak position by the charging means, the high ground portion including at least the summit portion of the mountain-shaped charging coke layer is destroyed, and is configured to be pushed to the blast furnace shaft core portion side. Special Raw material charging method to the blast furnace to be. ", Which is a.

この発明により、軸芯部のO/Cが低くなるとともに炉壁部のO/Cが高くなり、かつ、それらの中間部はO/Cが平滑化されてその変化はなだらかであり、途中でO/Cが急激に高くなったり低くなることがないので炉内の上昇ガスは軸芯部へ集中し、安定した中心流操業を継続させることができ、そのために炉況が安定し、かつ経済的な操業が行われるようになった。   According to the present invention, the O / C of the shaft core portion is lowered and the O / C of the furnace wall portion is raised, and the O / C is smoothed in the middle portion thereof, and the change is gentle. Since the O / C does not suddenly increase or decrease, the rising gas in the furnace concentrates on the shaft core, and stable central flow operation can be continued. Operations began to take place.

しかしながら、装入鉱石としてペレットを多量に配合した鉱石を用いると、鉱石が前記山状装入コークス層の少なくとも山頂部を含む高地部を崩して高炉軸芯部側へ押し流し、高炉軸芯部の周囲にコークス充填部を形成する際に、ペレットがコークス充填部中に混入し、コークス充填部の空隙率を低下させてしまうことがわかった(後述)。このため、装入鉱石としてペレットを多量に配合した鉱石を用いて、現状よりさらにコークス比を低下させたり、出銑比を増大させようとすると、軸芯部周辺の通気抵抗が増大し、安定した中心流操業が維持できなくなるおそれがあり、改善の余地があった。   However, when an ore containing a large amount of pellets is used as the charging ore, the ore collapses the high altitude part including at least the summit of the mountain-shaped charging coke layer and flows to the blast furnace shaft core side, and the blast furnace shaft core part When forming a coke filling part around, it turned out that a pellet mixes in a coke filling part and the porosity of a coke filling part falls (after-mentioned). For this reason, if an ore containing a large amount of pellets is used as the charging ore, and if the coke ratio is further reduced or the feed ratio is increased from the current level, the ventilation resistance around the shaft core portion is increased and stable. As a result, there is a possibility that the central flow operation cannot be maintained, and there is room for improvement.

また、ペレット配合比が高い場合の高炉の通気性を改善する目的で、コークス軸芯装入技術を用いない方法として、「ペレットを配合した鉱石類を複数回に分けて炉壁近傍に装入する高炉操業方法において、コークスダンプ後の最初の鉱石ダンプとして、ペレットを主体とする鉱石類を装入すると共にこれに引続くその他の鉱石ダンプとして焼結鉱及び又は塊鉱石を主体とする鉱石類を装入することを特徴とする高炉原料の装入方法。」が開示されている(特許文献3参照)。   In addition, in order to improve the air permeability of the blast furnace when the pellet mixing ratio is high, as a method not using the coke shaft core charging technique, “Ore containing pellets is divided into several times and charged near the furnace wall. In the blast furnace operation method, the ore mainly composed of pellets is charged as the first ore dump after the coke dump, and the ore mainly composed of sintered ore and / or lump as the subsequent other ore dumps. ”Is disclosed (refer to Patent Document 3).

この方法は、コークスダンプ後の最初の鉱石ダンプとして、ペレットを主体とする鉱石類を装入することにより、コークス層が崩されてその傾斜角が小さくなり、コークス層直上にダンプしたペレットを主体とした鉱石類によって形成される層の傾斜角が小さくなるので、後続の鉱石類ダンプによって形成される鉱石層が、炉壁部に堆積した状態に形成され、中心部の鉱石層の厚みが薄くなるので、中心流操業が可能となり、ペレット配合比が高い場合の高炉の通気性が改善されるとするものである(特許文献3の第2頁右欄1〜17行目参照)。   In this method, as the first ore dump after the coke dump, the ore mainly composed of pellets is charged, so that the coke layer is destroyed and the inclination angle becomes small, and the dumped pellets directly above the coke layer are mainly used. Therefore, the ore layer formed by the subsequent ore dump is formed in a state of being deposited on the furnace wall, and the thickness of the ore layer in the center is thin. Therefore, the central flow operation is possible, and the air permeability of the blast furnace is improved when the pellet mixing ratio is high (see the second column, right column, lines 1 to 17 of Patent Document 3).

しかしながら、この方法においても、コークスダンプ後の最初の鉱石ダンプとして、ペレットを主体とする鉱石類を装入する際に、コークス層は崩され、少量のペレットとともに炉中心部へ流れ込み、中間〜中心域にかけて空隙率の低いペレット・コークスの混合層が形成されるため(特許文献3の第2頁右欄4〜6行目参照)、低コークス比および/または高出銑比操業においては、炉中間〜中心域の通気抵抗が増大し、安定した中心流操業が維持できない可能性が高い。
特開昭64−65207号公報 特公平6−27283号公報 特公昭61−12967号公報
However, even in this method, as the first ore dump after the coke dump, when the ore mainly composed of pellets is charged, the coke layer is destroyed and flows into the furnace center together with a small amount of pellets. Since a mixed layer of pellets and coke having a low porosity is formed over the region (see Patent Document 3, page 2, right column, lines 4 to 6), in operation with a low coke ratio and / or a high output ratio, There is a high possibility that the airflow resistance in the middle to the central region will increase and stable central flow operation cannot be maintained.
JP-A-64-65207 Japanese Examined Patent Publication No. 6-27283 Japanese Patent Publication No. 61-12967

そこで、本発明は、装入鉱石としてペレットを配合した鉱石を用いても、安定した中心流操業が確保でき、安定な炉況を維持しつつ低コークス比および/または高出銑比操業を継続し得るような高炉への原料装入方法を確立することを目的とする。   Therefore, the present invention can ensure stable central flow operation even when using ore containing pellets as charging ore, and maintain low coke ratio and / or high coke ratio operation while maintaining stable furnace conditions. The purpose is to establish a method for charging raw materials into a blast furnace.

本発明者らは、上述したコークス充填層へのペレットの混入状況を把握するため、特許文献2に記載の原料装入方法を用いる従来の高炉軸芯操業において、高炉炉頂部より原料堆積層のサンプリングを行った。   In the conventional blast furnace core operation using the raw material charging method described in Patent Document 2, in order to grasp the state of mixing of the pellets into the above-mentioned coke packed bed, the present inventors have changed the raw material deposition layer from the top of the blast furnace furnace. Sampling was performed.

具体的には、図1の高炉炉頂部における原料装入状況を説明する縦断面図に示すように、特許文献2に記載の原料装入方法に準拠して、C1↓C2↓CCC1↓O1↓CCC2↓O2↓を1サイクルとして装入される原料堆積層から、特許第3358955号公報に記載のサンプリング治具およびサンプリング方法を用いて、サンプル堆積層の採取を行った。ここで、C1↓,C2↓は周辺部へのコークス装入、CCC1↓,CCC2↓は軸芯部へのコークス装入(ここに、CCCはCenter−Charged Cokeの略)、O1↓,O2↓は鉱石装入を示し、O1↓とO2↓とはペレット配合比が等しいものである。   Specifically, as shown in the longitudinal sectional view explaining the raw material charging situation at the top of the blast furnace furnace in FIG. 1, in accordance with the raw material charging method described in Patent Document 2, C1 ↓ C2 ↓ CCC1 ↓ O1 ↓ A sample deposition layer was sampled from the raw material deposition layer charged with CCC2 ↓ O2 ↓ as one cycle using the sampling jig and sampling method described in Japanese Patent No. 3358955. Here, C1 ↓ and C2 ↓ are coke charging to the peripheral part, CCC1 ↓ and CCC2 ↓ are coke charging to the shaft core part (here, CCC is an abbreviation of Center-Charged Coke), O1 ↓ and O2 ↓ Indicates ore charging, and O1 ↓ and O2 ↓ have the same pellet blending ratio.

なお、高炉半径方向におけるサンプル堆積層の採取位置は炉壁から0.5R(ただし、Rは高炉半径)の位置とし、鉱石装入O1↓後に鉱石層O1とコークス層C2とを一体に採取し、サンプル堆積層とした。ここで、↓の付いていない符号(たとえばO1)は原料装入(たとえばO1↓)で形成された堆積層を意味し、以下同様である。   The sampling position of the sample deposit layer in the blast furnace radial direction is 0.5 R (where R is the blast furnace radius) from the furnace wall, and the ore layer O1 and the coke layer C2 are sampled together after the ore charging O1 ↓. A sample deposition layer was obtained. Here, a symbol without ↓ (for example, O1) means a deposited layer formed by raw material charging (for example, O1 ↓), and so on.

図2(a)に採取したサンプル堆積層の積層状態を示す。同図から、鉱石層O1とコークス層C2との間に、コークスと鉱石との混合層Mが存在しているのが明らかである。   FIG. 2A shows the stacked state of the sample deposition layers collected. From the figure, it is clear that a mixed layer M of coke and ore exists between the ore layer O1 and the coke layer C2.

このサンプル堆積層の縦断面写真上において肉眼によりコークス、ペレット、ペレット以外の鉱石(焼結鉱および塊鉱石)および空隙のいずれであるかを判別し、各別に異なるマーキングを施したのち、サンプル堆積層の縦断面全体をストックライン(鉱石層O1の上表面)と平行な直線で10区分に分割し、画像解析により各区分ごとに各原料および空隙の面積比率を測定して、各原料の存在比率および空隙率を求めた。   On the longitudinal cross-sectional photograph of this sample deposition layer, it is discriminated whether it is coke, pellets, ore other than pellets (sintered or massive ore) or voids, and after marking each separately, sample deposition The entire longitudinal section of the layer is divided into 10 sections along a straight line parallel to the stock line (upper surface of the ore layer O1), and the area ratio of each material and void is measured for each section by image analysis. The ratio and porosity were determined.

図2(b)に、サンプル堆積層の高さ方向における、全原料中の鉱石割合、鉱石中のペレット濃度および空隙率の変化を示す。なお、同図において、サンプル堆積層の高さは、サンプル堆積層の全高hを基準として無次元化した無次元高さHで表示しており、H=0の位置がコークス層C2の下表面の位置に相当し、H=1.0の位置が鉱石層O1の上表面に相当する。   FIG. 2B shows changes in the ore ratio in the total raw material, the pellet concentration in the ore, and the porosity in the height direction of the sample deposition layer. In the figure, the height of the sample deposition layer is indicated by a dimensionless height H which is dimensionless with respect to the total height h of the sample deposition layer, and the position where H = 0 is the lower surface of the coke layer C2. The position of H = 1.0 corresponds to the upper surface of the ore layer O1.

そして、高さ方向における全原料中の鉱石割合の変化から、H=0〜略0.5の範囲がコークス層C2、H=略0.5〜略0.8の範囲が混合層M、H=略0.8〜1.0の範囲が鉱石層O1と判断される。   And from the change of the ore ratio in all the raw materials in the height direction, the range of H = 0 to about 0.5 is the coke layer C2, and the range of H = about 0.5 to about 0.8 is the mixed layer M, H. = A range of about 0.8 to 1.0 is determined as the ore layer O1.

同図より、鉱石中のペレット濃度は、鉱石層O1内(H>0.8)では鉱石中のペレット配合率である30質量%に近い値を維持しているが、混合層M内に入るとその境界部近傍(H=0.8〜0.7)でいったん少し低下した後、さらに下方にいくと混合層Mを越えてコークス層C2内まで(H=0.7〜0.3)急激に上昇しているのがわかる。また、混合層Mは、鉱石層O1およびコークス層C2に比べ空隙率が大幅に低下しているのが明白に見てとれる。   From the figure, the pellet concentration in the ore maintains a value close to 30% by mass, which is the pellet content in the ore, in the ore layer O1 (H> 0.8), but enters the mixed layer M. And once in the vicinity of the boundary (H = 0.8 to 0.7), and further down, beyond the mixed layer M and into the coke layer C2 (H = 0.7 to 0.3) You can see that it is rising rapidly. Moreover, it can be clearly seen that the porosity of the mixed layer M is significantly lower than that of the ore layer O1 and the coke layer C2.

このような現象は他の鉱石と異なるペレット特有の物理的性状に由来して生じると説明できる。すなわち、ペレットは球状で、かつ見掛け密度が大きいため、コークス層C2上への鉱石O1↓投入時に、ペレットだけが装入鉱石O1から選択的に分離されやすい。そして、この分離されたペレットが、鉱石に比べて粒径の大きいコークスで構成されたコークス層C2の大きな空隙内に深く落ち込む(潜り込む)ことによって、コークス層C2内へのペレットの選択的な混入が生じると考えられる。   It can be explained that such a phenomenon is caused by a physical property peculiar to pellets different from other ores. That is, since the pellets are spherical and have a high apparent density, only the pellets are likely to be selectively separated from the charged ore O1 when the ore O1 ↓ is put on the coke layer C2. Then, the separated pellets fall deeply into the large voids of the coke layer C2 composed of coke having a larger particle size than the ore (submerge), thereby selectively mixing the pellets into the coke layer C2. Is considered to occur.

上記知見に基づき、コークス層の直上に装入する鉱石中のペレットの存在量を少なくしてコークス層内にペレットをできるだけ混入させないようにすることにより上記課題を解決できると考え、以下の発明を完成するに至った。   Based on the above knowledge, we believe that the above problem can be solved by reducing the amount of pellets in the ore charged directly above the coke layer so that the pellets are not mixed into the coke layer as much as possible. It came to be completed.

本発明は、コークスを高炉の軸芯部へ集中的に投入するコークス軸芯装入手段と、コークスおよび鉱石を高炉の周縁部側へ投入する周縁装入手段とを備えてなる高炉内へコークスと、ペレットを配合した鉱石とを装入するに当り、前記コークス軸芯装入手段によって高炉軸芯部のコークス比率を高めつつ、前記周縁装入手段によって炉壁から0.02R〜0.6R(ただし、Rは高炉半径)の位置にピーク高さを有するようにコークス層を山状に装入し、ついで、このコークス層上に、鉱石を複数回に分けて前記周縁装入手段によって装入するが、前記複数回の鉱石装入のうち少なくとも初回装入の鉱石中のペレット配合比率を全装入鉱石中の平均ペレット配合比率よりも低くしておくことによって、前記山状装入コークス層の一部が高炉軸芯部側へ押し流されて高炉軸芯部の周囲に形成されたコークス充填部にペレットが混入するのを抑制するように構成してなることを要旨とする。   The present invention relates to a coke into a blast furnace provided with coke shaft core charging means for intensively charging coke into the shaft core part of the blast furnace and peripheral charging means for charging coke and ore to the peripheral edge side of the blast furnace. In addition, when charging the ore containing the pellets, the coke ratio of the blast furnace shaft core is increased by the coke shaft core charging means, and 0.02R to 0.6R from the furnace wall by the peripheral charging means. The coke layer is charged in a mountain shape so that it has a peak height at the position (where R is the blast furnace radius), and then the ore is divided into multiple times on the coke layer and charged by the peripheral charging means. However, by setting the pellet blending ratio in the ore of the first charging among the plurality of ore chargings lower than the average pellet blending ratio in the entire charging ore, Part of the layer is a blast furnace shaft Is pushed to the parts side pellets coke packed portion formed around the blast furnace axis unit is summarized in that it made be configured to prevent the contamination.

上記において、少なくとも前記初回装入の鉱石の投入位置は、前記コークス層のピーク位置よりも遠心側に設定するのがより望ましい。   In the above, it is more desirable that at least the input position of the ore for the initial charge is set on the centrifugal side with respect to the peak position of the coke layer.

本発明によれば、コークス層上への少なくとも初回装入の鉱石中のペレット配合比率を全装入鉱石中の平均ペレット配合比率よりも低くすることにより、コークス充填部中へのペレットの混入(潜り込み)を抑制でき、高炉軸芯部〜中間部の通気性を高く維持でき、安定した中心流操業が継続できる。このため、炉況が安定し、低コークス比および/または高出銑比操業が達成され、経済的な高炉操業が実現できる。   According to the present invention, the mixing ratio of the pellets in the coke packed portion (at least the first charging ore on the coke layer is made lower than the average mixing ratio of the pellets in the total charging ore ( (Snipping) can be suppressed, the air permeability of the blast furnace core to the middle can be kept high, and stable central flow operation can be continued. For this reason, the furnace condition is stabilized, low coke ratio and / or high output ratio operation is achieved, and economical blast furnace operation can be realized.

〔実施形態〕
以下、上記図1の高炉炉頂部における原料装入状況を説明する縦断面図を参照しつつ、本発明をさらに詳細に説明する。なお、以下の説明においては、ベル装入方式の高炉についてのみ説明するが、本発明は、これに限定されるものではなく、ベルレス装入方式の高炉にも当然に適用し得るものである。
Embodiment
Hereinafter, the present invention will be described in more detail with reference to the longitudinal sectional view for explaining the raw material charging state at the top of the blast furnace furnace of FIG. In the following description, only the bell charging type blast furnace will be described, but the present invention is not limited to this, and can naturally be applied to a bellless charging type blast furnace.

図1に示すように、本実施形態に係る高炉1は、コークスを高炉の軸芯部へ集中的に投入するコークス軸芯装入手段としての軸芯部装入専用シュート2と、コークスおよび鉱石を高炉の周縁部側へ投入する周縁装入手段としての、ベル3aとアーマプレート3bとの組み合わせからなるベル方式装入装置3とを備えている。   As shown in FIG. 1, the blast furnace 1 according to the present embodiment includes a shaft core portion dedicated chute 2 as coke shaft core charging means for intensively charging coke into the shaft core portion of the blast furnace, coke and ore. Is provided with a bell type charging device 3 composed of a combination of a bell 3a and an armor plate 3b as peripheral charging means for charging the blast furnace to the peripheral edge side of the blast furnace.

まず、コークス層の形成は、ベル方式装入装置3(ベル3aとアーマプレート3bとの組み合わせ)を用いて、コークス装入をC1↓C2↓の2回に分割して行う。具体的には、例えば、アーマプレート3bを操作してC1↓では炉壁近傍にピーク高さを有するように山状にコークス層を装入してベースとなるコークス層厚みを形成したのち、アーマプレート3bの設定を変更してC2↓ではC1↓より高炉軸心寄りの位置Pにピーク高さを有するように山状にコークス層を装入する。   First, the coke layer is formed by dividing the coke charging into two times of C1 ↓ C2 ↓ using the bell system charging device 3 (a combination of the bell 3a and the armor plate 3b). Specifically, for example, after operating the armor plate 3b to form a coke layer thickness as a base by charging a coke layer in a mountain shape so as to have a peak height near the furnace wall at C1 ↓, The setting of the plate 3b is changed, and in C2 ↓, the coke layer is charged in a mountain shape so as to have a peak height at a position P closer to the blast furnace axis than C1 ↓.

C2↓のピーク位置Pとしては、炉壁から0.02R〜0.6R(ただし、Rは高炉半径)とするのが推奨される。0.02Rより小さいときは炉壁側のコークス層が比較的厚くなる結果、炉壁側の鉱石層が比較的薄くなって上昇ガス流の一部が炉壁側へ偏流して熱放散量が大きくなり、いっぽう0.6Rより大きいときには高地部のコークスを崩してコークス充填部を形成し、コークス層の層厚をできるだけ均一化するという効果が十分に発揮されなくなるためである(特許文献2の第3頁左欄下から3行目〜同右欄上から8行目参照)。   The peak position P of C2 ↓ is recommended to be 0.02R to 0.6R (where R is the blast furnace radius) from the furnace wall. When it is smaller than 0.02R, the coke layer on the furnace wall side becomes relatively thick. As a result, the ore layer on the furnace wall side becomes relatively thin and a part of the rising gas flow drifts to the furnace wall side, resulting in a large amount of heat dissipation. This is because when it is larger than 0.6R, the coke in the high altitude portion is broken to form a coke filling portion, and the effect of making the layer thickness of the coke layer as uniform as possible is not sufficiently exhibited (Patent Document 2). (Refer to the third line from the bottom of the left column on page 3 to the eighth line from the top of the right column).

次に、鉱石層の形成を行うが、鉱石層の形成は鉱石装入を複数回、たとえばO1↓O2↓の2回に分割して行う。具体的には、上記コークス層C1,C2を形成した後、軸芯部装入専用シュート2とベル方式装入装置3とを交互に使用して、軸芯部へのコークス装入CCC1↓、周縁部への鉱石装入O1↓、軸芯部へのコークス装入CCC2↓、および周縁部への鉱石装入O2↓の順序で装入を行う。このように、軸芯部へのコークス装入後に周縁部への鉱石装入を行うことにより、軸芯部装入コークスCCC1,CCC2が鉱石層で分断されることがなく、上記コークス層C1,C2と軸芯部装入コークスCCC1,CCC2とが連続し、軸芯部に完全なコークス・コラムを形成することができる。   Next, the ore layer is formed. The ore layer is formed by dividing the ore charging into a plurality of times, for example, two times of O1 ↓ O2 ↓. Specifically, after the coke layers C1 and C2 are formed, the shaft core portion dedicated chute 2 and the bell system charging device 3 are alternately used to charge the shaft core portion with the coke charging CCC1 ↓, The charging is performed in the order of ore charging O1 ↓ to the peripheral portion, coke charging CCC2 ↓ to the shaft core portion, and ore charging O2 ↓ to the peripheral portion. Thus, by performing ore charging to the peripheral portion after the coke charging to the shaft core portion, the shaft core charging coke CCC1, CCC2 is not divided by the ore layer, and the coke layer C1, C2 and the shaft core portion charging coke CCC1, CCC2 are continuous, and a complete coke column can be formed in the shaft core portion.

上記鉱石装入にあたり、複数回(本実施例では2回)に分割した装入鉱石のうち、初回装入鉱石O1中のペレット配合比率を全装入鉱石(O1+O2)中の平均ペレット配合比率よりも低くしておく。   In the above ore charging, among the charging ores divided multiple times (in this example, twice), the pellet mixing ratio in the first charging ore O1 is based on the average pellet mixing ratio in all charging ores (O1 + O2). Also keep it low.

山状のコークス層C2上に鉱石を装入することにより、山状コークス層C2の一部が高炉軸芯部側へ押し流され、高炉軸芯部の周囲に堆積しコークス充填部CPが形成される。この際、初回装入鉱石O1中のペレット配合比率を全装入鉱石(O1+O2)中の平均ペレット配合比率よりも低くしている(すなわち、初回装入鉱石O1中の焼結鉱+塊鉱石の配合比率を高めている)ので、球状のペレットと異なり角張った形状の焼結鉱および塊鉱石が優先的にコークス充填部CPの空隙の入り口部に架橋して前記空隙を閉塞するようになる。したがって、O1中にもともと存在するペレットの数が減少する効果と相まって、ペレットがコークス充填部CPの空隙内に落ち込む確率が減少し、コークス充填部CPへのペレットの混入が効果的に抑制されることとなる。なお、ペレットの混入抑制効果を確実に得るためには、O1中のペレット配合率は全装入鉱石(O1+O2)中の平均ペレット配合比率の70%以下とするのが好ましく、40%以下とするのがさらに好ましい。   By charging the ore on the mountain-shaped coke layer C2, a part of the mountain-shaped coke layer C2 is washed away to the blast furnace shaft core portion, and is deposited around the blast furnace shaft core portion to form a coke filling portion CP. The At this time, the pellet mixing ratio in the first charging ore O1 is set lower than the average pellet mixing ratio in the total charging ore (O1 + O2) (that is, the sintered ore or ingot ore in the first charging ore O1). Unlike the spherical pellets, the sinter or block ore having an angular shape preferentially cross-links to the entrance of the cavity of the coke filling part CP and closes the cavity. Therefore, coupled with the effect of reducing the number of pellets originally present in O1, the probability that the pellets fall into the voids of the coke filling portion CP is reduced, and mixing of the pellets into the coke filling portion CP is effectively suppressed. It will be. In order to surely obtain the effect of suppressing mixing of pellets, the pellet mixing ratio in O1 is preferably 70% or less of the average pellet mixing ratio in all charged ores (O1 + O2), and 40% or less. Is more preferable.

初回の鉱石装入O1↓に際し、アーマプレート3bを調整してコークス層C2のピーク位置Pよりも遠心側にO1↓の投入位置を設定するのがより望ましい。   In the first ore charging O1 ↓, it is more desirable to adjust the armor plate 3b and set the input position of O1 ↓ to the centrifugal side rather than the peak position P of the coke layer C2.

これにより、山状コークス層C2の少なくとも山頂部を含む高地部を崩して、高炉軸芯部側へより多量のコークスを押し流すことができるので、高炉軸芯部の周囲へのコークス充填部CPの形成をより確実に行うことができる。なお、O1↓の具体的な投入位置は、O1↓の装入量(すなわち、鉱石装入の分割数)およびペレット配合率等を考慮して適宜調整すればよい。   As a result, the high altitude portion including at least the summit portion of the mountain-shaped coke layer C2 can be destroyed, and a larger amount of coke can be swept away to the blast furnace shaft core portion side. Therefore, the coke filling portion CP around the blast furnace shaft core portion Formation can be performed more reliably. In addition, what is necessary is just to adjust the specific injection | throwing-in position of O1 ↓ suitably in consideration of the charging amount (namely, division | segmentation number of ore charging) of O1 ↓, a pellet compounding rate, etc.

〔変形例〕
上記実施形態では、周縁部装入手段としてベルとアーマプレートとの組み合わせからなるベル方式装入装置を、コークス軸芯装入手段として軸芯部装入専用シュートをそれぞれ例示したが、ベルレス方式装入装置を有する高炉では、旋回シュートを用いて、周縁部装入手段およびコークス軸芯装入手段としての機能を兼ねさせてもよい。
[Modification]
In the above embodiment, the bell type charging device comprising a combination of a bell and an armor plate is exemplified as the peripheral portion charging means, and the shaft core portion dedicated chute is exemplified as the coke shaft core charging means. In the blast furnace having the charging device, a turning chute may be used to serve as the peripheral portion charging means and the coke shaft core charging means.

また、上記実施形態では、鉱石装入を2回に分けた例を示したが、3回以上に分けてもよい。ただし、分割数が多くなると装入シーケンスが複雑になり、トラブルが発生しやすくなるので、2回程度が推奨される。   Moreover, although the example which divided | segmented ore charging into 2 times was shown in the said embodiment, you may divide into 3 or more times. However, as the number of divisions increases, the charging sequence becomes complicated and troubles are likely to occur, so about twice is recommended.

また、上記実施形態では、鉱石装入を2回に分け、初回装入鉱石中のペレット配合率を全装入鉱石中の平均ペレット配合率よりも低くしておく例を示したが、鉱石装入を3回以上に分けた場合、例えば3回に分けた場合は、その少なくとも初回装入鉱石(初回のみ、または初回+第2回)中のペレット配合率を全装入鉱石中の平均ペレット配合率よりも低くしておいてもよい。   In the above embodiment, the example in which the ore charging is divided into two times and the pellet mixing ratio in the first charging ore is set lower than the average pellet mixing ratio in the entire charging ore is shown. When the input is divided into three or more times, for example, when the input is divided into three times, the average pellets in the total charged ore is the pellet content in at least the first charge ore (first time only or first time + second time). You may make it lower than a mixture rate.

また、上記実施形態では、鉱石装入を2回に分け、初回装入鉱石の投入位置を、直前に形成されたコークス層のピーク位置よりも遠心側に設定する例を示したが、鉱石装入を3回以上に分けた場合、例えば3回に分けた場合は、その少なくとも初回装入鉱石(初回のみ、または初回+第2回)の投入位置を、直前に形成されたコークス層のピーク位置よりも遠心側に設定するようにしてもよい。   In the above embodiment, the ore charge is divided into two times, and the input position of the initial charge ore is set to the centrifugal side from the peak position of the coke layer formed immediately before. When the input is divided into three or more times, for example, when divided into three times, at least the first charging ore (first time only, or first time + second time) the input position of the peak of the coke layer formed immediately before You may make it set to the centrifugal side rather than a position.

また、上記実施形態では、鉱石装入を2回に分け、その初回装入のペレット配合率を全装入鉱石中の平均ペレット配合率よりも低くする例を示したが、鉱石装入を3回以上に分け、その少なくとも初回の鉱石装入(例えば、初回の鉱石装入のみ、初回+第2回の鉱石装入)のペレット配合率を全装入鉱石中の平均ペレット配合率よりも低くしてもよい。   Moreover, in the said embodiment, although the ore charge was divided into 2 times and the pellet mixing rate of the initial charging was shown lower than the average pellet mixing rate in all the charging ores, the ore charging was 3 Divide the number of times into at least the first ore charge (for example, only the first ore charge, the first + second ore charge), and the pellet content is lower than the average pellet content in all ores. May be.

また、上記実施形態では、鉱石装入を2回に分け、初回装入鉱石中のペレット配合率を全装入鉱石中の平均ペレット配合率よりも低くしておき、その初回装入鉱石の投入位置を、直前に形成されたコークス層のピーク位置よりも遠心側に設定する例を示したが、鉱石装入を3回以上に分けた場合、例えば3回に分けた場合は、その少なくとも初回装入鉱石(初回のみ、または初回+第2回)中のペレット配合率を全装入鉱石中の平均ペレット配合率よりも低くしておき、少なくとも初回装入鉱石(初回のみ、または初回+第2回)の投入位置を、直前に形成されたコークス層のピーク位置よりも遠心側に設定するようにしてもよい。   In the above embodiment, the ore charging is divided into two times, and the pellet mixing ratio in the first charging ore is set lower than the average pellet mixing ratio in the entire charging ore, and the initial charging ore is charged. Although the example in which the position is set to the centrifugal side from the peak position of the coke layer formed immediately before is shown, when ore charging is divided into three times or more, for example, when divided into three times, at least the first time The pellet content in the charged ore (first time only, or first time + second time) is set lower than the average pellet content in all the charged ores, and at least the first time ore (first time only, or first time + first time) You may make it set the injection | throwing-in position of 2 times to the centrifuge side rather than the peak position of the coke layer formed immediately before.

また、上記実施形態では、コークス装入を2回に分けた例を示したが、1回で装入してもよく、あるいは3回以上に分けてもよい。ただし、1回で装入するとコークス層の厚みが不均一になりやすく、いっぽう分割数が多くなると上記鉱石装入と同様、装入シーケンスが複雑になり、トラブルが発生しやすくなるので、2回程度が推奨される。   Moreover, although the example which divided | segmented the coke charging into 2 times was shown in the said embodiment, you may charge in 1 time or may be divided into 3 times or more. However, if the charging is performed once, the thickness of the coke layer is likely to be uneven, and if the number of divisions is increased, the charging sequence becomes complicated and troubles are likely to occur as in the above ore charging. The degree is recommended.

本発明の効果を確認するため、内容積:4500m3、コークス比:340kg/thm、微粉炭吹込み比:170kg/thmの高炉において、図1で示した軸芯装入を行ってはいるもののO1↓,O2↓のペレット配合率が等しい従来操業を比較例として実施し、ついで、全装入鉱石(O1+O2)中の平均ペレット配合比率は一定に維持しつつ、O1↓のペレット配合率を順次低下させた操業を本発明例として実施した。なお、全装入鉱石(O1+O2)中のペレット配合率は30質量%、焼結鉱配合率は45質量%、塊鉱石配合率は25質量%とした。 In order to confirm the effect of the present invention, the shaft core charging shown in FIG. 1 is performed in a blast furnace having an internal volume of 4500 m 3 , a coke ratio of 340 kg / thm, and a pulverized coal injection ratio of 170 kg / thm. The conventional operation in which the pellet mixing ratios of O1 ↓ and O2 ↓ are equal is carried out as a comparative example, and then the pellet mixing ratio of O1 ↓ is sequentially maintained while maintaining the average pellet mixing ratio in all the charged ores (O1 + O2). The reduced operation was carried out as an example of the present invention. In addition, the pellet mixture rate in all the charging ores (O1 + O2) was 30 mass%, the sintered ore mixture rate was 45 mass%, and the lump ore mixture rate was 25 mass%.

図3および図4に操業結果を示す。   3 and 4 show the operation results.

図3に、全装入鉱石(O1+O2)中の平均ペレット配合比率に対するO1中のペレット配合率の割合IPO1と、ガス利用率ηCOとの関係を示す。IPO1=100%のプロットが従来例に相当し、IPO1=67%および38%のプロットが本発明例に相当する。図から明らかなように、IPO1を小さくする(O1中のペレット配合率を低下させる)ほどガス利用率ηCOが上昇しており、本発明方法の適用により、コークス充填部へのペレットの混入が抑制されて中心流が確保され、炉内ガス流れが改善された結果、ガス利用率が上昇したものと推認できる。 FIG. 3 shows the relationship between the ratio IP O1 of the pellet blending ratio in O1 with respect to the average pellet blending ratio in all the charged ores (O1 + O2) and the gas utilization ratio η CO . The plot of IP O1 = 100% corresponds to the conventional example, and the plots of IP O1 = 67% and 38% correspond to the example of the present invention. As is apparent from the figure, the gas utilization rate η CO increases as IP O1 is reduced (decrease in the pellet content in O1), and by the application of the method of the present invention, pellets are mixed into the coke packed portion. As a result, the central flow is secured and the gas flow in the furnace is improved. As a result, it can be assumed that the gas utilization rate has increased.

図4に、比較例と本発明例(IPO1=67%)における、日内ソリューションロス・カーボン変動量σSLCを比較して示す。ここに、日内ソリューションロス・カーボン変動量σSLCとは、ソリューションロス・カーボン量の経時的な変動の度合いを表すものであり、ソリューションロス・カーボン量の時間平均データの1日分(24点)のデータから求めた標準偏差である。同図より、本発明方法の適用によりσSLCは4.1kg/thmから3.6kg/thmへと約12%低下しており、炉内ガス流れの改善により操業がより安定化したことを示している。 FIG. 4 shows a comparison of the daily solution loss / carbon fluctuation amount σ SLC in the comparative example and the example of the present invention (IP O1 = 67%). Here, intraday solution loss / carbon fluctuation amount σ SLC indicates the degree of fluctuation of solution loss / carbon amount over time, and one day (24 points) of time average data of solution loss / carbon amount. This is the standard deviation obtained from the data. From the figure, σ SLC decreased by approximately 12% from 4.1 kg / thm to 3.6 kg / thm by applying the method of the present invention, indicating that the operation was further stabilized by improving the gas flow in the furnace. ing.

つぎに、上記高炉操業における炉内の状況を把握するため、炉内の伝熱・ガス流れを考慮したシミュレーション計算を実施した。シミュレーション計算の対象としては、上記図4に示した比較例と本発明例(IPO1=67%)を選択した。 Next, in order to understand the situation inside the blast furnace during the blast furnace operation, a simulation calculation was performed in consideration of heat transfer and gas flow in the furnace. As a target of the simulation calculation, the comparative example shown in FIG. 4 and the example of the present invention (IP O1 = 67%) were selected.

図5に、比較例と本発明例(IPO1=67%)における、炉内温度分布および高炉全圧損(=羽口圧力−炉頂圧力)を比較して示す。図中、黒塗り部分は軟化融着帯を示す。(a)の比較例より(b)の本発明例のほうが、軸芯部近くの軟化融着帯の厚みが薄くなっており、高炉全圧損も187.4kPaから182.6kPaへと約2.5%低下しており、本発明により、軸芯部周辺の通気性が向上し、炉内ガス流れが改善されたことが確認された。 FIG. 5 shows a comparison between the in-furnace temperature distribution and the total blast furnace pressure loss (= tuyere pressure-furnace top pressure) in the comparative example and the present invention example (IP O1 = 67%). In the figure, the black-painted portion indicates a softened cohesive zone. Compared to the comparative example of (a), the present invention example of (b) has a thinner softened cohesive zone near the shaft core part, and the total pressure loss of the blast furnace from 187.4 kPa to 182.6 kPa is about 2. It was confirmed that the gas permeability in the furnace was improved and the gas flow in the furnace was improved by the present invention.

高炉炉頂部における原料装入状況を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the raw material charging condition in a blast furnace top part. (a)はサンプル堆積層の積層状態を示す縦断面図、(b)はサンプル堆積層の高さ方向における、全原料中の鉱石割合、鉱石中のペレット濃度および空隙率の変化を示すグラフ図である。(A) is a longitudinal cross-sectional view showing the stacked state of the sample deposit layer, (b) is a graph showing the change in the ore ratio in the total raw material, the pellet concentration in the ore, and the porosity in the height direction of the sample deposit layer. It is. 全装入鉱石中の平均ペレット配合比率に対するO1中のペレット配合率の割合IPO1と、ガス利用率ηCOとの関係を示すグラフ図である。The proportion IP O1 pellet blending ratio of O1 in respect to the average pellet blending ratio of the total charge in the ore is a graph showing the relationship between gas utilization ratio eta CO. 比較例と本発明例における、日内ソリューションロス・カーボン変動量σSLCを比較して示すグラフ図である。It is a graph which compares and shows intraday solution loss and carbon fluctuation amount (sigma) SLC in a comparative example and the example of this invention. 比較例と本発明例における、炉内温度分布および高炉全圧損を比較して示すグラフ図である。It is a graph which compares and shows the furnace temperature distribution and blast furnace total pressure loss in a comparative example and the example of this invention.

符号の説明Explanation of symbols

1:高炉
2:コークス軸芯装入手段(軸芯部装入専用シュート)
3:周縁装入手段(ベル方式装入装置)
3a:ベル
3b:アーマプレート
O1↓,O2↓:鉱石装入
C1↓,C2↓:周縁部へのコークス装入
CCC1↓,CCC2↓:軸芯部へのコークス装入
O1,O2:鉱石層
C1,C2:コークス層
CCC1,CCC2:軸芯部装入コークス
CP:コークス充填部
P:コークス層C2のピーク位置

1: Blast furnace 2: Coke shaft core charging means (shaft for exclusive use of shaft core portion charging)
3: Peripheral charging means (bell type charging device)
3a: Bell 3b: Armor plate O1 ↓, O2 ↓: Ore charging C1 ↓, C2 ↓: Coke charging CCC1 ↓, CCC2 ↓: Coke charging O1, O2 to shaft core O1, O2: Ore layer C1 , C2: Coke layers CCC1, CCC2: Shaft core charging coke CP: Coke filling portion P: Peak position of coke layer C2

Claims (2)

コークスを高炉の軸芯部へ集中的に投入するコークス軸芯装入手段と、コークスおよび鉱石を高炉の周縁部側へ投入する周縁装入手段とを備えてなる高炉内へ、コークスと、ペレットを配合した鉱石とを装入するに当り、
前記コークス軸芯装入手段によって高炉軸芯部のコークス比率を高めつつ、前記周縁装入手段によって炉壁から0.02R〜0.6R(ただし、Rは高炉半径)の位置にピーク高さを有するようにコークス層を山状に装入し、ついで、このコークス層上に、鉱石を複数回に分けて前記周縁装入手段によって装入するが、前記複数回の鉱石装入のうち少なくとも初回装入の鉱石中のペレット配合比率を全装入鉱石中の平均ペレット配合比率よりも低くしておくことによって、前記山状装入コークス層の一部が高炉軸芯部側へ押し流されて高炉軸芯部の周囲に形成されたコークス充填部にペレットが混入するのを抑制するように構成してなることを特徴とする高炉への原料装入方法。
Coke and pellets into a blast furnace comprising coke shaft core charging means for intensively charging coke into the shaft core part of the blast furnace and peripheral charging means for charging coke and ore to the peripheral edge side of the blast furnace. In charging ore containing
While increasing the coke ratio of the blast furnace shaft core portion by the coke shaft core charging means, the peripheral height charging means increases the peak height at a position of 0.02R to 0.6R (where R is the blast furnace radius). The coke layer is charged in a mountain shape so that the ore is divided into a plurality of times and charged by the peripheral charging means on the coke layer. By making the pellet mixing ratio in the charged ore lower than the average pellet mixing ratio in the entire charged ore, a part of the mountain-shaped charging coke layer is pushed to the blast furnace shaft core side, and the blast furnace A raw material charging method into a blast furnace, characterized in that it is configured to suppress mixing of pellets into a coke filling part formed around a shaft core part.
少なくとも前記初回装入の鉱石の投入位置を前記コークス層のピーク位置よりも遠心側に設定する請求項1に記載の高炉への原料装入方法。

The method for charging raw materials into a blast furnace according to claim 1, wherein at least a charging position of the ore for the initial charging is set on a centrifugal side with respect to a peak position of the coke layer.

JP2004273751A 2004-09-21 2004-09-21 Raw material charging method to blast furnace Expired - Fee Related JP4244335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004273751A JP4244335B2 (en) 2004-09-21 2004-09-21 Raw material charging method to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004273751A JP4244335B2 (en) 2004-09-21 2004-09-21 Raw material charging method to blast furnace

Publications (2)

Publication Number Publication Date
JP2006089773A true JP2006089773A (en) 2006-04-06
JP4244335B2 JP4244335B2 (en) 2009-03-25

Family

ID=36231029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004273751A Expired - Fee Related JP4244335B2 (en) 2004-09-21 2004-09-21 Raw material charging method to blast furnace

Country Status (1)

Country Link
JP (1) JP4244335B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184626A (en) * 2007-01-26 2008-08-14 Kobe Steel Ltd Method for operating blast furnace
CN108998606A (en) * 2018-08-07 2018-12-14 中南大学 The blast furnace ferrous burden structure that a kind of pellet and Metallurgical Properties of Sinter are distributed rationally
CN110578024A (en) * 2019-10-22 2019-12-17 山西太钢不锈钢股份有限公司 Method for improving pressure difference in blast furnace high pellet smelting furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184626A (en) * 2007-01-26 2008-08-14 Kobe Steel Ltd Method for operating blast furnace
CN108998606A (en) * 2018-08-07 2018-12-14 中南大学 The blast furnace ferrous burden structure that a kind of pellet and Metallurgical Properties of Sinter are distributed rationally
CN110578024A (en) * 2019-10-22 2019-12-17 山西太钢不锈钢股份有限公司 Method for improving pressure difference in blast furnace high pellet smelting furnace
CN110578024B (en) * 2019-10-22 2021-03-12 山西太钢不锈钢股份有限公司 Method for improving pressure difference in blast furnace high pellet smelting furnace

Also Published As

Publication number Publication date
JP4244335B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
CN107208166A (en) The method of charging feedstock into blast furnace
JP6260288B2 (en) Raw material charging method for bell-less blast furnace
EP2851437B1 (en) Method for loading raw material into blast furnace
JP4244335B2 (en) Raw material charging method to blast furnace
JP5861392B2 (en) Blast furnace operation method
JP2005290511A (en) Method for operating blast furnace
JP6102462B2 (en) Raw material charging method to blast furnace
JP5124969B2 (en) Sinter ore manufacturing method
JP5751037B2 (en) Blast furnace operation method
JP4725167B2 (en) Raw material charging method to blast furnace
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JP2018024914A (en) Method for charging raw material to blast furnace
JPS63140006A (en) Method for charging raw material into blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
JP2020015933A (en) Bell-less blast furnace charge method
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JP3700457B2 (en) Blast furnace operation method
JP5338308B2 (en) Raw material charging method to blast furnace
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP2006131979A (en) Method for charging coke into bell-less blast furnace
JPS62290809A (en) Raw material charging method for blast furnace
WO2021152989A1 (en) Method for charging raw material into blast furnace
JPS6112967B2 (en)
JP3700458B2 (en) Low Si hot metal manufacturing method
JP4244340B2 (en) Coke charging method to blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees