JPS5941949B2 - Method of forming ceramic powder - Google Patents

Method of forming ceramic powder

Info

Publication number
JPS5941949B2
JPS5941949B2 JP54021349A JP2134979A JPS5941949B2 JP S5941949 B2 JPS5941949 B2 JP S5941949B2 JP 54021349 A JP54021349 A JP 54021349A JP 2134979 A JP2134979 A JP 2134979A JP S5941949 B2 JPS5941949 B2 JP S5941949B2
Authority
JP
Japan
Prior art keywords
resin
weight
coupling agent
ceramic powder
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54021349A
Other languages
Japanese (ja)
Other versions
JPS55113511A (en
Inventor
一郎 逸見
紘 「やな」瀬
拓郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP54021349A priority Critical patent/JPS5941949B2/en
Publication of JPS55113511A publication Critical patent/JPS55113511A/en
Publication of JPS5941949B2 publication Critical patent/JPS5941949B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明はセラミックス粉末の成形方法、特にセラミック
粉末に樹脂を混合して射出若しくは押出し成形する際、
成形性を実質的に損なうことなく、使用する樹脂の量を
極力少なくした成形方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for molding ceramic powder, particularly when mixing resin with ceramic powder and injection or extrusion molding.
This relates to a molding method in which the amount of resin used is minimized without substantially impairing moldability.

近年セラミックスは一般工業材料から電子部品に至る迄
広く利用されるようになってきた。
In recent years, ceramics have come to be widely used in everything from general industrial materials to electronic components.

これに伴ない、これら製品は寸法精度や物性、形状等に
つき、かなり厳しい要求がなされるようになってきた。
Along with this, these products have come to have considerably stricter requirements regarding dimensional accuracy, physical properties, shape, etc.

この様な要求に対処する手段として、セラミックス粉末
に適当な樹脂を添加して熱可塑性を与え、これを射出或
は押出し成形法により成形し、次いでこの成形品中Oこ
含まれる樹脂を加熱分解除去後、本焼成を行ない、所定
のセラミックス製品を得る方法がいくつか提案され、又
実施されている。
As a means to meet these demands, a suitable resin is added to ceramic powder to give it thermoplasticity, which is molded by injection or extrusion, and then the resin contained in the molded product is thermally decomposed. After removal, several methods have been proposed and implemented to perform main firing to obtain a desired ceramic product.

この方法Qこおいて用いられる樹脂は、射出或は押出し
成形時における成形性を容易にするものであるが、かか
る樹脂は最終的には成形品から除去せねばならず、かか
る除去は通常、加熱分解により樹脂をガス化して除去す
るム成形品にクラックや膨れ或は変形が生ずる虞れがあ
る。
Although the resin used in this method facilitates moldability during injection or extrusion molding, the resin must ultimately be removed from the molded article, and such removal usually involves There is a risk that cracks, blisters, or deformation may occur in molded products whose resin is gasified and removed by thermal decomposition.

かかる不都合を避ける為、通常加熱分解は単位時間当り
の昇温速度を極く微かにし、数十時間から数百時間かけ
て注意深く行なう必要があった。
In order to avoid such inconveniences, thermal decomposition usually needs to be carried out carefully over several tens to hundreds of hours at a very low rate of temperature increase per unit time.

この為、工業的な大量生産には必ずしも満足し得る方法
ではなく、又かかる長時間をかけた樹脂の除去を行なっ
てさえ、クラックや変形は尚かなりの割合で発生する。
For this reason, this method is not necessarily satisfactory for industrial mass production, and even if the resin is removed over such a long period of time, cracks and deformations still occur at a considerable rate.

更に、従来法においては、成形性を良好ならしめるA相
いる樹脂は、セラミックスや金属粉末に対し容積でほぼ
同量程度用いるものであり、これを除去して最終的な焼
成品を得るとそれだけ収縮することになり、通常樹脂は
成形体内において不均一に存在する傾向にあり、かかる
収縮によって成形体全体が変形し易くなる欠点がある。
Furthermore, in the conventional method, the A-phase resin that improves moldability is used in approximately the same volume as the ceramic or metal powder, and when this is removed to obtain the final fired product, the amount of resin is Usually, the resin tends to be present non-uniformly within the molded body, and such shrinkage tends to cause the entire molded body to deform.

本発明者は、かかる点に鑑み、実質的に成形性を損なう
ことなく、用いる樹脂の量を極力減らせるならば、従来
法が有する上記欠点を改良することが出来る筈であり、
かかる手段を見出すことを目的として種々研究、検討し
た結果、セラミックス粉末に樹脂を混合してこれらを成
形する方法において、樹脂と共にシラン系カップリング
剤或はチタン系カップリング剤を併用することにより、
前記目的を達成し得ることを見出した。
In view of this, the present inventor believes that if the amount of resin used can be reduced as much as possible without substantially impairing moldability, the above-mentioned drawbacks of the conventional method can be improved,
As a result of various studies and examinations aimed at finding such means, we found that in a method of mixing resin with ceramic powder and molding them, by using a silane coupling agent or a titanium coupling agent together with the resin,
It has been found that the above object can be achieved.

本発明において用いられる樹脂としては、例えばポリエ
チレン、ポリプロピレン、ポリスチレン、アクリロニト
リル・ツクジエン・スチレン共重合体、ポリ塩化ビニル
等の熱可塑性樹脂が適当である。
Suitable resins used in the present invention include thermoplastic resins such as polyethylene, polypropylene, polystyrene, acrylonitrile-tsukudiene-styrene copolymer, and polyvinyl chloride.

又、樹脂と共に用いられるシラン系カップリング剤とし
ては、例えばγ−メククリロキシプロピルトリメトキシ
シラン、β−(3,4−エポキシシクロヘキシル)エチ
ルトリメトキシシラン、γ−グリシドキシプロピルトリ
メトキシシラン、ビニルト’Jエトキシシラン、ビニル
−トリス(β−メトキシエトキシ)シラン、γ−アミン
プロピルトリエトキシシラン等である。
Further, examples of the silane coupling agent used with the resin include γ-meccryloxypropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, These include vinylt'J ethoxysilane, vinyl-tris(β-methoxyethoxy)silane, and γ-aminepropyltriethoxysilane.

又、チタン系カップリング剤としては、例えばイソプロ
ピルトリイソステアリツクチクネートを挙げるこ吉が出
来る。
Further, as a titanium-based coupling agent, for example, isopropyl triisostearic acid can be mentioned.

そして、これらカップリング剤の使用量は、用いる樹脂
やカンプリング剤の種類及びセラミックス粉末の種類等
により厳密には多少異なるが、一般に用いる樹脂及びセ
ラミックス粉末等の全混合物に対し、1〜5重量%程度
使用するのが適当である。
Strictly speaking, the amount of these coupling agents used varies depending on the type of resin, camping agent, ceramic powder, etc. used, but it is generally 1 to 5 weight by weight based on the total mixture of resin and ceramic powder used. It is appropriate to use about %.

カップリング剤の使用量が前記範囲に満たない場合には
、成形性を実質的に損わずに用いる樹脂量を有効ζこ減
らすことが出来ず、逆に前記範囲を超える場合Oこは成
形体中Oこ一部これOこ基づく空洞が生じたり、膨れが
生ずる虞れがあるので何れも好ましくない。
If the amount of the coupling agent used is less than the above range, it will not be possible to effectively reduce the amount of resin used without substantially impairing the moldability, whereas if it exceeds the above range, the molding will not be possible. Neither of these methods is preferable since there is a risk that cavities may be formed or swelling may occur in some parts of the body.

そして、かかる範囲のうち、1〜3重量%を用いる場合
には、実質的に成形性を損わず、有効に樹脂量を減らせ
ると共に、成形体中に空洞や膨れも生じないので特に好
ましい。
When using 1 to 3% by weight within this range, it is particularly preferable because the amount of resin can be effectively reduced without substantially impairing moldability, and no cavities or bulges will occur in the molded product. .

又、用いられる樹脂の量は、厳密には樹脂の種類、セラ
ミックス粉末の種類、及び用いられるカップリング剤の
種類Oこよって多少異なるが、一般に、樹脂及びセラミ
ックス粉末等の全混合物に対し、10〜20重量%程度
使用すれは十分な成形性を有し、且クラック等の不都合
が生じない。
In addition, the amount of resin used varies slightly depending on the type of resin, the type of ceramic powder, and the type of coupling agent used, but in general, the amount of resin used is 10 If it is used in an amount of about 20% by weight, it has sufficient moldability and does not cause problems such as cracks.

そして、この量は、従来用いられている樹脂量の5〜1
0%の低減に相当する。
This amount is 5 to 1 % of the amount of conventionally used resin.
This corresponds to a reduction of 0%.

又、本発明に用いられるセラミックス粉末としては、例
えば窒化珪素、アルミナ、ジルコニア、コージェライト
、炭化珪素、窒化アルミニウム等であり、これらの粒度
は1〜10μ程度が適当である。
Further, the ceramic powder used in the present invention includes, for example, silicon nitride, alumina, zirconia, cordierite, silicon carbide, aluminum nitride, etc., and the particle size thereof is suitably about 1 to 10 μm.

又、本発明においては前記樹脂やカップリング剤の他、
ジエチルフタレート、ジオクチルフタレート等の可塑剤
やステアリン酸やステアリン酸鉛等の滑剤等の添加剤を
適宜用いることが出来る。
In addition, in the present invention, in addition to the resin and coupling agent,
Additives such as plasticizers such as diethyl phthalate and dioctyl phthalate and lubricants such as stearic acid and lead stearate can be used as appropriate.

本発明において用いられる成形手段には特に制限はない
が、射出成形若しくは押出し成形及びこれらに類する成
形法を採用する場合、特に有利になる。
Although there are no particular restrictions on the molding means used in the present invention, injection molding, extrusion molding, and similar molding methods are particularly advantageous.

この場合、用いられる射出或は押出成形装置や方法に特
に制限はなく、通常プラスチックの成形に用いられる装
置と方法を適宜使用し得る。
In this case, there are no particular restrictions on the injection or extrusion molding equipment or method used, and equipment and methods commonly used for molding plastics can be used as appropriate.

本発明方法を採用して得られた成形体から樹脂を除去す
る手段さしては、従来から行なわれている除去法を適宜
採用し得る。
As a means for removing the resin from the molded article obtained by employing the method of the present invention, any conventional removal method may be employed as appropriate.

例えば得られた成形品を、循環式熱風電気炉等の適宜な
加熱手段を用い、室温から200℃付近迄は30〜50
°C/時程度の昇温速度で昇温し、200〜350℃付
近迄は3〜b ℃程度に5〜10時間程時間待することにより、樹脂を
有効に除去することが出来、一般に、従来法による樹脂
の除去時間を2〜4割程度軽減する事が可能となる。
For example, the obtained molded product is heated to a temperature of 30 to 50°C from room temperature to around 200°C using an appropriate heating means such as a circulating hot air electric furnace.
The resin can be effectively removed by raising the temperature at a temperature increase rate of about 200 to 350 degrees Celsius and waiting for about 5 to 10 hours at about 3 to 350 degrees Celsius. It becomes possible to reduce the resin removal time by about 20 to 40% by conventional methods.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例 1 窒化珪素粉末79.5重量%、ポリスチレン11.9重
量%、アククチツクポリプロピレン2.0重量%、ポリ
エチレン1.6重量%、β−(3,4−エポキジシクロ
ヘキシル)エチルトリメトキシシラン1,6重量%、ジ
エチルツクレート1.6重量%、ステアリン酸1.8重
量%を加圧式ニーダを用い、温度180°C,2,5気
圧で十分混練し、、 3〜5 mvbのペレット状に
成形した。
Example 1 79.5% by weight of silicon nitride powder, 11.9% by weight of polystyrene, 2.0% by weight of active polypropylene, 1.6% by weight of polyethylene, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane 1.6% by weight of diethyl chloride, 1.6% by weight of stearic acid, and 1.8% by weight of stearic acid were sufficiently kneaded using a pressure kneader at a temperature of 180°C and 2.5 atm to form pellets of 3 to 5 mvb. It was formed into a shape.

該ペレットは加熱筒温度250°C1射出圧力1t/i
、金型温度50°Ctこて60mm×100mmX 8
mvtの板状体を何らのクラック等の支障もなく容易に
射出成型出来た。
The pellets were heated at a heating cylinder temperature of 250°C and an injection pressure of 1 t/i.
, mold temperature 50°Ct Trowel 60mm x 100mm x 8
It was possible to easily injection mold a mvt plate-like body without any problems such as cracks.

得られた成形体は、熱風循環式電気炉を用い、室温から
200℃迄を昇温速度50°C/時にて昇温し、200
〜350℃迄を昇温速度4°C/時にて昇温しで350
℃に5時間保持した。
The obtained molded body was heated from room temperature to 200°C at a heating rate of 50°C/hour using a hot air circulating electric furnace.
- 350℃ by increasing the temperature to 350℃ at a heating rate of 4℃/hour
It was kept at ℃ for 5 hours.

得られた成形体は重量減量から含まれていた樹脂は実質
的完全に除去されており、成形体はクラックも変形も何
ら認められなかった。
The resin contained in the obtained molded product was substantially completely removed due to weight loss, and no cracks or deformation were observed in the molded product.

実施例 2 アルミナ粉末76.3重量%、ポリスチレン15,2重
量%、ポリエチレン2.8重量%、γ−メタクリロキシ
プロピルトリメトキシシラン2.0 重t%、ジエチル
ツクレート1.5重量%、ステアリン酸1.7重量%を
実施例1と同様に混練し、同様にペレット化した。
Example 2 Alumina powder 76.3% by weight, polystyrene 15.2% by weight, polyethylene 2.8% by weight, γ-methacryloxypropyltrimethoxysilane 2.0% by weight, diethyl tucrate 1.5% by weight, stearin 1.7% by weight of acid was kneaded in the same manner as in Example 1, and pelletized in the same manner.

該ペレットは実施例1と同様に射出成形したが、クラッ
クもなく、容易に成形出来た。
The pellets were injection molded in the same manner as in Example 1, and were easily molded without any cracks.

実施例 3 コージェライト粉末79゜5重量%、ポリスチレン15
.5重量%、β−(3,4−エポキシシクロヘキシル)
エチルトリメトキシシラン2.4重fi%、ジエチルフ
タレート0.8重量%、ステアリン酸1.8重量%を実
施例1と同様に混練し、同様にペレット化した。
Example 3 Cordierite powder 79°5% by weight, polystyrene 15
.. 5% by weight, β-(3,4-epoxycyclohexyl)
2.4% by weight of ethyltrimethoxysilane, 0.8% by weight of diethyl phthalate, and 1.8% by weight of stearic acid were kneaded in the same manner as in Example 1, and pelletized in the same manner.

該ペレットは実施例1と同様に射出成形したが、クラッ
クもなく、容易に成形出来た。
The pellets were injection molded in the same manner as in Example 1, and were easily molded without any cracks.

実施例 4 窒化珪素粉末77.6重量%、ポリスチレン14.4重
量%、ポリエチレン3.7重量%、イソプロピルトリイ
ソステアリツクチタネート2.4重量%、ステアリン酸
1.8重量%を実施例1と同様(こ混練し、同様ζこペ
レット化した。
Example 4 77.6% by weight of silicon nitride powder, 14.4% by weight of polystyrene, 3.7% by weight of polyethylene, 2.4% by weight of isopropyl triisostearic titanate, and 1.8% by weight of stearic acid as in Example 1. The mixture was kneaded in the same manner and pelletized in the same manner.

該ペレットは実施例1と同様に射出成形したが、クラッ
クもなく、容易に成形出来た。
The pellets were injection molded in the same manner as in Example 1, and were easily molded without any cracks.

Claims (1)

【特許請求の範囲】 1 セラミックス粉末に樹脂を混合してこれらを成形す
る方法において、樹脂と共にシラン系カップリング剤或
はチタン系カップリング剤を併用することを特徴とする
セラミックス粉末の成形方法。 2 樹脂は熱可塑性樹脂である特許請求の範囲1の方法
。 3 熱可塑性樹脂はポリエチレン、ポリプロピレン、ポ
リスチレン、アクリロニトリル・ブタジェン・スチレン
共重合体、ポリ塩化ビニルである特許請求の範囲1又は
2の方法。 4 シラン系カップリング剤は、γ−メタクリロキシプ
ロピルトリメトキシシラン、β−(3,4−エポキシシ
クロヘキシル)エチルトリメトキシシラン、γ−グリシ
ドキシフ市ピルトリメトキシシラン、ビニルトリエトキ
シシラン、ビニル−トリス(β−メトキシエトキシ)シ
ラン、γ−アミノプロピルトリエトキシシランである特
許請求の範囲1の方法。 5 チタン系カップリング剤は、イソプロピルトリイソ
ステアリツクチタネートである特許請求の範囲1の方法
。 6 シラン系カップリング剤或はチタン系カップリング
剤は、全混合物に対し、1〜5重量%用いる特許請求の
範囲1又は4又は5の方法。 7 樹脂は、全混合物に対し、10〜20重量%用いる
特許請求の範囲1又は2又は3の方法。
[Scope of Claims] 1. A method for molding ceramic powder, characterized in that a silane coupling agent or a titanium coupling agent is used together with the resin in the method of mixing ceramic powder with a resin and molding the mixture. 2. The method of claim 1, wherein the resin is a thermoplastic resin. 3. The method according to claim 1 or 2, wherein the thermoplastic resin is polyethylene, polypropylene, polystyrene, acrylonitrile-butadiene-styrene copolymer, or polyvinyl chloride. 4. Silane coupling agents include γ-methacryloxypropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxyltrimethoxysilane, vinyltriethoxysilane, vinyl-tris( The method according to claim 1, wherein the silane is β-methoxyethoxy)silane, or γ-aminopropyltriethoxysilane. 5. The method of claim 1, wherein the titanium-based coupling agent is isopropyl triisostearic titanate. 6. The method according to claim 1, wherein the silane coupling agent or the titanium coupling agent is used in an amount of 1 to 5% by weight based on the total mixture. 7. The method according to claim 1, 2 or 3, in which the resin is used in an amount of 10 to 20% by weight based on the total mixture.
JP54021349A 1979-02-27 1979-02-27 Method of forming ceramic powder Expired JPS5941949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54021349A JPS5941949B2 (en) 1979-02-27 1979-02-27 Method of forming ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54021349A JPS5941949B2 (en) 1979-02-27 1979-02-27 Method of forming ceramic powder

Publications (2)

Publication Number Publication Date
JPS55113511A JPS55113511A (en) 1980-09-02
JPS5941949B2 true JPS5941949B2 (en) 1984-10-11

Family

ID=12052607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54021349A Expired JPS5941949B2 (en) 1979-02-27 1979-02-27 Method of forming ceramic powder

Country Status (1)

Country Link
JP (1) JPS5941949B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675037U (en) * 1993-03-19 1994-10-21 株式会社河合楽器製作所 Position input device
JP2011230982A (en) * 2010-04-30 2011-11-17 Noritake Co Ltd Injection molding material for manufacturing porous ceramic, injection molding method, and method of manufacturing the porous ceramic
JP2011256077A (en) * 2010-06-09 2011-12-22 Noritake Co Ltd Ceramic composite for porous ceramic production, injection molding material, method of molding molding material for porous ceramic production and method of producing porous ceramic

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792570A (en) * 1980-11-28 1982-06-09 Kurosaki Refractories Co Non-baked refractories
JPS605064A (en) * 1983-06-20 1985-01-11 株式会社東芝 Binder for forming nitride ceramics
FR2558168B1 (en) * 1984-01-17 1986-12-05 Cables De Lyon Geoffroy Delore FIRE RESISTANT THERMOPLASTIC COMPOSITION BASED ON ETHYLENE POLYMER OR COPOLYMER
US4769212A (en) * 1985-03-29 1988-09-06 Hitachi Metals, Ltd Process for producing metallic sintered parts
JPS61284503A (en) * 1985-06-10 1986-12-15 Nitto Electric Ind Co Ltd Molded body of metallic powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675037U (en) * 1993-03-19 1994-10-21 株式会社河合楽器製作所 Position input device
JP2011230982A (en) * 2010-04-30 2011-11-17 Noritake Co Ltd Injection molding material for manufacturing porous ceramic, injection molding method, and method of manufacturing the porous ceramic
JP2011256077A (en) * 2010-06-09 2011-12-22 Noritake Co Ltd Ceramic composite for porous ceramic production, injection molding material, method of molding molding material for porous ceramic production and method of producing porous ceramic

Also Published As

Publication number Publication date
JPS55113511A (en) 1980-09-02

Similar Documents

Publication Publication Date Title
JPS5941949B2 (en) Method of forming ceramic powder
JPS6135150B2 (en)
JPS591743B2 (en) Composition for injection molding or extrusion molding
JPH0741802A (en) Injection molding method of metallic powder
JP3362465B2 (en) Manufacturing method of sintered member
JPH03174356A (en) Zirconia composition for injection molding and sintered body thereof
JP3092860B2 (en) Injection molding method for zirconia ceramics
JPH02290642A (en) Manufacture of ceramic core
JPS6194702A (en) Method of molding ceramic product
JP4292599B2 (en) Composition for injection molding of inorganic powder and method for producing inorganic sintered body
JPS6071573A (en) Composition for ceramic injection molding
JP2003306375A (en) Manufacturing method of cordierite honeycomb structure
JPH0483752A (en) Mixture of sinterable substance
JPS5899171A (en) Non-oxide ceramic composition and manufacture of non-oxide ceramic sintered body therefrom
JPS621597B2 (en)
JPH06135704A (en) Molding method for metal oxide molding by sol-gel method
JPH0617485B2 (en) Metal powder composition for injection molding
JP3541445B2 (en) Powder molding method
JPH0768567B2 (en) Manufacturing method of sintered metal
JPH0663685A (en) Production of ceramic core for precision casting
JPS5930760A (en) Preparation of ceramic dough
JPS5845169A (en) Manufacture of silicon carbide sintered body
JPH06263547A (en) Method for degreasing ceramic injection molded body
JPS6360126A (en) Composition for glass injection molding
JPS62124902A (en) Manufacture of ceramics sintered body