JPS594193A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS594193A
JPS594193A JP57114524A JP11452482A JPS594193A JP S594193 A JPS594193 A JP S594193A JP 57114524 A JP57114524 A JP 57114524A JP 11452482 A JP11452482 A JP 11452482A JP S594193 A JPS594193 A JP S594193A
Authority
JP
Japan
Prior art keywords
layer
light emitting
width
current
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57114524A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishi
西 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57114524A priority Critical patent/JPS594193A/en
Publication of JPS594193A publication Critical patent/JPS594193A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a light output waveform of high efficiency, low threshold, preferable linearity and high quality by arranging a semiconductor layer having a refractive index larger than a clad layer arranged selectively at least one of the first and second clad layers and the first hole drawn with a light emitting region in the active layers, and a semiconductor layer having a the second hole smaller than the first hole for drawing a current path on the clad layer between the previous semiconductor layer and the active layer. CONSTITUTION:A current path width S is specified by two current enclosure layers 9, and formed smaller than the light emitting width specified by two light enclosure layers 5. Accordingly, after the current passes the layer 9, the W, S and the thickness of the second clad layer 4 can be selected so that the current path width does not exceed the light emitting width W even if the width is slightly extended, thereby almost eliminating the reactive current component. Thus, even if the light emitting width S is reduced, the oscillating threshold current can be reduced, and the differentiated quantum efficiency can be increased. Accordingly, the area of the light emitting unit can be reduced. In this manner, moderating vibration in which speed characteristics can be suppressed, and preferable light output waveform can be obtained.

Description

【発明の詳細な説明】 (al  発明の技術分野 本発明は半導体発光装置に係り、特に半導体レーザ装置
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to improvements in a semiconductor laser device.

(bl  従来技術と問題点 InGaAsP / InPからなるダブルへテロ接合
構造を有する半導体レーザ装置は、単一モードファイハ
を用いた長距離・大容量の光伝送用光源として有望視さ
れている。
(bl) Prior Art and Problems A semiconductor laser device having a double heterojunction structure made of InGaAsP/InP is seen as a promising light source for long-distance, large-capacity optical transmission using a single mode fiber.

本発明の発明者らは」二記用途に使用するため、高すJ
率・低闇値化を目的として特願昭57−015617号
にて、光と電流を一つの層により閉じ込める(Self
−Aligned)構造のInGaAsP / InP
ダブルへテロ接合半導体レーデ装置を出願した。この半
導体レーザ装置は、ス11−モードファイバとの高効率
結合を考廣ニジ、レーザの横モード単一・安定化及び低
閾値化を目脂したものであって、第1図の斜視図にその
要部構造を示す。
The inventors of the present invention have developed a high
In order to reduce the rate and darkness value, in patent application No. 57-015617, light and current are confined in one layer (Self
-Aligned) structure of InGaAsP/InP
An application was filed for a double heterojunction semiconductor radar device. This semiconductor laser device is designed to achieve high efficiency coupling with an 11-mode fiber, and is designed to achieve a single transverse mode, stabilization, and low threshold. The main structure is shown below.

同図において、1は例えばn型1nPからなる半導体基
板、2は該半導体基板1」二に形成された例えはn型1
nPからなる第1のクラン1゛層、3は該第1のクラッ
ト層2」−に成長された例えばInGaAsF)からな
る活性層、4は該活性層上に成長された例えばp型1 
n I)からなる第2のフラノ1一層、5は該第2のク
ラソF層4内に選択的に配設形成された例えばn型1n
GaAsPからなる高屈折率層、6ば前記第2のクラッ
ド層4」−に成長された例えばp型1nGaAsl)か
らなるオーミック接触用の層である。
In the figure, 1 is a semiconductor substrate made of, for example, n-type 1nP, and 2 is a semiconductor substrate formed on the semiconductor substrate 1''.
3 is an active layer of e.g. InGaAsF grown on the first crat layer 2'; 4 is an active layer of e.g.
A second flano layer 1, 5 consisting of n I) is selectively disposed within the second flan F layer 4, for example, an n-type flano layer 5.
A high refractive index layer made of GaAsP, 6 is an ohmic contact layer made of, for example, p-type 1nGaAsl, grown on the second cladding layer 4''.

そして7は該オーミック接触用の層6上に形成された例
えば1’ i P Iへuからなるp側電極、8は前記
半導体MJIi+の裏面に形成された例えばAuGeN
i合金からなるn側電極である。
7 is a p-side electrode formed on the ohmic contact layer 6, for example, made of 1' i P I to u; 8 is made of, for example, AuGeN formed on the back surface of the semiconductor MJIi+.
This is an n-side electrode made of i-alloy.

上記半導1ト1/ −!I’装置し、1゛同図に見られ
る如く、活性1t33の両側(図でL:1」−下)に配
設されるクラツl’ IM 2及び4の少なくとも一方
、同図の例では第2のクラン1j−4内に、該第2のク
ラッド層4よりも1r11い屈Jjr率を有する層が選
択的に埋設・形成される。、二のj11屈折率層は第2
のクラツl’ lTh74とは反対の専rlj型を有し
、活性層3内に発光領域3′を画定」゛Z1ストライブ
を設定して選択的に配設される。l!ll l−)同図
において発光領域3°は高屈折率1r+ 5の存/1つ
により、幅Wのストう・イブ状に画定される。
The above semiconductor 1t1/-! As seen in the figure, at least one of the clamps l' IM 2 and IM 4 disposed on both sides (L:1''-lower in the figure) of the active it33, as seen in the figure, In the second clan 1j-4, a layer having a refractive index Jjr that is 1r11 higher than that of the second cladding layer 4 is selectively buried and formed. , the second j11 refractive index layer is the second
The light-emitting region 3' is defined in the active layer 3 and is selectively provided by setting a Z1 stripe. l! ll l-) In the same figure, the light emitting region 3° is defined in the shape of a strip with a width W by the existence of a high refractive index 1r+5.

一方p fllll電4tti 7より流入する電流は
、上記n型の高屈折率層5内には流入しIJず、従って
電流路も−1−記高屈折率屓5の存在により幅が略Wの
ストライブ状に規定される。
On the other hand, the current flowing from the p fullll current 4tti 7 does not flow into the n-type high refractive index layer 5, and therefore the current path also has a width of approximately W due to the presence of the high refractive index layer 5. Defined in stripes.

上j木の如く第1図の構造によれば、高屈折率層5の存
在により電流路の幅と発光領域の幅が略等しい。そのた
め電流の無りJ成分が少ないので、1)ii微分117
7了効率、低閾値、目、つ直線性の優れた高品質の半導
体レーザ装置が得られる。
According to the structure shown in FIG. 1 as in the above tree, the width of the current path and the width of the light emitting region are approximately equal due to the presence of the high refractive index layer 5. Therefore, there is no current and the J component is small, so 1) ii differential 117
7. A high-quality semiconductor laser device with excellent completion efficiency, low threshold value, and linearity can be obtained.

しかし種々挟W1の結果−に記従来構造でム、(、素子
を微細化した場合になお問題があることが判明U7た。
However, as a result of various experiments, it was found that there were still problems with the conventional structure as described in (U7) when the elements were miniaturized.

即ち第2図(IT−H断面図)の矢線で承ず、ノミうに
、n側電極7から流入した電流は高屈折率j−5に挾ま
れた領域を通過した後高屈折4=lW5の下B[iにi
■り込み、活性層3に到達したときには流路幅は前記W
より若干広くなり、W+2ΔW となる。このΔWの部
分に流れる電流は発光には寄与しない無効成分となるが
、流路幅が大きいときはその影響は相対的に小さく無視
し得る。しかし流路幅Wを例えば5 〔μm〕と狭くし
た場合には、この無々h成分の相り・1内割合が大きく
なる。そのため11′々分量Y仙率が低下し、闇値電流
が増大するという問題がある。1−記従来構造にお&(
るかかる問題し、!、流路幅を凡そ7(11m3以下と
すると発生ずる。
That is, as shown by the arrow in FIG. 2 (IT-H sectional view), the current flowing from the n-side electrode 7 has a high refraction 4=lW5 after passing through the region sandwiched by the high refractive index j-5. bottom B [i to i
(2) When the channel reaches the active layer 3, the width of the channel is equal to the W
It becomes slightly wider, and becomes W+2ΔW. The current flowing in this portion of ΔW becomes an ineffective component that does not contribute to light emission, but when the channel width is large, its influence is relatively small and can be ignored. However, when the channel width W is narrowed to, for example, 5 [μm], the proportion within 1 of this infinite h component becomes large. Therefore, there is a problem that the 11' Y-sensitivity decreases and the dark value current increases. 1-Conventional structure &(
It takes a lot of trouble! , occurs when the channel width is approximately 7 (11 m3 or less) or less.

(C])発明の「1的 本発明の1:1的はパターンを微細化した場合において
も、高効率、低閾値、良好な直線性2及び高品質の光出
力波形を有する半導体発光装置を提供することにある。
(C]) The 1:1 aspect of the invention is to provide a semiconductor light emitting device that has high efficiency, low threshold value, good linearity 2 and high quality optical output waveform even when the pattern is miniaturized. It is about providing.

(di  発明の構成 本発明の特徴は、半導体基板と、該半導体基板1−に形
成された第1のクラッド層を構成する半導体層と、該第
1のクラット層を構成する半導体層上に形成された活)
11層を構成する半導体層と、該活性層を構成する半導
体層上に第2のクラット”層を構成する半導体層と、前
記第1及び第2のクラット層を構成する半導体層の少な
くとも一方に選択的に配設された該クラット層より屈折
率が太きく前記活性層におりる発光領域を画定する第1
の開口を有する半導体層とを其備し、且つ該発光領域を
画定する!1(導体層と前記活性j脅との間のクラット
層中に電流路を画定する前記第1の開口より小さい第2
の開I]を有する半導体層が配設されてなることにある
(di Structure of the Invention The characteristics of the present invention include a semiconductor substrate, a semiconductor layer forming a first cladding layer formed on the semiconductor substrate 1-, and a semiconductor layer formed on the semiconductor layer forming the first cladding layer. life)
a semiconductor layer constituting 11 layers, a semiconductor layer constituting a second crat layer on the semiconductor layer constituting the active layer, and at least one of the semiconductor layers constituting the first and second crat layers. A first layer having a refractive index thicker than the selectively disposed crat layer and defining a light emitting region that reaches the active layer.
a semiconductor layer having an opening of !, and defining the light emitting region! 1 (a second opening smaller than the first opening defining a current path in the cladding layer between the conductor layer and the active layer);
A semiconductor layer having an opening I] is disposed.

[Ql  発明の実施例 本発明は、−1一連の電流1洛幅を狭くした場合の問題
点は、従来の半導体発光装置においては、電流路幅と発
光幅とを同一の高屈折率層5 (閉じ込め層)により規
定していたために生しるものであるとの観点からなされ
たものである。そのため本発明においては、従来の高屈
折率層5ば光閉じ込め層として用い、該光閉じ込め層の
直下に電流閉じ込め層を付設し、該電流閉し込め層の幅
を光閉じ込め層の幅より小さくすることにより、活性層
における発光領域lN11と電流路幅とを略等しくして
、パターンを微細化した場合の従来の問題点を除去しよ
うとするイ)のである。
[Ql Embodiments of the Invention In the present invention, the problem with narrowing the -1 series current path width is that in conventional semiconductor light emitting devices, the current path width and the light emission width are the same in the high refractive index layer 5. This was done from the perspective that this is due to the fact that it is defined by the (confinement layer). Therefore, in the present invention, the conventional high refractive index layer 5 is used as an optical confinement layer, and a current confinement layer is provided directly below the optical confinement layer, and the width of the current confinement layer is made smaller than the width of the optical confinement layer. By doing so, the light emitting region lN11 and the current path width in the active layer are made approximately equal to each other, thereby attempting to eliminate the conventional problem when the pattern is made finer.

以下本発明の一実施例を図面により説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例としての、n型1nP占(板
を用いた発1辰波IA 1.3 Cμm) 4tFIn
GaAsP /I n P L/−41’装置を示す要
部断面図である。
FIG. 3 shows an n-type 1nP waveform (radiation using a plate, 1.3 Cμm IA) 4tFIn as an embodiment of the present invention.
FIG. 2 is a sectional view of a main part of a GaAsP/I n PL/-41' device.

同図において前記第1図と同一部分ば同一符号で示しで
ある。即I−,lはn型1nPからなる半傳体基板で厚
さ凡そ100 (#m) 、2はn型1nPからなる第
1のフラノ1−1m1で厚さ約2 (l1m) 、3は
フォトルミネッセンス波長λpl=  1.3[:μm
〕のアンド−プθ月nG+1Asr’からなる活性1m
lで厚さ凡そ0.2 (#m) 、4はp型1+Pから
なる第2のクラットINで厚さ凡そ0.1〔μm〕、5
ば前記第2のクラン1j−4内に選択的に配設形成され
たフォトルミネッセンス波14λpl=  1.3Cμ
mll のn型InGaAs1”からICイ〕lt’l
i屈折率In (光閉し込め層)で厚さ凡そ 0.8(
メt m 、’l 、Gは−1−記第2のクラット層4
トに代置された)A1−ルミネッセンス波長λp1− 
1.3(〆zn)のn型1nGaAsPからなるオーミ
ック接触用の層、7及び8ばそれぞれp側電極及びn(
IllI電極である。
In this figure, parts that are the same as those in FIG. 1 are designated by the same reference numerals. That is, I-, l is a semiconducting substrate made of n-type 1nP and has a thickness of about 100 (#m), 2 is a first flannel 1-1m1 made of n-type 1nP and has a thickness of about 2 (l1m), and 3 is a Photoluminescence wavelength λpl = 1.3[:μm
] and the activity 1m consisting of the AND θ month nG + 1Asr'
1 has a thickness of approximately 0.2 (#m), 4 is a second cradle IN made of p-type 1+P and has a thickness of approximately 0.1 [μm], 5
For example, the photoluminescence wave 14λpl=1.3Cμ selectively arranged and formed in the second clan 1j-4
mll n-type InGaAs1'' to IC
i refractive index In (light confinement layer) and thickness approximately 0.8 (
Met m, 'l, G is -1- second crat layer 4
) A1-luminescence wavelength λp1-
1.3(〆zn) n-type 1nGaAsP layer for ohmic contact, 7 and 8 respectively p-side electrode and n(
It is an IllI electrode.

更に本実施例では、上記n型1nGaAsPからなる高
屈折率j輯5の直下に該高屈折率層5に接してフォトル
ミネッセンス波長λpl= 1.I Cpm)のr1型
1nGa篩Pよりなり厚さ凡そ 0.2(umllの電
流閉し込め層9を配設形成した。ここで留意すべきこと
は、新たに配設した2つの電流閉し込めbjf 9に挾
まれたストライブ状領域の幅Sを、前記2つの光閉じ込
め層5に挾まれた領域の幅w、i;小さくすること、及
び電流閉じ込め層9の厚さを凡そ0.5(メ!m’ 以
下とすることである。
Further, in this embodiment, a photoluminescence wavelength λpl=1.0 is provided immediately below the high refractive index layer 5 made of n-type 1nGaAsP and in contact with the high refractive index layer 5. A current confinement layer 9 made of r1 type 1nGa sieve P of I Cpm) and having a thickness of approximately 0.2 (umll) was disposed and formed. The width S of the stripe-shaped region sandwiched between the two optical confinement layers 5 is made smaller, and the thickness of the current confinement layer 9 is made smaller by about 0. 5(me!m') or less.

電流路11m1Sは2つの電流閉し込め層9によ幻規定
され、2つの光閉じ込め層5により規定される発光幅よ
り小さく形成される。従って電流が電流閉し込め層9部
を通過したのち、若干幅が広がっても、電流1−6幅が
発光幅Wを越えないようにW。
The current path 11m1S is defined by the two current confinement layers 9, and is formed to be smaller than the emission width defined by the two light confinement layers 5. Therefore, even if the current expands slightly after passing through the current confinement layer 9, the width of the current 1-6 should not exceed the emission width W.

S、第2のクランF’ I昔4の厚さ等を選択し′(お
くことが可能となり、無効電流成分が殆どなくなる。
It becomes possible to select the thickness, etc. of the second crank F' and set the second crank F' (4), and the reactive current component is almost eliminated.

このため発光幅Sを小さくしても、発振闇値電流を小さ
く、微分量子’lJJ率を直く出来る。従って発光部の
面積を小さく出来るため、高速時1]1におし」る緩和
振動が抑圧され、良好な光出力波形が431られる。
Therefore, even if the emission width S is made small, the oscillation dark value current can be made small and the differential quantum 'lJJ rate can be corrected. Therefore, since the area of the light emitting section can be made small, the relaxation oscillation that occurs at high speeds is suppressed, and a good optical output waveform can be obtained.

第4図は上記−実施例の半導体発光装置の特性を示ず曲
線図で、実線で示す如く闇値電流は凡そ50(mA)、
微分量子効率は0.25 (mW/ mA)が得られ、
光出力−電流特性は良好な直線性を有する。
FIG. 4 is a curve diagram that does not show the characteristics of the semiconductor light emitting device of the above-mentioned example, and as shown by the solid line, the dark value current is approximately 50 (mA),
A differential quantum efficiency of 0.25 (mW/mA) was obtained,
The optical output-current characteristics have good linearity.

なお破線は十記−実施例における電流閉し込め層を除い
た従来構造の半導体発光装置の特性を示すもので、これ
と比較すれば本発明の効果が容易に理解されよう。
Note that the broken line indicates the characteristics of the semiconductor light emitting device of the conventional structure excluding the current confinement layer in the tenth embodiment, and the effects of the present invention will be easily understood when compared with this.

本発明し、を上記−・実施例に限定されることなく更に
種々変形して実施しfjfるものである。
The present invention is not limited to the above-mentioned embodiments, but can be implemented with various modifications.

例えば電流閉し込め層9の成分組成は、−に記−実施例
では屈折率が活性層3より小さく第2のクランド層4よ
り大きくなるよう選んであるが、これは電流閉し込め層
9の成分組成を限定するものではない。電流閉じ込め層
9ば屈折率が、活性層3の屈折率と等しいかそれより小
さく、且つ電流閉じ込め層9を配設したクランド層の屈
折率と等しいかそれよりも大きければ良い。
For example, the composition of the current confinement layer 9 is selected so that the refractive index is smaller than that of the active layer 3 and larger than that of the second ground layer 4 in the embodiment described in -. The composition of the ingredients is not limited. The refractive index of the current confinement layer 9 may be equal to or lower than the refractive index of the active layer 3 and equal to or greater than the refractive index of the ground layer in which the current confinement layer 9 is provided.

従ってまた電流閉し込めN9は」二記−実施例に示した
InGaAs Pに限らず、InPを用いて構成しても
良い。
Therefore, the current confinement N9 is not limited to InGaAs P shown in the second embodiment, but may be made of InP.

また電流閉し込め層9ば−に記−実施例の如くその−」
二層の光閉し込め層5と接して形成しても、或いは離隔
して形成しても良く、要は活性層3に近接して配設され
ることが必要である。即ち、効果的に光を閉し込めるた
めには、光閉し込め層5と活性層3との間隔を前述し力
こ如<  0.5ClJm)以下とすることが必要であ
る。()Lっで電流閉し込めIt+f 9はその範囲内
に形成されれば良い。
In addition, the current confinement layer 9 is written as in the embodiment.
It may be formed in contact with the two-layered optical confinement layer 5 or separated from it, and in short, it is necessary to be disposed close to the active layer 3. That is, in order to effectively confine light, it is necessary that the distance between the light confinement layer 5 and the active layer 3 be equal to or less than the above-described distance (<0.5ClJm). The current confinement It+f 9 should be formed within this range.

本発明に係る21′導体発光装置i’i′目ニー1−記
一実施例に示したInGaAsP / In+)系の化
合物半導体に1()(定されることなく、例えばGaA
lAs系の化合物半導体を用いて実施するごとも可能で
ある。
21' conductor light emitting device according to the present invention.
It is also possible to implement using an IAs-based compound semiconductor.

また本発明を実施するに際し、前記一実施例のp型とn
型とを総て反対にすることも出来る。
In addition, when carrying out the present invention, the p-type and n-type of the above-mentioned embodiment
You can also reverse the pattern entirely.

更に光閉し込め層5の導電型はp型、n型のいずれであ
っても良いことは特に説明するまでもないであろう。
Furthermore, it is unnecessary to particularly explain that the conductivity type of the optical confinement layer 5 may be either p-type or n-type.

if)  発明の効果 0 1u−1−説明し7た如く本発明の半導体発光装置によ
れば、発光幅を微細化しても高り1率、低閾値、良好な
直線171を維持し、Hつ高品質の光出力波形が得られ
る。
if) Effect of the invention 0 1u-1-As explained in 7, according to the semiconductor light emitting device of the present invention, even if the emission width is made finer, the height 1 rate, the low threshold value, and the good straight line 171 are maintained, and the H A high quality optical output waveform can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の半導体発光装置の問題点を説
明するための斜視図及び要部断面図、第3図はA、発明
の一実施例を示す要部断面図、第4図しIL記−実施例
の効果を示す曲線図である。 図において、■は半導体基板、2ば第1のクラ・7ドj
H53は活11J二層、4ば第2のクランl一層、5は
光閉じ込め層、6はオーミック接触用の層、9は電流閉
し込め屓を示す。 代理人 弁理士  松岡宏四部 1 第1図 第2図
1 and 2 are a perspective view and a sectional view of a main part for explaining the problems of a conventional semiconductor light emitting device, FIG. 3 is a sectional view of a main part showing an embodiment of the invention, and FIG. FIG. 3 is a curve diagram showing the effects of IL-Example. In the figure, ■ is a semiconductor substrate, 2 is the first cluster, and 7 is the semiconductor substrate.
H53 is an active 11J double layer, 4 is a second clan layer, 5 is an optical confinement layer, 6 is a layer for ohmic contact, and 9 is a current confinement layer. Agent Patent Attorney Hiroshi Matsuoka Department 1 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と、該半導体基板上に形成された第1のクラ
ッド層を構成する半導体層と、該第1のクラッド層を構
成する半導体層上に形成された活性層を構成する半導体
層と、該活性層を構成する半導体層上に第2のクラッド
層を構成する半導体層と、前記第1及び第2のクラッド
層を構成する半導体層の少なくとも一方に選択的に配設
された該クラッド層より屈折率が大きく前記活性層にお
ける発光領域を画定する第1の開口を有する半導体層と
を具備し、且つ該発光領域を画定する半導体層と前記活
性層との間のクラッド層中に電流路を画定する前記第1
の開口より小さい第2の開口を有する半導体層が配設さ
れてなることを特徴とする半導体発光装置。
a semiconductor substrate; a semiconductor layer forming a first cladding layer formed on the semiconductor substrate; a semiconductor layer forming an active layer formed on the semiconductor layer forming the first cladding layer; A semiconductor layer constituting a second cladding layer on a semiconductor layer constituting an active layer, and the cladding layer selectively disposed on at least one of the semiconductor layers constituting the first and second cladding layers. a semiconductor layer having a large refractive index and a first opening that defines a light emitting region in the active layer, and a current path is provided in a cladding layer between the semiconductor layer that defines the light emitting region and the active layer. defining said first
1. A semiconductor light emitting device comprising: a semiconductor layer having a second opening smaller than the second opening;
JP57114524A 1982-06-30 1982-06-30 Semiconductor light emitting device Pending JPS594193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57114524A JPS594193A (en) 1982-06-30 1982-06-30 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114524A JPS594193A (en) 1982-06-30 1982-06-30 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS594193A true JPS594193A (en) 1984-01-10

Family

ID=14639905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114524A Pending JPS594193A (en) 1982-06-30 1982-06-30 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS594193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0162668A2 (en) * 1984-05-16 1985-11-27 Sharp Kabushiki Kaisha Semiconductor laser
JPS61287290A (en) * 1985-06-14 1986-12-17 Sharp Corp Semiconductor laser element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0162668A2 (en) * 1984-05-16 1985-11-27 Sharp Kabushiki Kaisha Semiconductor laser
JPS61287290A (en) * 1985-06-14 1986-12-17 Sharp Corp Semiconductor laser element

Similar Documents

Publication Publication Date Title
JP2008135786A (en) High power semiconductor laser diode
JPS58216486A (en) Semiconductor laser and manufacture thereof
JPS594193A (en) Semiconductor light emitting device
JP6925540B2 (en) Semiconductor optical device
JPH09199791A (en) Optical semiconductor device and its manufacture
JPH04217382A (en) Advancing wave type semiconductor amplifier
JP3401714B2 (en) Optical semiconductor device
JPH10117045A (en) Optical semiconductor element
JP2550714B2 (en) High-resistance semiconductor layer embedded semiconductor laser
JPH07283490A (en) Optical semiconductor device
JPH04115588A (en) Semiconductor laser
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JP2780337B2 (en) High-resistance semiconductor layer embedded semiconductor laser
JPS5944887A (en) Semiconductor light emitting device
JPH06100737B2 (en) Light modulator
JPS62296490A (en) Semiconductor laser device
JP2801346B2 (en) Semiconductor laser device
JPS621277B2 (en)
JPH09326525A (en) Semiconductor light emitting element and manufacture thereof
JP2508529B2 (en) Distributed feedback semiconductor laser
JPS6386581A (en) Light emitting diode
JPH01241886A (en) Semiconductor laser
JPS60257583A (en) Semiconductor laser device
JPS5988889A (en) Semiconductor light emitting device
JPH0961763A (en) Semiconductor optical modulation device