JPS5941316B2 - Semiconductor laser device capable of high-speed modulation - Google Patents

Semiconductor laser device capable of high-speed modulation

Info

Publication number
JPS5941316B2
JPS5941316B2 JP50059005A JP5900575A JPS5941316B2 JP S5941316 B2 JPS5941316 B2 JP S5941316B2 JP 50059005 A JP50059005 A JP 50059005A JP 5900575 A JP5900575 A JP 5900575A JP S5941316 B2 JPS5941316 B2 JP S5941316B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
output
optical
spike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50059005A
Other languages
Japanese (ja)
Other versions
JPS51134593A (en
Inventor
功郎 小林
ラング ロイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP50059005A priority Critical patent/JPS5941316B2/en
Priority to US05/685,915 priority patent/US4079339A/en
Publication of JPS51134593A publication Critical patent/JPS51134593A/en
Publication of JPS5941316B2 publication Critical patent/JPS5941316B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 この発明は、半導体レーザ、特に信号パルス電流による
光出力直接変調に際して高速変調が可能な半導体レーザ
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser, and particularly to a semiconductor laser device capable of high-speed modulation when directly modulating an optical output using a signal pulse current.

半導体レーザは、小型、軽量、高効率、直接変調容易等
の多くの利点を持つているために光通信や光情報処理等
の重要な光源となりつつあるが、現状では信号パルス電
流による直接変調の上限は実用上毎秒400メガビット
程度にとどまつている。
Semiconductor lasers have many advantages such as small size, light weight, high efficiency, and ease of direct modulation, so they are becoming an important light source for optical communication and optical information processing. In practice, the upper limit remains at around 400 megabits per second.

その主な原因は、光出力パルスの最初の部分にあられれ
るスパイク状の振動によつて光出力パルス波形がひどく
乱される点にある。したがつて、より高速の変調を行な
おうとする場合には、この光出力のスパイク状の振動を
消す必要があり、その一方法として直接変調される半導
体レーザの共振器に外部から光を注入する方法が考えら
れている(外部光の注入によるスパイク状振動の抑圧に
ついては例えば特願昭49−96737を参照されたい
)。この方法によれば、光出力のスパイク状の振動がほ
ぼ完全に抑圧されるとともに、レーザ発振の立上りの遅
れ時間も減少するために、良好な高速変調が可能となる
が、次のような欠点も有している。すなわち、外部から
注入する光の光源としても半導体レーザを用いるのが望
ましくそのためにひとつの半導体レーザ装置の中にふた
つの半導体レーザ素子を用いることになり、素子の寿命
の点でひとつの半導体レーザ素子だけを使う場合より劣
ることや、スパイク状の振動をおさえることによつて光
出力パルスの波高値を振動がないときの平均値に落して
しまうためにスパイク状振動の高い波高値を有効に利用
できないことなどである。この発明の目的は、上記欠点
を除去しひとつの半導体レーザ素子を用いた高速変調が
可能な半導体レーザ装置を提供することにある。
The main reason for this is that the waveform of the optical output pulse is severely disturbed by the spike-like vibrations that occur at the beginning of the optical output pulse. Therefore, when attempting to perform higher-speed modulation, it is necessary to eliminate this spike-like oscillation in the optical output, and one way to do this is to inject light externally into the resonator of the semiconductor laser that is directly modulated. (See, for example, Japanese Patent Application No. 49-96737 for suppressing spike-like vibrations by injecting external light). According to this method, spike-like oscillations in the optical output are almost completely suppressed, and the delay time of the rise of laser oscillation is also reduced, making it possible to achieve good high-speed modulation, but it has the following drawbacks: It also has In other words, it is desirable to use a semiconductor laser as a light source for the light injected from the outside, and for this reason, two semiconductor laser elements are used in one semiconductor laser device. The high peak value of the spike-like vibration is effectively used because it is inferior to the case where only the spike-like vibration is used, and by suppressing the spike-like vibration, the peak value of the optical output pulse is reduced to the average value when there is no vibration. There are things that cannot be done. SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser device that eliminates the above drawbacks and is capable of high-speed modulation using a single semiconductor laser element.

この発明によれば、高速の信号パルス電流が印加される
半導体レーザ素子と、その少なとも一方の出力側に設置
されその出力光をおり返してその一部を前記半導体レー
ザ素子の活性領域へ帰還させる反射鏡とからなる半導体
レーザ装置が得られる。
According to this invention, a semiconductor laser element to which a high-speed signal pulse current is applied is installed on at least one output side of the semiconductor laser element, and the output light is returned and a part of it is returned to the active region of the semiconductor laser element. A semiconductor laser device comprising a reflecting mirror is obtained.

この発明では、信号パルス電流で変調された半導体レー
ザの出力光の一部を適当な時間後にその半導体レーザに
もどしてやることによつて前述のスパイク状の振動の周
期および谷の落ち込みを減少させて変調特性を改善する
In this invention, a part of the output light of the semiconductor laser modulated by the signal pulse current is returned to the semiconductor laser after an appropriate time, thereby reducing the period of the spike-like vibration and the depression of the valley. Improve modulation characteristics.

すなわち出力光の一部をおり返してスパイク状の振動の
周期よりも短かい時間でもどしてやることにより、出力
光の振動の谷を埋めるのである。この方法は出力光の振
動を利用しているため出力光パルスはその振動による高
い波高値がそのまま有効に利用できる。また半導体レー
ザ素子はひとつで良いため素子の寿命の点でも他の方法
と較べて特に劣らない。帰還させる光強度は出力光強度
の数%以下で良いので、反射鏡等の設置は容易で長期的
な安定度も問題がない。尚、本発明に類似の発明が特開
昭49一 91386及び特開昭49−97582公報に記載され
ている。
In other words, by returning a portion of the output light in a time shorter than the period of the spike-like vibrations, the valleys in the vibrations of the output light are filled. Since this method utilizes the vibration of the output light, the high peak value of the output light pulse due to the vibration can be used effectively as is. Furthermore, since only one semiconductor laser element is required, the method is not particularly inferior to other methods in terms of element life. Since the light intensity to be returned may be a few percent or less of the output light intensity, it is easy to install a reflecting mirror, etc., and there is no problem with long-term stability. Incidentally, inventions similar to the present invention are described in JP-A-49-91386 and JP-A-49-97582.

しかし、本発明は下記に示すように上記公報記載の発明
とは技術思想、構成、効果において異なつている。すな
わち、本発明は、単体の半導体レーザに反射鏡を付加し
て、その半導体レーザの出力光の一部を半導体レーザに
帰還する。一方、上記公報記載の発明は、半導体レーザ
に反射鏡を付加して外部共振器型の半導体レーザを構成
している。本発明では、レーザ発振は、単体の半導体レ
ーザで行ない、その出力光を一部帰還することにより波
形整形を可能にするものである。
However, as shown below, the present invention differs from the invention described in the above-mentioned publication in terms of technical idea, structure, and effect. That is, in the present invention, a reflecting mirror is added to a single semiconductor laser, and a part of the output light of the semiconductor laser is returned to the semiconductor laser. On the other hand, the invention described in the above-mentioned publication adds a reflecting mirror to a semiconductor laser to form an external cavity type semiconductor laser. In the present invention, laser oscillation is performed by a single semiconductor laser, and a portion of the output light is fed back to enable waveform shaping.

一方、上記公報記載の発明では、特開昭49−9138
6公報第470頁右上14行目〜17行目、「共振器は
ダイオードのレンズと反対側の端面、レンズ及び平面鏡
で構成され、・・・・・・この共振器で決まる固有モー
ドの発振が得られる。]同第471頁右上10行目「へ
き開の片側に蒸着により『無反射鏡11」を施したレー
ザダイオード1を・・・・・・」とあり、また特開昭4
9−97582公報第485頁左下特許請求の範囲11
行目〜15行目「前記半導体レーザ素子の一方の端面に
設けた第一の反射部材と、この第一の反射部材とともに
光共振器を構成するように前記光伝送体の外側の端面に
設けた第二の反射部材とを含む半導体レーザ装置・・・
・・・」(1)同P.488左上8行目から9行目「実
施例では、光共振器は反射面6と反射面7とにより構成
されている。」、とあるように、半導体レーザと反射鏡
でレーザ共振器を構成するので、半導体レーザ単体では
レーザ発振を起すことはできない。以上より明確なよう
に、本発明の反射鏡は、単なる反射鏡なのに対して、上
記公報記載の発明の反射鏡は、レーザ共振器を構成する
反射鏡の一方であり、趣きを異にする。
On the other hand, in the invention described in the above publication, Japanese Patent Application Laid-Open No. 49-9138
6 Publication, page 470, upper right, lines 14 to 17, ``The resonator is composed of the end face of the diode opposite to the lens, a lens, and a plane mirror...The oscillation of the eigenmode determined by this resonator ] On page 471, top right line 10, it says, ``The laser diode 1 is provided with a 'non-reflection mirror 11' by vapor deposition on one side of the cleavage.''
Publication No. 9-97582, page 485, lower left Claim 11
Lines 15 to 15: "A first reflecting member provided on one end surface of the semiconductor laser element; and a first reflecting member provided on the outer end surface of the optical transmission body so as to constitute an optical resonator together with the first reflecting member." A semiconductor laser device including a second reflective member...
...” (1) Same P. 488 Lines 8 to 9 on the upper left indicate that a laser resonator is composed of a semiconductor laser and a reflecting mirror, as shown in ``In the embodiment, the optical resonator is composed of a reflective surface 6 and a reflective surface 7.'' Therefore, a semiconductor laser alone cannot cause laser oscillation. As is clear from the above, the reflecting mirror of the present invention is a mere reflecting mirror, whereas the reflecting mirror of the invention described in the above publication is one of the reflecting mirrors constituting a laser resonator, and has a different taste.

したがつて、刊行物1,2のレーザでは、反射鏡を含ん
だ外部共振器型の半導体レーザとして発振する。
Therefore, the lasers of Publications 1 and 2 oscillate as external cavity type semiconductor lasers that include a reflecting mirror.

その結果、この構成で緩和振動が発生すればそれを抑止
する作用は、公報記載の発明のどこにも無いことは明確
である。これに対して、本発明では、レーザ発振は単体
の半導体レーザで行なわれ、その出力光の緩和振動を外
部の反射鏡で抑えようとするものである。以上より、本
発明は、前記公報記載の発明とは、その目的のみならず
、構成、機能、効果においても明確に異なる。
As a result, it is clear that none of the inventions described in the publication has the effect of suppressing relaxation vibration if it occurs in this configuration. In contrast, in the present invention, laser oscillation is performed by a single semiconductor laser, and the relaxation oscillation of the output light is suppressed by an external reflecting mirror. As described above, the present invention is clearly different from the invention described in the above-mentioned publication not only in its object but also in its structure, function, and effect.

次に図面を参照してこの発明を詳しく説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図はこの発明の基本的な構成を示す。すなわち半導
体レーザ素子1の一方の出力側に光学的距離Lだけ離し
て反射鏡を設置したものである。光学的距離とは現実の
距離とその媒質の屈折率の積のことをさす。第2図は反
射鏡2による光の帰還の効果を示す。すなわち第2図a
は変調電流波形を、第2図bは反射鏡2がないときの半
導体レーザ素子1の他方の出力光3の波形を、第2図C
は反射鏡2による光の帰還があるときの出力光3の波形
をそれぞれ示す。光学的距離Lで折り返されることによ
り半導体レーザ素子1の一方の出力光4はT=2L/C
(Cは真空中での光速)の時間だけ遅れて半導体レーザ
素子1に帰還される。Tを反射鏡2が無いときの振動の
周期T,よりも小さくすることにより第2図bに示す振
動の谷をうめるように帰還した光が働き、第2図cのよ
うに振動の周期および谷の落ち込みを減少させることが
でき、信号パルス電流に良く応答した出力光パルスが得
られ高速変調が可能になる。この場合振動の周期はほぼ
Tとなる。レーザ発振の立上りの時点では帰還されてく
る光はほとんどないので、レーザ発振の立上りは反射鏡
2が無いときとほぼ同じで高い波高値の出力光パルスが
出る。光の帰還がある場合にも波高値はほぼそのまま保
たれるので、信号出力が大きくなり、効率が増す。第3
図はこの発明の第一の実施例の斜視図を示す。半導体レ
ーザ素子1は電極兼用の銅製ヒートシンク6の上にスズ
で融着し、電流印加用引出線7がつけてある。ヒートシ
ンク6の上に半導体レーザ素子1の一方の共振器端面に
近接して中心からの距離の二乗にほぼ比例して減少する
屈折率分布を有する長さ3TItTL1中心の屈折率が
1.6の集束性光伝送体5を設置し、半導体レーザ素子
1の一方の出力光4をほぼ平行な光ビーム8に変換する
。光ビーム8は集束性光伝送体5から20T1Lm離れ
て設置した反射率50(Ft)の平面の反射鏡2により
折り返されて半導体レーザ素子1に帰還される。この実
施例では反射鏡2までの光学的距離は約25關となり、
T=0.17+1秒で、光の帰還が無いときのスパイク
状振動の周期T,=0.8+1秒よりも短かく選ばれて
いるので帰還した光の効果によりスパイク状振動の深い
谷が埋められて、信号電流波形に艮く応答した波形が得
られ、高速変調が可能になつた。自分自身から出た光の
帰還により半導体レーザの出力光の波形が改善される様
子は第2図に示したのとほぼ同じであつた。反射鏡2の
後方に設置した光検出器9により反射鏡2を通り抜けた
出力光強度を検出して、半導体レーザ素子1の劣化や周
囲温度の変化にともなう出力光強度の変動をおさえるた
めのモニタ出力が得られた。
FIG. 1 shows the basic configuration of this invention. That is, a reflecting mirror is installed on one output side of the semiconductor laser device 1 at an optical distance L apart. Optical distance refers to the product of the actual distance and the refractive index of the medium. FIG. 2 shows the effect of light feedback by the reflecting mirror 2. That is, Figure 2a
2B shows the modulated current waveform, FIG.
1 and 2 show the waveforms of the output light 3 when the light is returned by the reflecting mirror 2, respectively. By being turned back by the optical distance L, one output light 4 of the semiconductor laser element 1 becomes T=2L/C.
The light is returned to the semiconductor laser element 1 with a delay of time (C is the speed of light in vacuum). By making T smaller than the vibration period T when there is no reflector 2, the returned light works to fill the vibration valley shown in Figure 2b, and the vibration period and vibration period T are reduced as shown in Figure 2c. It is possible to reduce the drop in the valley, obtain an output optical pulse that responds well to the signal pulse current, and enable high-speed modulation. In this case, the period of vibration is approximately T. Since almost no light is fed back at the time of the rise of laser oscillation, the rise of laser oscillation is almost the same as when there is no reflecting mirror 2, and an output light pulse with a high peak value is output. Even when light returns, the peak value remains almost unchanged, increasing signal output and efficiency. Third
The figure shows a perspective view of a first embodiment of the invention. The semiconductor laser element 1 is fused with tin onto a copper heat sink 6 which also serves as an electrode, and a lead wire 7 for applying current is attached. On the heat sink 6, near one cavity end face of the semiconductor laser element 1, there is a condenser with a refractive index of length 3 TItTL1 having a refractive index of 1.6 at the center, which has a refractive index distribution that decreases approximately in proportion to the square of the distance from the center. A flexible optical transmitter 5 is installed to convert one output light 4 of the semiconductor laser element 1 into a substantially parallel light beam 8. The light beam 8 is reflected by a flat reflecting mirror 2 with a reflectance of 50 (Ft) placed 20T1Lm away from the convergent light transmitter 5 and returned to the semiconductor laser element 1. In this embodiment, the optical distance to the reflecting mirror 2 is about 25 degrees,
T = 0.17 + 1 second, which is chosen to be shorter than the period T, = 0.8 + 1 second of the spike-like vibration when there is no light feedback, so the deep valley of the spike-like vibration is filled by the effect of the returned light. As a result, a waveform that perfectly responded to the signal current waveform was obtained, making high-speed modulation possible. The manner in which the waveform of the output light of the semiconductor laser was improved by the feedback of the light emitted from itself was almost the same as shown in FIG. A monitor for detecting the intensity of the output light passing through the reflector 2 with a photodetector 9 installed behind the reflector 2 to suppress fluctuations in the output light intensity due to deterioration of the semiconductor laser element 1 or changes in ambient temperature. I got the output.

半導体レーザ素子1のもう一方の出力光3は何の制約も
うけずに他の光学系、例えば光フアイバ等へ結合するこ
とができるのは言うまでもない。光の帰還時間Tとして
はスパイク状振動の周期T1よりも短かければ出力光波
形は改善されるが、最も望ましい波形を得るためには、
TTlTlが一≦T≦−の範囲になければならないこと
がわかつているので、この発明を実施する上ではTがこ
の範囲に入るように反射鏡までの光学的距離を設定する
ことが望ましい。
Needless to say, the other output light 3 of the semiconductor laser element 1 can be coupled to another optical system, such as an optical fiber, without any restrictions. If the light return time T is shorter than the period T1 of the spike-like vibration, the output light waveform will be improved, but in order to obtain the most desirable waveform,
Since it is known that TTlTl must be in the range of 1≦T≦-, it is desirable to set the optical distance to the reflecting mirror so that T falls within this range when implementing the present invention.

第4図はこの発明の第二の実施例の断面図を示す。FIG. 4 shows a sectional view of a second embodiment of the invention.

これは長さ3Tnmの集束性光伝送体5と、長さが16
muで一方の端面にSiO2とTiO2の多層膜を蒸着
により形成した反射膜11を有する円柱ガラス10とを
半導体レーザ素子1の片方の出力側に近接してヒートシ
ンク6上に設置したものである。集束性光伝送体5と円
柱ガラス10の屈折率はともに約1.6で光学的距離は
約30mmとなり、T=0.2+1秒で、スパイク状振
動の周期TlO.8+1秒よりも小さく、光出力3のス
パイク状振動は実用上問題ない程度におさえられ、高速
変調が可能になつた。第5図はこの発明の第三の実施例
の斜視図を示す。
This consists of a focusing optical transmitter 5 with a length of 3Tnm and a length of 16Tnm.
A cylindrical glass 10 having a reflective film 11 formed by vapor deposition of a multilayer film of SiO 2 and TiO 2 on one end face is placed on a heat sink 6 in close proximity to one output side of the semiconductor laser device 1. The refractive index of the convergent light transmitter 5 and the cylindrical glass 10 are both about 1.6, the optical distance is about 30 mm, T=0.2+1 seconds, and the period of spike-like vibration TlO. It was smaller than 8+1 seconds, and the spike-like vibration of optical output 3 was suppressed to a level that poses no practical problem, making high-speed modulation possible. FIG. 5 shows a perspective view of a third embodiment of the invention.

第三の実施例では第二の実施例で用いた円柱ガラス10
のかわりに、中心部の屈折率が周辺よりも大きい光フア
イバ12を用い、集束性光伝送体5の長さを4.5mm
1こすることによつて半導体レーザ素子1の片方の出力
光を集束して光フアイバ12に結合している。光フアイ
バ12の一方の端面には反射膜11がつけてあることは
第二の実施例と同様である。この実施例でもTをスパイ
ク振動の周期T1よりも小さくすることにより、光出力
のスパイク状振動がおさえられ高速変調が実現できた。
光フアイバ12は可撓性に富むために丸めて例えば半導
体レーザ素子1のパツケジ内へ入れてしまうことも可能
である。以上、代表的な実施例について説明したが、こ
の発明では半導体レーザ素子はひとつで済むので、例え
ば同一の装置内に半導体レーザ素子を複数個用いる場合
に較べて装置の信頼性が増す。
In the third example, the cylindrical glass 10 used in the second example
Instead, an optical fiber 12 with a larger refractive index at the center than at the periphery is used, and the length of the convergent light transmitter 5 is set to 4.5 mm.
1, the output light from one side of the semiconductor laser device 1 is focused and coupled to the optical fiber 12. Similar to the second embodiment, a reflective film 11 is attached to one end face of the optical fiber 12. In this example as well, by making T smaller than the period T1 of the spike vibration, the spike-like vibration of the optical output was suppressed and high-speed modulation could be realized.
Since the optical fiber 12 is highly flexible, it can be rolled up and inserted into the package of the semiconductor laser device 1, for example. Although typical embodiments have been described above, the present invention requires only one semiconductor laser element, so the reliability of the apparatus is increased compared to, for example, a case where a plurality of semiconductor laser elements are used in the same apparatus.

また帰還させる光強度はわずかで良いので反射鏡等の設
置は容易である。この発明は以上の代表的な実施例の他
にいくつかの変形が考えられる。
Further, since the intensity of the light to be returned is small, it is easy to install a reflecting mirror or the like. In addition to the above-described typical embodiments, several modifications of the present invention are possible.

反射鏡2へ向う出力光4を集束するために用いた集束性
光伝送体5は、レンズ等の他の光集束素子で置き換えて
も良い。また反射鏡2は必ずしも平面鏡でなくても良く
光を半導体レーザ素子1へ帰還できれば、例えば球面鏡
であつても良い。また球面鏡であればそれ自体集束作用
を持つので他の光集束素子を特に用いなくても良い。さ
らに実施例では反射鏡2(あるいは反射膜11)と半導
体レーザ素子1の共振器端面との光学的距離は固定した
が、これは一定である必要はなく、例えば反射鏡2を調
整台上に設置して光学的距離を可変にし、出力光波形が
最良になるように調節できるようにすることも可能であ
る。
The focusing light transmitting body 5 used to focus the output light 4 toward the reflecting mirror 2 may be replaced with another light focusing element such as a lens. Further, the reflecting mirror 2 does not necessarily have to be a plane mirror, and may be a spherical mirror, for example, as long as it can return light to the semiconductor laser element 1. Further, since a spherical mirror itself has a focusing effect, there is no need to use any other light focusing element. Further, in the embodiment, the optical distance between the reflecting mirror 2 (or the reflecting film 11) and the resonator end face of the semiconductor laser element 1 is fixed, but it does not need to be constant. It is also possible to install a variable optical distance so that the output light waveform can be adjusted for the best.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の基本的な構成図、第2図はこの発明
の効果を説明するための図、第3図はこの発明の第一の
実施例の斜視図、第4図はこの発明の第二の実施例の断
面図、第5図はこの発明の第三の実施例の斜視図をそれ
ぞれあられす。 なお図において、1は半導体レーザ素子、2は反射鏡、
3および4は半導体レーザ素子1の出力光、5は集束性
光伝送体、6はヒートシンク、7は電流印加用引出線、
8は光ビーム、9は光検出器、10は円柱ガラス、11
は反射膜、12は光フアイバ をそれぞれあられす。
Fig. 1 is a basic configuration diagram of this invention, Fig. 2 is a diagram for explaining the effects of this invention, Fig. 3 is a perspective view of a first embodiment of this invention, and Fig. 4 is a diagram of this invention. FIG. 5 is a cross-sectional view of the second embodiment of the present invention, and FIG. 5 is a perspective view of the third embodiment of the present invention. In the figure, 1 is a semiconductor laser element, 2 is a reflecting mirror,
3 and 4 are the output lights of the semiconductor laser element 1, 5 is a focusing light transmitter, 6 is a heat sink, 7 is a current application leader line,
8 is a light beam, 9 is a photodetector, 10 is a cylindrical glass, 11
1 is a reflective film, and 12 is an optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 信号電流の印加によつてスパイク状振動を伴つた出
力光を放出する半導体レーザ素子と、その少なくとも一
方の出力側に設置され前記出力光の少なくとも一部を前
記スパイク状振動の周期よりも短かい時間のうちに前記
半導体レーザ素子に帰還させる手段とよりなる高速変調
が可能な半導体レーザ装置。
1. A semiconductor laser device that emits output light with spike-like vibrations when a signal current is applied, and a semiconductor laser device installed on at least one output side of the device to emit at least a part of the output light with a period shorter than the period of the spike-like vibrations. A semiconductor laser device capable of high-speed modulation, comprising means for feeding back to the semiconductor laser element within a short period of time.
JP50059005A 1975-05-17 1975-05-17 Semiconductor laser device capable of high-speed modulation Expired JPS5941316B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP50059005A JPS5941316B2 (en) 1975-05-17 1975-05-17 Semiconductor laser device capable of high-speed modulation
US05/685,915 US4079339A (en) 1975-05-17 1976-05-12 Light self-injecting semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50059005A JPS5941316B2 (en) 1975-05-17 1975-05-17 Semiconductor laser device capable of high-speed modulation

Publications (2)

Publication Number Publication Date
JPS51134593A JPS51134593A (en) 1976-11-22
JPS5941316B2 true JPS5941316B2 (en) 1984-10-05

Family

ID=13100725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50059005A Expired JPS5941316B2 (en) 1975-05-17 1975-05-17 Semiconductor laser device capable of high-speed modulation

Country Status (1)

Country Link
JP (1) JPS5941316B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214389A (en) * 1975-07-14 1977-02-03 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS5740528Y2 (en) * 1977-01-21 1982-09-06
JPS53149779A (en) * 1978-04-06 1978-12-27 Sharp Corp Preventive structure from transition vibration of semiconductor laser element
JPS5680193A (en) * 1979-12-06 1981-07-01 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS5690584A (en) * 1979-12-24 1981-07-22 Nippon Telegr & Teleph Corp <Ntt> Light pulse generator
US4358851A (en) * 1980-02-28 1982-11-09 Xerox Corporation Fiber optic laser device and light emitter utilizing the device
NL8004472A (en) * 1980-08-06 1982-03-01 Philips Nv Apparatus provided with a semiconductor laser diode.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991386A (en) * 1972-12-29 1974-08-31
JPS4997582A (en) * 1973-01-18 1974-09-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991386A (en) * 1972-12-29 1974-08-31
JPS4997582A (en) * 1973-01-18 1974-09-14

Also Published As

Publication number Publication date
JPS51134593A (en) 1976-11-22

Similar Documents

Publication Publication Date Title
US4079339A (en) Light self-injecting semiconductor laser device
US20020159488A1 (en) Tracking error suppression and method of reducing tracking error
US4426707A (en) Single mode cavity laser
JPS5941316B2 (en) Semiconductor laser device capable of high-speed modulation
US20020159489A1 (en) Laser pump module with reduced tracking error
JP2007027471A (en) Semiconductor laser device and light transmitting device using the same
CN112260051A (en) 1342nm infrared solid laser
US4297651A (en) Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power
JP2000353845A (en) Semiconductor laser module
JPS60501928A (en) coupled cavity laser
JPH06194544A (en) Optical coupling structure
KR101039797B1 (en) To can collimating-light package
JP2623093B2 (en) Laser optics
JPH08202247A (en) Semiconductor laser device and production of hologram plate used for it
KR100488337B1 (en) Rotational asymmetric aspheric lens
JP3254939B2 (en) Optical device for optical communication
JP2975725B2 (en) Surface-emitting type semiconductor laser device
JPS59205785A (en) Optical feedback type semiconductor laser device
KR100418880B1 (en) semiconductor laser diode
US6239916B1 (en) Optical transmitter device
JP2000228559A (en) Optical device
CN201910569U (en) Blue laser
JP3084709B2 (en) Light emitting device module
JP2781451B2 (en) Pulse laser light generator
JPS60192377A (en) Driving method for semiconductor laser element