JPS5940890B2 - Method for manufacturing steel materials with excellent low-temperature toughness - Google Patents

Method for manufacturing steel materials with excellent low-temperature toughness

Info

Publication number
JPS5940890B2
JPS5940890B2 JP56108982A JP10898281A JPS5940890B2 JP S5940890 B2 JPS5940890 B2 JP S5940890B2 JP 56108982 A JP56108982 A JP 56108982A JP 10898281 A JP10898281 A JP 10898281A JP S5940890 B2 JPS5940890 B2 JP S5940890B2
Authority
JP
Japan
Prior art keywords
cross
temperature
steel
shrinkage ratio
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56108982A
Other languages
Japanese (ja)
Other versions
JPS5811732A (en
Inventor
敬一郎 滝谷
雄夫 上野
彬夫 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56108982A priority Critical patent/JPS5940890B2/en
Publication of JPS5811732A publication Critical patent/JPS5811732A/en
Publication of JPS5940890B2 publication Critical patent/JPS5940890B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 この発明は液化低温ガス等の低温流体の輸送や貯蔵、あ
るいは極寒冷地等の雰囲気に使用される鋼管等の鋼材に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to steel materials such as steel pipes used for transporting and storing low-temperature fluids such as liquefied low-temperature gases, or in atmospheres such as extremely cold regions.

周知のように鋼材は低温において靭性が急激に低下し、
いわゆる低温ぜい性を示す。
As is well known, the toughness of steel materials rapidly decreases at low temperatures.
It exhibits so-called low-temperature embrittlement.

このような低温ぜい性を改善、すなわち低温靭性を附与
する従来の方法としては、合金元素、特に多量のNi等
を添加する方法や2回焼入れ等の方法が知られているが
、これらはいずれもコストを大幅に上昇させる問題があ
る。
Conventional methods for improving such low-temperature brittleness, that is, imparting low-temperature toughness, include methods such as adding alloying elements, especially large amounts of Ni, etc., and methods such as double quenching. Both have the problem of significantly increasing costs.

そこで従来から、安価な通常成分の鋼を素材とし、簡単
かつ容易に低温靭性の優れた鋼管等の鋼材を製造する方
法の開発が強(望まれていた。
Therefore, there has been a strong demand for the development of a method for simply and easily manufacturing steel pipes and other steel materials with excellent low-temperature toughness using inexpensive steel with regular components.

ところで本発明者等は、継目無鋼管の製造方法として、
鋼ビレットを一次熱間加工により穿孔圧延し、次いで二
次熱間加工により外径調節のための仕上圧延を行った後
、冷却せずにただちに焼入れ(直接焼入れ)する方法の
研究・開発を進めている。
By the way, the present inventors have developed a method for manufacturing seamless steel pipes,
We are proceeding with research and development of a method in which steel billets are pierced and rolled through primary hot working, then finish rolled to adjust the outer diameter through secondary hot working, and then quenched immediately without cooling (direct quenching). ing.

このような直接焼入れを適用した継目無鋼管の製造方法
について第1図を参照してさらに詳細に説明すると、先
ず素材としての鋼ビレット1をロータリーファーネス等
の加熱炉2において1200℃程度以上に加熱し、これ
をピアサ、エロンゲータ、プラグミル、リーラミル等か
らなる一連の穿孔圧延工程3において熱間加工して、最
終製品の断面に近い断面寸法・形状に加工し、次いでウ
オーキングビームファーネス等の再加熱炉4に装入して
900℃程度に再加熱し、その再加熱された鋼材(素管
)をサイザミルあるいはストレッチレデューサ等の仕上
圧延工程5によって所定の外径に仕上げ、続いてただち
に焼入れ装置6によって焼入れする方法である。
The method for producing seamless steel pipes using direct quenching will be explained in more detail with reference to Fig. 1. First, a steel billet 1 as a raw material is heated to about 1200°C or higher in a heating furnace 2 such as a rotary furnace. This is then hot worked in a series of piercing and rolling processes 3 consisting of a piercer, elongator, plug mill, reeler mill, etc. to obtain a cross-sectional size and shape close to that of the final product, and then in a reheating furnace such as a walking beam furnace. 4 and reheated to about 900°C, the reheated steel material (base pipe) is finished to a predetermined outer diameter by a finish rolling process 5 such as a sizer mill or a stretch reducer, and then immediately heated by a quenching device 6. This is a hardening method.

このような方法では鋼ビレット1の加熱から焼入れまで
が一連続の工程で行なわれるが、その連続工程の最終段
階である焼入装置6が何らかの原因で停止した場合、上
流側から加工・処理されて送られて来る鋼材を焼入れ装
置6に近い段階で系外へ排出して一旦ストックしておく
必要がある。
In this method, the process from heating the steel billet 1 to quenching is carried out in one continuous process, but if the quenching device 6, which is the final stage of the continuous process, stops for some reason, the billet 1 is processed and processed from the upstream side. It is necessary to discharge the steel material sent from the system to the outside of the system at a stage close to the quenching device 6 and temporarily store it in stock.

この場合、一般にはサイザミル等の仕上圧延工程5が終
了した段階、すなわち最終製品の形状・寸法まで加工さ
れた段階で鋼材を系外へ排出してストックしておき、そ
の後焼入れ装置の復旧に伴って前記ストックされていた
鋼材を基加熱して焼入れするのが通常と考えられる。
In this case, generally, the steel material is discharged from the system and stored at the stage where the finish rolling process 5 of the sizer mill, etc. is completed, that is, at the stage where it has been processed to the shape and dimensions of the final product. It is considered normal that the stocked steel materials are heated and quenched.

しかしながらこの場合には熱間加工後ただちに焼入れす
る所謂直接焼入れではなく、通常の焼入れとなるから、
得られる製品の品質が直接圧延の場合よりも格段に劣り
、例えば同一の焼もどし条件を採用した場合に引張強度
が格段に劣る。
However, in this case, it is not so-called direct quenching, which is quenching immediately after hot working, but normal quenching.
The quality of the product obtained is significantly inferior to that obtained by direct rolling, and for example, when the same tempering conditions are adopted, the tensile strength is significantly inferior.

このような事情から本発明者等は、前述のように焼入れ
装置が停止した場合にサイザミル等の仕上圧延を行う直
前、すなわち再加熱炉4から排出された鋼材をそのまま
クーリングベッド側へ送り、ストックすることを考えた
Under these circumstances, the inventors of the present invention decided to send the steel discharged from the reheating furnace 4 as it is to the cooling bed side immediately before finish rolling in the sizer mill etc. when the quenching equipment is stopped as described above, and to store the steel material as it is in the cooling bed. I thought about doing it.

そして焼入れ装置の復旧に伴って前記ストックされてい
た鋼材を再加熱炉4に装入して再び900℃前後に加熱
し、これをサイザミル等の仕上圧延工程5でわずかに熱
間圧延を加えて、ただちに焼入れ(直接焼入れ)する実
験を行ったところ、単に強度的に優れるばかりでなく、
優れた低温靭性を有する鋼管が得られる可能性があるこ
とを見出した。
When the quenching equipment is restored, the stocked steel material is charged into the reheating furnace 4 and heated to around 900°C again, and then slightly hot rolled in a finish rolling process 5 such as a sizer mill. When we conducted an experiment in which we immediately quenched (directly quenched), we found that it not only has superior strength, but also
It has been discovered that it is possible to obtain steel pipes with excellent low-temperature toughness.

そこでさらに実験を繰返したところ、焼入れ直前の熱間
圧延(仕上圧延)における加工比を調節することによっ
て、通常成分の低炭素鋼から低温靭性に優れた鋼材が得
られること、すなわち前述の要望を満たし得ることを知
見し、この発明をなすに至ったのである。
Therefore, we repeated the experiment and found that by adjusting the working ratio in hot rolling (finish rolling) immediately before quenching, it was possible to obtain a steel material with excellent low-temperature toughness from a low-carbon steel with a normal composition. They discovered that the above conditions can be satisfied and came up with this invention.

すなわちこの発明の低温用鋼材の製造方法は、例えば前
述のような一連の継目無鋼管の製造過程においてサイザ
ミル等の2次熱間加工(仕上圧延)の直前で系外へ排出
、ストックされてAr1 変態点以下に冷却された鋼索
管のごとく、最終製品の断面寸法・形状に近い断面寸法
・形状に既に加工されている通常成分の低炭素鋼材を素
材とし、その鋼材を加熱して特定の範囲の加工比で熱間
圧延し、ただちに焼入れ(直接焼入れ)するものである
That is, in the method for manufacturing a low-temperature steel material of the present invention, for example, in the process of manufacturing a series of seamless steel pipes as described above, Ar1 is discharged from the system and stored immediately before secondary hot working (finish rolling) in a sizer mill or the like. Like steel cables and pipes that have been cooled below their transformation point, we use low-carbon steel materials of normal composition that have already been processed to a cross-sectional size and shape close to the cross-sectional size and shape of the final product. It is hot-rolled at a processing ratio of , and then immediately quenched (directly quenched).

より具体的には、この発明の方法は、C0,15%未満
、Si 0.1〜1.0%、Mn 0.4〜2.0%、
AI 0.01〜0.10%、残部実質的にFeおよび
不可避的不純物よりなり、かつ製品の断面寸法・形状に
近い断面寸法・形状に予め加工されている鋼材を、Ac
3 変態点以上、オーステナイト結晶粒大化開始温度以
下の温度に加熱して、断面収縮比Rが0.015以上と
なるように熱間圧延した後、ただちに焼入れし、その後
Ac1 変態点以下の温度で焼もどすことを特徴とする
ものである。
More specifically, the method of the present invention comprises CO less than 15%, Si 0.1-1.0%, Mn 0.4-2.0%,
Ac
3. After heating to a temperature above the transformation point and below the austenite grain enlargement starting temperature and hot rolling so that the cross-sectional shrinkage ratio R becomes 0.015 or above, immediately quenching, and then heating to a temperature below the Ac1 transformation point. It is characterized by being tempered.

但しここで断面収縮比Rは、熱間圧延前後における主圧
延方向に対し直角な断面の面積収縮率、すなわちより正
確には、熱間圧延前における断面積を81 とし、熱間
圧延後における断面積な82 とすれは、次の式であら
れされるものである。
However, here, the cross-sectional shrinkage ratio R is the area shrinkage ratio of the cross section perpendicular to the main rolling direction before and after hot rolling, or more precisely, the cross-sectional area before hot rolling is 81, and the cross-sectional area after hot rolling is The area 82 and the area are calculated by the following formula.

2 R=1−− 1 以下この発明の製造方法をさらに詳細に説明する。2 R=1-- 1 The manufacturing method of the present invention will be explained in more detail below.

この発明で対象とする鋼材の成分範囲は、前述のように
C0,15%未満、Si0.1〜1.0%、Mn 0.
4〜2.0%、AI 0.01〜0.10%、残部実質
的にFeおよび不可避的不純物であり、このような成分
限定理由は次の通りである。
As mentioned above, the composition range of the steel material targeted by this invention is CO less than 15%, Si 0.1 to 1.0%, Mn 0.
4 to 2.0%, AI 0.01 to 0.10%, and the remainder substantially Fe and unavoidable impurities. The reason for limiting the components is as follows.

Cは0.15%を越えれば靭性が低下する。If C exceeds 0.15%, toughness decreases.

またCの下限は特に限定しないが通常は溶接性と強度の
面から実用上0.08%前後とすることが望ましい。
Further, the lower limit of C is not particularly limited, but it is usually desirable for practical use to be around 0.08% from the viewpoint of weldability and strength.

Siは脱酸および強度増加の目的から添加されるが、そ
のためには0.1%以上が必要である。
Si is added for the purpose of deoxidizing and increasing strength, and for this purpose 0.1% or more is required.

一方Siが1.0%を越えれば靭性が急激に低下する。On the other hand, if Si exceeds 1.0%, toughness decreases rapidly.

Mnは強度および靭性向上の目的から0.4%以上添加
することが必要であるが、2.0%を越えれば偏析や溶
接不良をおこす。
It is necessary to add Mn in an amount of 0.4% or more for the purpose of improving strength and toughness, but if it exceeds 2.0%, segregation and welding defects will occur.

AIは脱酸および鋼中のNと結合して結晶粒を微細化さ
せるために添加されるが、そのためには0.10%以上
が必要であり、またAIが0.10%を越えれば上述の
効果が飽和する。
AI is added to deoxidize and combine with N in steel to refine the grains, but for this purpose, it is necessary to have an amount of 0.10% or more, and if AI exceeds 0.10%, the above-mentioned The effect of is saturated.

なおこのほか、低温靭性をより一層向上させるため、N
i O,05〜9.5%、Cu O,05〜0.5%の
一方または双方を用途等に応じて添加しても良い。
In addition, in order to further improve low-temperature toughness, N
One or both of iO, 05-9.5% and CuO, 05-0.5% may be added depending on the purpose.

また強度や耐水素誘起割れ性を確保するため、Cr O
,05〜2.5%、Mo 0.05〜1.5%、NbO
,01〜0.1%、Vo、01〜0.2%、TiO,0
05〜0.1%、Bo、0005〜0.005%、Ca
O1002〜0.0050%、REMo、005〜0.
050%のうちから選ばれた1種または2種以上を添加
しても良い。
In addition, to ensure strength and hydrogen-induced cracking resistance, CrO
, 05-2.5%, Mo 0.05-1.5%, NbO
, 01-0.1%, Vo, 01-0.2%, TiO, 0
05-0.1%, Bo, 0005-0.005%, Ca
O1002-0.0050%, REMo, 005-0.
One or more selected from 0.050% may be added.

この発明の製造方法は上述のような組成の鋼を素材とす
るのであるが、ここでこの発明の製造方法に供する素材
は、予め製品の断面に近い断面寸法・形状に加工されて
いる素管等のものである。
The manufacturing method of this invention uses steel having the above-mentioned composition as a material, but the material used in the manufacturing method of this invention is a raw pipe that has been processed in advance to have a cross-sectional size and shape close to the cross-section of the product. etc.

例えば第1図に示すごとき継目無鋼管の一連の製造過程
において、熱間仕上圧延工程5の直前で系外へ排出され
てAr1 変態点以下に冷却された素管、すなわち穿孔
圧延工程等の−・火熱間加工が既に施されている素管、
あるいは第1図における焼入装置6の直前で系外に排出
されてAr1 変態点以下に冷却された素管、すなわち
穿孔圧延工程3等の一次熱間加工および仕上圧延工程5
等の二次熱間圧延が既に施されて、当初予定していた製
品の断面寸法・形状に加工されている素管(但し本発明
では後にさらに若干の熱間圧延を施すから、本発明の方
法における最終製品の断面寸法・形状とは若干異なる)
などが対象となる。
For example, in a series of manufacturing processes for seamless steel pipes as shown in FIG.・Main pipes that have already been subjected to fire hot processing,
Alternatively, the raw tube is discharged from the system just before the quenching device 6 in FIG.
A base tube that has already been subjected to secondary hot rolling, such as (Slightly different from the cross-sectional dimensions and shape of the final product in the method)
etc. are eligible.

このような素管等の素材に対し、この発明の方法では先
ずAc3変態点以上、オーステナイト結晶粒粗大化開始
温度以下の温度に加熱する。
In the method of the present invention, such materials such as raw pipes are first heated to a temperature above the Ac3 transformation point and below the austenite crystal grain coarsening starting temperature.

この加熱は、均一にオーステナイト化するとともに鋼中
の合金元素を充分に固溶させるためにAca 変態点以
上が必要であるが、熱間圧延後のオーステナイト結晶粒
を微細化するため、オーステナイト温度域の可及的に低
温度に加熱することが望ましく、少くともオーステナイ
ト結晶粒粗大化開始温度以下とする必要がある。
This heating needs to be above the Aca transformation point in order to uniformly transform the steel into austenite and to sufficiently dissolve the alloying elements in the steel. It is desirable to heat the steel to a temperature as low as possible, and it is necessary to heat it to at least the austenite crystal grain coarsening starting temperature.

このように加熱した素材は、ただちにサイザミル、スト
レッチレデューサ等、得ようとする製品の形状、寸法に
応じた圧延機により断面収縮比R1すなわち主圧延方向
に直角な断面における圧延前の面積S1 と圧延後の面
積S2 とによって定まる( 1−82/S1)の値が
0.015以上となるように熱間圧延する。
The thus heated material is immediately rolled using a rolling mill such as a sizer mill or a stretch reducer depending on the shape and dimensions of the product to be obtained, with a cross-sectional shrinkage ratio R1, that is, an area S1 before rolling in a cross section perpendicular to the main rolling direction. Hot rolling is performed so that the value of (1-82/S1) determined by the subsequent area S2 is 0.015 or more.

この断面収縮比が適当であることは後述する実施例に示
すように本発明者等が実験により見出したのであり、断
面収縮比を0.015以上とすることによってはじめて
焼入れ一焼もどし後の鋼材に優れた低温靭性が与えられ
、断面収縮比が0.015未満では良好な低温靭性が得
られない。
The present inventors found through experiments that this cross-sectional shrinkage ratio is appropriate, as shown in the examples described later, and the steel material after quenching and tempering can only be achieved by setting the cross-sectional shrinkage ratio to 0.015 or more. If the cross-sectional shrinkage ratio is less than 0.015, good low-temperature toughness cannot be obtained.

なおこの熱間圧延における断面収縮比の上限は特に限定
しな(・が、実施例で示すように低温靭性が向上する効
果は断面収縮比が0.025〜0.030程度で飽和し
、それ以上断面収縮比を大きくしても効果は上昇せず、
またそもそもこの発明で対象とする素材は予め製品に近
い断面寸法・形状に加工されているものであるから、断
面収縮比は通常は0.10程度以下とする。
Note that the upper limit of the cross-sectional shrinkage ratio in hot rolling is not particularly limited (・However, as shown in the examples, the effect of improving low-temperature toughness is saturated at a cross-sectional shrinkage ratio of about 0.025 to 0.030. Even if the cross-sectional shrinkage ratio is increased above, the effect does not increase,
Furthermore, since the material targeted by this invention has been processed in advance to have a cross-sectional size and shape close to that of the product, the cross-sectional shrinkage ratio is usually about 0.10 or less.

なおまた、この熱間圧延においては、圧縮荷重をできる
だけ一挙に加えて0.0 ]、 5以上の断面収縮比を
得ることが望ましく、その観点から、3パス程度以下(
但し圧下が加えられた1組のロールを通過する過程を1
パスとする)で断面収縮比0.015以上に圧延するこ
とが望ましい。
In addition, in this hot rolling, it is desirable to apply compressive load as much as possible at once to obtain a cross-sectional shrinkage ratio of 0.0] or 5 or more, and from that point of view, it is desirable to obtain a cross-sectional shrinkage ratio of 0.0] or 5 or more, and from that point of view, it is desirable to apply a compressive load as much as possible at once to obtain a cross-sectional shrinkage ratio of 5 or more.
However, the process of passing through a set of rolls to which pressure is applied is 1.
It is desirable to roll the sheet to a cross-sectional shrinkage ratio of 0.015 or more.

4パス以上で圧延した場合、熱間圧延工程全体としての
断面収縮比が0.015以上であっても1パス当りの断
面収縮比が著しく小さくなり、そのため良好な低温靭性
が得られなくなるおそれがある。
In the case of rolling with 4 passes or more, even if the cross-sectional shrinkage ratio for the entire hot rolling process is 0.015 or more, the cross-sectional shrinkage ratio per pass becomes significantly small, and therefore good low-temperature toughness may not be obtained. be.

上述のようにして熱間圧延した後には、ただちに水焼入
れする。
After hot rolling as described above, water quenching is immediately performed.

すなわち臨界温度まで冷却される以前に焼入れする。That is, it is hardened before being cooled to a critical temperature.

この焼入れは、例えば鋼管の場合、内外両面にその長手
方向に沿った水流、すなわち軸流を流して冷却する方式
を採用することが望ましいが、必ずしもこれに限るもの
ではない。
For example, in the case of a steel pipe, it is preferable to use a method of cooling the pipe by flowing a water flow along its longitudinal direction, that is, an axial flow, on both the inner and outer surfaces of the pipe, but the method is not necessarily limited to this.

このようにして焼入れした後には、Ac1 変態点以下
の温度に焼もどしする。
After being hardened in this manner, it is tempered to a temperature below the Ac1 transformation point.

この焼もどしは通常は600℃以上で行うことが望まし
く、また焼もどし後は常法にしたがって急冷する。
This tempering is usually preferably carried out at a temperature of 600° C. or higher, and after tempering, it is rapidly cooled in a conventional manner.

゛このようにして熱間圧延後、焼入れ焼もどしすること
によってこの発明の製造方法における最終製品である鋼
管等の鋼材が得られる。
``In this way, after hot rolling, a steel material such as a steel pipe, which is the final product in the manufacturing method of the present invention, can be obtained by quenching and tempering.

なお、この発明の製造方法における素材として、第1図
に示される継目無鋼管の製造ラインの中途からライン外
へ排出・冷却された素管を用いる場合には、第1図にお
けるウオーキングビームファーネス等の再加熱炉4をこ
の発明の製造方法における熱間圧延前の加熱に利用する
ことが望ましい。
In addition, when using raw pipes discharged and cooled from the middle of the seamless steel pipe manufacturing line shown in FIG. 1 as the raw material in the manufacturing method of the present invention, the walking beam furnace, etc. shown in FIG. 1 is used. It is desirable to use the reheating furnace 4 for heating before hot rolling in the manufacturing method of the present invention.

すなわち、例えば第2図の破線で示すように再加熱炉4
からクーリングベッド7の側へ排出・ストックされてA
r1 変態点以下に冷却された素管を素材とする場合、
第2図の実線で示すようにその冷却された素管を再加熱
炉4に再装入してAc3変態点以上、オーステナイト結
晶粒粗大化開始温度以下の温度に加熱し、これをサイザ
ミル、ストレンチレデューサ等の仕上圧延工程5で断面
収縮比0.015以上に熱間圧延し、ただちに焼入れて
焼もどしすれば良い。
That is, for example, as shown by the broken line in FIG.
A is discharged and stocked from the cooling bed 7 side.
r1 When using raw pipe cooled below the transformation point as the material,
As shown by the solid line in Fig. 2, the cooled raw tube is reinserted into the reheating furnace 4 and heated to a temperature above the Ac3 transformation point and below the austenite crystal grain coarsening starting temperature. It is sufficient to hot-roll the trench reducer or the like to a cross-sectional shrinkage ratio of 0.015 or more in the finish rolling step 5, and immediately quench and temper it.

また例えば第3図の破線で示すように、仕上圧延工程5
を経てからライン外のクーリングベッドγ′へ排出され
て冷却された鋼管を素材とする場合も、第3図の実線で
示すようにその鋼管を再加熱炉4に再装入して前記温度
に加熱し、再度仕上圧延工程5において断面収縮比が0
.015以上となるように熱間圧延し、ただちに焼入れ
だ後、焼もどしすれば良い。
For example, as shown by the broken line in FIG.
Even when using a steel pipe that has been cooled by being discharged to a cooling bed γ' outside the line, the steel pipe is reinserted into the reheating furnace 4 and heated to the above temperature, as shown by the solid line in Fig. 3. Heating is performed again in finish rolling step 5 until the cross-sectional shrinkage ratio is 0.
.. 015 or higher, immediately quenched, and then tempered.

前述のようにして得られた鋼材はその低温靭性が著しく
優れている。
The steel material obtained as described above has extremely excellent low-temperature toughness.

その理由は次のように考えられる。The reason may be as follows.

すなわち、熱間圧延のための加熱温度をオーステナイト
結晶粒粗大化開始温度以下(但しAc3 点以上)とし
、かつ0.015以上の比較的大きい断面収縮比で熱間
圧延するため、熱間圧延後(焼入れ前)のオーステナイ
ト結晶粒が著しく微細化されて、これを直接焼入れおよ
び焼入れした後の結晶粒も微細化され、これによりクラ
ックの伝播が阻止されるようになることが第1の理由と
して挙げられる。
That is, in order to set the heating temperature for hot rolling to be below the austenite grain coarsening starting temperature (but above the Ac3 point) and to perform hot rolling with a relatively large cross-sectional shrinkage ratio of 0.015 or more, The first reason is that the austenite crystal grains (before quenching) are significantly refined, and the crystal grains after direct quenching and quenching are also refined, which prevents crack propagation. Can be mentioned.

また、熱間圧延によって鋼材中に導入されたひずみすな
わち格子欠陥が焼もどしの際に炭化物生成の析出サイト
として機能し、高温焼もどしにより炭化物の析出形態が
球状化、分散化し、さらには熱間圧延により硫化物系非
金属介在物が展伸および分離切断され、これらにより炭
化物や硫化物による脆性クラックの発生、伝法※播特性
が改善されることが第2の理由として挙げられる。
In addition, strain or lattice defects introduced into the steel material by hot rolling function as precipitation sites for carbide formation during tempering, and high-temperature tempering causes the carbide precipitation to become spheroidal and dispersed. The second reason is that sulfide-based nonmetallic inclusions are expanded and separated by rolling, which improves the occurrence of brittle cracks caused by carbides and sulfides and propagation characteristics.

なお、結晶粒度の点だけがら見れば、切欠靭性を向上さ
せるためには熱間圧延後のオーステナイト結晶粒度(J
IS)が6,0以上あることが望ましい。
In addition, looking only at the grain size, in order to improve notch toughness, the austenite grain size after hot rolling (J
IS) is preferably 6.0 or higher.

但し、鋼材の化学成分に切欠靭性を向上させる合金元素
例えばNi、Nb等を含有する場合には断面収縮比は小
でも良く、一方、これらの合金元素を含有しない場合に
は断面収縮比を犬にすることが好ましいが、この発明の
方法で重要なことは、断面収縮比が犬であれば常に切欠
靭性向上効果が得られて、優れた低温靭性が得られる点
である。
However, if the chemical composition of the steel contains alloying elements that improve notch toughness, such as Ni or Nb, the cross-sectional shrinkage ratio may be small; on the other hand, if these alloying elements are not contained, the cross-sectional shrinkage ratio may be small. However, what is important in the method of the present invention is that if the cross-sectional shrinkage ratio is equal to 100%, an effect of improving notch toughness can always be obtained, and excellent low-temperature toughness can be obtained.

すなわち、この発明の方法によれば、切欠靭性を向上さ
せる合金元素を特に含有しない場合でも、熱間圧延にお
ける断面収縮比を犬(0,015以上)とすることによ
り、前記第1の理由および第2の理由が相俟って良好な
低温靭性が得られる。
That is, according to the method of the present invention, even when not specifically containing an alloying element that improves notch toughness, the first reason and The second reason works together to provide good low-temperature toughness.

以下にこの発明の実施例を記す。Examples of this invention are described below.

実施例 第1表に示される2種の鋼材A、 Bについて予め熱間
加工により直径80〜105mrIL1肉厚8〜16m
mの素管に加工しておき、これを素材としてウオーキン
グビームファーネスにより910〜930℃に充分に均
熱した後、孔型熱間圧延機により1〜3パスにて各種の
断面収縮比となるように熱間圧延した。
Example Two types of steel materials A and B shown in Table 1 were pre-hot worked to a diameter of 80 to 105 m, IL1 wall thickness of 8 to 16 m.
After processing this into a raw material tube of 500 m in size, it is thoroughly heated to 910 to 930°C in a walking beam furnace, and then it is rolled into various cross-sectional shrinkage ratios in 1 to 3 passes in a slotted hot rolling mill. It was hot rolled.

続いてただちに内外両面軸流焼入れ装置により水冷焼入
れし、その後605℃〜640℃程度に焼もどしして、
各鋼材の降伏強さ)を40に9f/−にそろえた。
Next, it is immediately water-cooled and quenched using an axial flow quenching device on both the inside and outside surfaces, and then tempered to about 605°C to 640°C.
The yield strength of each steel material was set to 40 and 9 f/-.

上述の実施例により得られた各鋼材に対し、サブサイズ
の2mmVノツチシャルピー衝撃試験を行なって、50
%脆性破面率を呈する遷移温度(vTrs)を調べた。
A sub-size 2mm V notch Charpy impact test was conducted on each of the steel materials obtained in the above-mentioned examples.
The transition temperature (vTrs) exhibiting the percent brittle fracture surface ratio was investigated.

各成分の鋼A、Bにおけるその遷移温度vTrsを各断
面収縮比Rに対応して第4図に示す。
The transition temperature vTrs of steels A and B of each component is shown in FIG. 4 in correspondence with each cross-sectional shrinkage ratio R.

実用的にはvT rsが一50℃以下であれば低温靭性
が優れていると判定できるが、第4図から明らかなよう
に断面収縮比Rが0.010から0.020程度まで増
加すればvT rsが急激に低下し、靭性向上効果を有
するNiを含む鋼材Bの場合はもちろんのこと、Niを
実質的に含有しない鋼材Aの場合も断面収縮比0.01
5以上でvTrs≦−50℃を確保することができた。
Practically speaking, it can be determined that low-temperature toughness is excellent if vTrs is below -50°C, but as is clear from Figure 4, if the cross-sectional shrinkage ratio R increases from about 0.010 to 0.020, Not only in the case of steel B containing Ni, which has a sharp decrease in vTrs and has the effect of improving toughness, but also in the case of steel A, which does not substantially contain Ni, the cross-sectional shrinkage ratio is 0.01.
5 or more, it was possible to ensure vTrs≦−50°C.

前述の説明で明らかなようにこの発明の方法によれば安
価な通常成分の鋼を素材として、簡単かつ容易に低温靭
性の優れた鋼管等の鋼材を製造することができ、したが
って低温靭性の優れた鋼管等の鋼材を低コストで提供す
ることができる。
As is clear from the above explanation, according to the method of the present invention, steel materials such as steel pipes with excellent low-temperature toughness can be easily and easily produced using inexpensive steel with ordinary components. It is possible to provide steel materials such as steel pipes at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の背景としての継目無鋼管の製造工程
の一例を示すブロック図、第2図および第3図はそれぞ
れ継目無鋼管の製造工程にこの発明を適用した例を示す
ブロック図、第4図はこの発明の実施例における断面収
縮比Rとシャルピー衝撃試験破面遷移温度(vTrs
)との関係を示すグラフである。
FIG. 1 is a block diagram showing an example of the manufacturing process of seamless steel pipes as the background of this invention, and FIGS. 2 and 3 are block diagrams showing examples of applying the invention to the manufacturing process of seamless steel pipes, respectively. Figure 4 shows the cross-sectional shrinkage ratio R and Charpy impact test fracture surface transition temperature (vTrs
) is a graph showing the relationship between

Claims (1)

【特許請求の範囲】 I C0,15%未満、Si 0.1〜1.0%、M
n0.4〜2.0%、AIo、01〜0.10%、残部
実質的にFeおよび不可避的不純物よりなり、かつ予め
製品の断面形状・寸法に近い断面形状・寸法に加工され
ている鋼材を素材とし、その素材なA c 3 変態
点以上、オーステナイト結晶粒粗大化開始温度以下の温
度に加熱して、下記(1)式で定まる断面収縮比Rが0
.015以上となるように熱間圧延した後、ただちに焼
入れし、その後Ac1 変態点以下の温度で焼もどしす
ることを特徴とする低温靭性の優れた鋼材の製造方法。 2 R=1−一 ・・・・・・(1)1 但しSlは熱間圧延前における主圧延方向に対し直角を
なす断面の面積、S2は熱間圧延後における主圧延方向
に対し直角をなす断面の面積をあられす。 2 前記熱間圧延において断面収縮比R力框旧5以上0
.10以下となるように圧延する特許請求の範囲第1項
記載の製造方法。
[Claims] I C0.15% or less, Si 0.1-1.0%, M
Steel material with n0.4 to 2.0%, AIo, 01 to 0.10%, the balance consisting essentially of Fe and unavoidable impurities, and which has been processed in advance to have a cross-sectional shape and dimensions close to those of the product. is used as a material and heated to a temperature above the material's A c 3 transformation point and below the austenite crystal grain coarsening start temperature, so that the cross-sectional shrinkage ratio R determined by the following equation (1) is 0.
.. 1. A method for producing a steel material having excellent low-temperature toughness, which comprises hot rolling the steel material to a temperature of 0.015 or higher, immediately quenching it, and then tempering it at a temperature below the Ac1 transformation point. 2 R = 1-1 ... (1) 1 However, Sl is the area of the cross section perpendicular to the main rolling direction before hot rolling, and S2 is the area perpendicular to the main rolling direction after hot rolling. Calculate the area of the cross section of the eggplant. 2 The cross-sectional shrinkage ratio R in the hot rolling is 5 or more and 0
.. 10. The manufacturing method according to claim 1, wherein rolling is performed so that the thickness is 10 or less.
JP56108982A 1981-07-11 1981-07-11 Method for manufacturing steel materials with excellent low-temperature toughness Expired JPS5940890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108982A JPS5940890B2 (en) 1981-07-11 1981-07-11 Method for manufacturing steel materials with excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108982A JPS5940890B2 (en) 1981-07-11 1981-07-11 Method for manufacturing steel materials with excellent low-temperature toughness

Publications (2)

Publication Number Publication Date
JPS5811732A JPS5811732A (en) 1983-01-22
JPS5940890B2 true JPS5940890B2 (en) 1984-10-03

Family

ID=14498576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108982A Expired JPS5940890B2 (en) 1981-07-11 1981-07-11 Method for manufacturing steel materials with excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JPS5940890B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103820A (en) * 1973-02-08 1974-10-01
JPS52152814A (en) * 1976-06-14 1977-12-19 Nippon Steel Corp Thermo-mechanical treatment of seamless steel pipe
JPS5347764A (en) * 1976-10-13 1978-04-28 Hitachi Ltd Production of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103820A (en) * 1973-02-08 1974-10-01
JPS52152814A (en) * 1976-06-14 1977-12-19 Nippon Steel Corp Thermo-mechanical treatment of seamless steel pipe
JPS5347764A (en) * 1976-10-13 1978-04-28 Hitachi Ltd Production of semiconductor device

Also Published As

Publication number Publication date
JPS5811732A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
US6290789B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
US8815024B2 (en) Steel plate or steel pipe with small occurrence of Bauschinger effect and methods of production of same
EP2735622B1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5146051B2 (en) Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same
US20140290807A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
JP5151233B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
JP6171851B2 (en) Apparatus row for seamless steel pipe production and method for producing high-strength stainless steel seamless steel pipe for oil wells using the same
JP6341125B2 (en) Method for producing duplex stainless steel pipe
JP2008274355A (en) Method for manufacturing hot-rolled steel plate superior in surface quality, fracture toughness and sour corrosion resistance
JPH0598350A (en) Production of line pipe material having high strength and low yield ratio for low temperature use
JPH10280088A (en) Steel product for building structural use and its production
JP2017214618A (en) Production method of low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP5211843B2 (en) Welded steel pipe with excellent crush resistance and method for producing the same
JPH0545651B2 (en)
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP2004292922A (en) Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability
JP2000096142A (en) Method for reducing steel tube
JPS5940890B2 (en) Method for manufacturing steel materials with excellent low-temperature toughness
JP3937964B2 (en) High strength and high toughness martensitic stainless steel seamless pipe manufacturing method
US20030221753A1 (en) Super fine granular steel pipe and method for producing the same
CN113646455B (en) Steel material for line pipe and method for producing same, and line pipe and method for producing same
JPS6160894B2 (en)