JPS5940708A - Microwave oscillator - Google Patents

Microwave oscillator

Info

Publication number
JPS5940708A
JPS5940708A JP15056182A JP15056182A JPS5940708A JP S5940708 A JPS5940708 A JP S5940708A JP 15056182 A JP15056182 A JP 15056182A JP 15056182 A JP15056182 A JP 15056182A JP S5940708 A JPS5940708 A JP S5940708A
Authority
JP
Japan
Prior art keywords
resistor
frequency
drain
low
parasitic oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15056182A
Other languages
Japanese (ja)
Other versions
JPS643403B2 (en
Inventor
Hiroshi Saka
阪 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15056182A priority Critical patent/JPS5940708A/en
Priority to US06/526,279 priority patent/US4541123A/en
Publication of JPS5940708A publication Critical patent/JPS5940708A/en
Publication of JPS643403B2 publication Critical patent/JPS643403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D9/00Demodulation or transference of modulation of modulated electromagnetic waves
    • H03D9/06Transference of modulation using distributed inductance and capacitance
    • H03D9/0608Transference of modulation using distributed inductance and capacitance by means of diodes
    • H03D9/0633Transference of modulation using distributed inductance and capacitance by means of diodes mounted on a stripline circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • H03B5/1847Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device
    • H03B5/1852Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1864Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator
    • H03B5/187Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator the active element in the amplifier being a semiconductor device
    • H03B5/1876Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PURPOSE:To prevent parasitic oscillation, by connecting a strip line with open end and having 1/4 wavelength of parasitic oscillation frequency in length, to other end of a resistor one end of which is connected to a low-pass filter for bias supply circuit comprising a high impedance line and a low impedance line. CONSTITUTION:The strip line 13 with open termination and having about 1/4 wavelength of a frequency of parasitic oscillation generated conventionally in length is connected to one end of a resistor 11 connected to a bias power supply. A capacitor 12 is a capacitor used for DC blocking and high frequency by-pass. The reflecting coefficient ¦GAMMAd¦ of an impedance viewed from a drain 2 of an FET1 toward a low-pass filter 10 is decreased in the parasitic oscillation frequency. This is because a terminal at bias power supply side of the resistor 11 is short-circuited in terms of high frequency in the parasitic oscillating frequency by the strip line with open termination and the resistor 11 acts like a damping resistor. Thus, the parasitic oscillation is prevented for the reflecting coefficient S'11 at a small signal viewing the FET1 from a gate 4 of the FET1 by eliminating the load resistance at the parasitic frequency or weakening the load resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マイクロ波通信機器やSHF受信機等の局発
源に利用されるマイクロ波発振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a microwave oscillator used as a local oscillator for microwave communication equipment, SHF receivers, and the like.

従来例の構成とその問題点 第1図は、電界効果トランジスタ(FET)を用いた従
来のマイクロ波発振器の構成例を示す。
Conventional Structure and Its Problems FIG. 1 shows an example of the structure of a conventional microwave oscillator using a field effect transistor (FET).

1はFETで、FET1のドレイン端子2には長さが発
振周波数の約3波長で終端開放されたストリップ線路3
が接続されている。FET1のゲート端子4にはストリ
ップ線ff%5が接続され、更にス) IJツブ線路6
は、ダミー抵抗6で終端されている。7は誘電体共振器
で、ストリップ線路6と結合するように配置されている
。ソース端子8にはストリップ線路9が接続され、誘電
体共振器7の共振周波数で発振した発振器の出力はスト
リップ線路9か・ら取り出され負荷へ供給される。1゜
はバイアス供給回路用の低域通過フィルタで、高インピ
ーダンス線路と低インピーダンス線路とで構成されてい
る。11は抵抗で、その一端は低域通過フィルタ1oの
低インピーダンス線路に接続され、他端はコンデンサ1
2と接続されている。
1 is a FET, and the drain terminal 2 of FET 1 is a strip line 3 whose length is approximately three wavelengths of the oscillation frequency and whose ends are open.
is connected. A strip line ff%5 is connected to the gate terminal 4 of FET1, and an IJ tube line 6 is connected to the gate terminal 4 of FET1.
is terminated with a dummy resistor 6. A dielectric resonator 7 is arranged so as to be coupled to the strip line 6. A strip line 9 is connected to the source terminal 8, and the output of the oscillator oscillated at the resonant frequency of the dielectric resonator 7 is taken out from the strip line 9 and supplied to the load. 1° is a low-pass filter for the bias supply circuit, which is composed of a high impedance line and a low impedance line. 11 is a resistor, one end of which is connected to the low impedance line of the low-pass filter 1o, and the other end connected to the capacitor 1.
2 is connected.

そしてバイアス電源は、抵抗11を介してFET1に供
給されている。
A bias power source is supplied to the FET 1 via a resistor 11.

一般にトランジスタの利得は周波数が低くなるに従って
増大するため、発振器の発振周波数よシも低い周波数に
おいて、しばしば寄生発振を生じることがある。第1図
においてFET1のゲート端子4からFETI側を見た
反射係数を811.ゲート端子4からダミー抵抗6側を
見た反射係数をPRとすると811×FR−1・・・・
・・(1)の条件を満足した状態で発振が行なわれてい
る。反射係数FRが誘電体共振器7の共振周波数近傍で
のみl/’n1=1になり、それ以外の周波数では+7
’R1≧0になるようにゲート端子4側の共振回路を設
定すれば第1図の発振器は誘電体共振器7の共振周波数
で安定に発振する。しかし、ダミー抵抗6はその特性が
使用周波数前後の帯域内では反射係数17’Iさ0にな
るように構成されるが、それ以外の低い周波数や高い周
波数では必ずしも1rl=oになるように構成されると
は限らない。例えば、6oΩの抵抗と終端開放のへ波長
線破とで構成されたダミー抵抗がそうである。60Ω抵
抗と終端開放の青波長線路とにより構成されたダミー抵
抗では使用周波数が11 GHzとすればIGHz以下
又は7〜14GHz  の周波数範囲では1Fl=oに
近い特性を示すが、2〜6GHzの範囲ではIrlさ1
に近い特性を示す。一方、FET!には周波数が低くな
るに従って利得が増大する特性を有するため、ゲート端
子4からFET1側を見た小信号での反射係数Is’1
11  は、低い周波数に到るまで負性抵抗性を示し、
Is’111>1となる。従って、ダミー抵抗6の特性
が17”’l=1に近い周波数でもS11×rR=1の
条件を満足するよ°うになり、これが寄生発振を生じる
原因となる。そしてその寄生発振は3〜5αhの範囲で
起こり易い。
Since the gain of a transistor generally increases as the frequency decreases, parasitic oscillations often occur at frequencies lower than the oscillation frequency of the oscillator. In FIG. 1, the reflection coefficient when looking from the gate terminal 4 of FET 1 to the FETI side is 811. If the reflection coefficient when looking from the gate terminal 4 to the dummy resistor 6 side is PR, then 811×FR-1...
...Oscillation is performed while satisfying the condition (1). The reflection coefficient FR becomes l/'n1 = 1 only near the resonance frequency of the dielectric resonator 7, and +7 at other frequencies.
If the resonant circuit on the gate terminal 4 side is set so that R1≧0, the oscillator shown in FIG. 1 stably oscillates at the resonant frequency of the dielectric resonator 7. However, the dummy resistor 6 is configured so that its characteristics are 1rl=0 in the band around the frequency used, but it is not necessarily configured so that 1rl=o at other low or high frequencies. There is no guarantee that it will be done. For example, a dummy resistor is made up of a 60Ω resistor and a broken wavelength line with an open end. If the operating frequency is 11 GHz, a dummy resistor composed of a 60Ω resistor and an open-ended blue wavelength line exhibits characteristics close to 1Fl=o below IGHz or in the frequency range of 7 to 14 GHz, but in the range of 2 to 6 GHz. Then Irl Sa1
It shows characteristics close to . On the other hand, FET! has a characteristic that the gain increases as the frequency decreases, so the reflection coefficient Is'1 for a small signal looking from the gate terminal 4 to the FET 1 side is
11 shows negative resistance down to low frequencies,
Is'111>1. Therefore, the characteristics of the dummy resistor 6 come to satisfy the condition of S11×rR=1 even at a frequency close to 17''l=1, which causes parasitic oscillation.The parasitic oscillation is 3~5αh It is likely to occur within the range of

発明の目的 本発明は、上記のような従来の寄生発振の問題を解決し
て、FETもしくはバイポーラトランジスタのゲート端
子よりFETもしくはバイポーラトランジスタ側を見た
小信号反射係数15’1.I を寄生発振周波数におい
て小さくシ、負性抵抗性をなくすか、あるいは負性抵抗
性を弱めることにより寄生発振を防止したマイクロ波発
振器を提供することを目的とするものである。
OBJECTS OF THE INVENTION The present invention solves the conventional parasitic oscillation problems as described above, and provides a small signal reflection coefficient of 15'1. It is an object of the present invention to provide a microwave oscillator in which parasitic oscillation is prevented by reducing I at the parasitic oscillation frequency and eliminating or weakening negative resistance.

発明の構成 本発明においては、高インピーダンス線路と低インピー
ダンス線路とで構成されたバイアス供給回路用の低域通
過フィルタに一端が接続された抵抗の他端に、長さが寄
生発振周波数のに波長で終端開放のストリップ線路を接
続することにより、FETもしくはバイポーラトランジ
スタのドレインもしくはコレクタ端子からバイアス供給
回路用の低域通過フィルタ側を見たインピーダンスが、
寄生発振周波数前後で整合条件を満足するようにする。
Structure of the Invention In the present invention, one end of a resistor is connected to a low-pass filter for a bias supply circuit composed of a high impedance line and a low impedance line, and the other end is connected to a resistor whose length is equal to the wavelength of the parasitic oscillation frequency. By connecting an open-ended strip line at , the impedance when looking from the drain or collector terminal of the FET or bipolar transistor to the low-pass filter side for the bias supply circuit is
Matching conditions should be satisfied around the parasitic oscillation frequency.

そして、FETもしくはバイポーラトランジスタのゲー
トもt、<はベース端子よpFETもしくはバイポーラ
トランジスタ側を見たインピーダンスの負性抵抗性をな
くすが、負性抵抗性を弱め、寄生発振を防止するもので
ある。
The gate of the FET or bipolar transistor also eliminates the negative resistance of the impedance when looking from the base terminal to the pFET or bipolar transistor side, but it weakens the negative resistance and prevents parasitic oscillation.

実施例の説明 以下に本発明の実施例を順次説明していく。第2図は本
発明の一実施例であるが、第1図と同一箇所には同一番
号を付して説明する。
DESCRIPTION OF EMBODIMENTS Below, embodiments of the present invention will be sequentially explained. FIG. 2 shows one embodiment of the present invention, and the same parts as in FIG. 1 are given the same numbers and will be explained.

FET1のドレイン端子2、ゲート端子4、ソース端子
8にはそれぞれ、長さが発振周波数の約%波長で終端開
放されたス) IJツブ線路3、ダミー抵抗6で終端さ
れたストリップ線路5、負荷へ発振出力を供給するスト
リップ線路9が接続されている◇7は誘電体共振器で、
ストリップ線路5と結合するように配置されている。ス
トリップ線路3には、高インピーダンス線路および低イ
ンピーダンス線路とで構成されたバイアス供給回路用の
低域通過フィルタ1oが接続され、抵抗11を介してバ
イアス電源がFET1に供給されている。
The drain terminal 2, gate terminal 4, and source terminal 8 of FET 1 are connected to an IJ tube line 3, a strip line 5 terminated with a dummy resistor 6, and a load. A strip line 9 is connected to supply oscillation output to ◇7 is a dielectric resonator,
It is arranged so as to be coupled to the strip line 5. A low-pass filter 1o for a bias supply circuit composed of a high impedance line and a low impedance line is connected to the strip line 3, and bias power is supplied to the FET 1 via a resistor 11.

そして、抵抗11のバイアス電源側に接続される一端に
は長さが従来例で発生する寄生発振の周波数の約に波長
で、終端開放されたストリップ線路13が接続されてい
る。コンデンサ12は直流阻止とともに高周波バイパス
の役割も兼ねたコンデンサである。
An open-ended strip line 13 is connected to one end of the resistor 11 connected to the bias power supply side and has a length approximately equal to the wavelength of the frequency of parasitic oscillation occurring in the conventional example. The capacitor 12 is a capacitor that serves not only as a direct current blocker but also as a high frequency bypass.

第2図の実施例において、FET1のドレイン端子2か
ら低域通過フィルタ1o側を見たインピーダンスの反射
係数IF、llは寄生発振周波数では小さくなる。これ
は、終端開放のストリップ線路13により抵抗11のバ
イアス電源側の端子が(抵抗11に接続されたコンデン
サ12の端子から接地点側を見たインピーダンスの状態
に関係々<)、寄生発振周波数では高周波的に短絡され
るだめ抵抗11がダンピング抵抗として動作するためで
ある。従って、FET1のゲート端子4からFET1側
を見た小信号での反射係数S′11も寄生発振周波数で
負性抵抗性をなくすか、負性抵抗性を弱め、寄生発振が
防止されるものである。
In the embodiment shown in FIG. 2, the reflection coefficient IF,ll of the impedance viewed from the drain terminal 2 of the FET 1 toward the low-pass filter 1o becomes small at the parasitic oscillation frequency. This is because the bias power supply side terminal of the resistor 11 due to the open-terminated strip line 13 (regardless of the impedance state when looking from the terminal of the capacitor 12 connected to the resistor 11 to the ground point side), at the parasitic oscillation frequency. This is because the damper resistor 11, which is short-circuited at high frequencies, operates as a damping resistor. Therefore, the reflection coefficient S'11 for a small signal looking from the gate terminal 4 of FET 1 to the FET 1 side is such that the negative resistance is eliminated or weakened at the parasitic oscillation frequency, and parasitic oscillation is prevented. be.

第3図はFET1のドレイン端子2から低域通過フィル
タ10側を見た反射係数l/’、11を従来例と第2図
とで比較したものである。抵抗11の抵抗値Rとストリ
ップ線路13の線路長を適当に選ぶことにより寄生発振
を防止できることが理解される。例えば発振周波数が1
1 GHz  の発振器を従来例のように構成した時、
約4GHz  で寄生発振が起こったが、第2図のよう
に構成しなおし、数Ωから約6oΩの範囲に抵抗11の
抵抗値Rを選ぶと約4GH2の寄生発振が停止すること
が確かめられている。
FIG. 3 compares the reflection coefficient l/', 11 when looking from the drain terminal 2 of the FET 1 to the low-pass filter 10 side between the conventional example and FIG. It is understood that parasitic oscillation can be prevented by appropriately selecting the resistance value R of the resistor 11 and the line length of the strip line 13. For example, the oscillation frequency is 1
When a 1 GHz oscillator is configured as in the conventional example,
Parasitic oscillation occurred at about 4 GHz, but it was confirmed that if the configuration was reconfigured as shown in Figure 2 and the resistance value R of resistor 11 was selected in the range of several ohms to about 6 ohms, the parasitic oscillation at about 4 GHz stopped. There is.

第2図の実施例では、単にストリップ線路13を付加す
るだけでよいから構成が簡単で、しかも発振器全体の構
成を簡単な修正を行なうだけで済む利点を有する。また
、寄生発振周波数の変化に対してはストリップ線路13
の線路長も安易に変化できるため幅広い周波数の寄生発
振に安易に対処しうる利点も有するものである。更に、
抵抗11の使用範囲が数Ωから約60Ωまでと広いので
、バイアス電源の電圧の大きさに対応して抵抗11の抵
抗値を選択できる利点も有するものである。
The embodiment shown in FIG. 2 has the advantage that the structure is simple because it is only necessary to add the strip line 13, and furthermore, the structure of the entire oscillator requires only a simple modification. In addition, the strip line 13
Since the line length can be easily changed, it also has the advantage of being able to easily deal with parasitic oscillations of a wide range of frequencies. Furthermore,
Since the range in which the resistor 11 can be used is wide, from several Ω to about 60 Ω, there is also an advantage that the resistance value of the resistor 11 can be selected in accordance with the magnitude of the voltage of the bias power supply.

第4図は本発明の別の実施例で第2図と同一箇所には同
一番号を付して説明する。第2図におけるコンデンサ1
2の替わりに第4図では貫通型コンデンサ14が使用さ
れている以外は第2図と全く構成は同じである。寄生発
振に対するストリップ線路13と抵抗110作用は第2
図の時と全く同じであるため、第2図の実施例が有する
利点と同じ利点を第4図の実施例も有するものである。
FIG. 4 shows another embodiment of the present invention, and the same parts as in FIG. 2 are given the same numbers and will be described. Capacitor 1 in Figure 2
The structure is exactly the same as that in FIG. 2 except that a feedthrough capacitor 14 is used in place of capacitor 2 in FIG. The effect of the strip line 13 and the resistor 110 on parasitic oscillation is the second
The embodiment of FIG. 4 has the same advantages as the embodiment of FIG. 2, since it is exactly the same as that of FIG.

特に第4図の実施例では直流阻止および高周波バイパス
用のコンデンサとして貫通型コンデンサ14を使用して
いるのでバイアス電源から貫通型コンデンサに導かれる
リード線の移動による発振周波数の変動が除去される効
果を有する。
In particular, in the embodiment shown in FIG. 4, since the feedthrough capacitor 14 is used as a capacitor for direct current blocking and high frequency bypass, fluctuations in the oscillation frequency due to movement of the lead wire leading from the bias power supply to the feedthrough capacitor are eliminated. has.

以上説明した実施例では、発振素子としてFETを用い
て説明したが、発振素子としては、バイポーラトランジ
スタでもよいことは言うまでもない。
In the embodiments described above, an FET is used as the oscillation element, but it goes without saying that a bipolar transistor may also be used as the oscillation element.

その場合、説明中のドレインはコレクタに、ゲートはベ
ースに相当する。
In that case, the drain in the description corresponds to the collector, and the gate corresponds to the base.

発明の効果 以上のように、本発明によれば、寄生発振の防止策とし
て、単に寄生発振周波数の%波長の終端開放ストリップ
線路を付加するだけの簡単な構成により、幅広い周波数
の寄生発振に安易に対処しうる効果を有するものである
。しかも、寄生発振を防止するダンピング抵抗として作
用する発振器のドレインもしくはコレクタバイアス抵抗
の使用範囲が数Ωから約6oΩまでと幅広いので、ノく
イアスミ原電圧の大きさに対応してドレインもしくはコ
レクタバイアス抵抗の大きさを選べる効果も有するもの
である。
Effects of the Invention As described above, according to the present invention, as a measure to prevent parasitic oscillation, parasitic oscillation of a wide range of frequencies can be easily prevented by simply adding an open-ended strip line with a wavelength of % of the parasitic oscillation frequency. It has the effect of being able to deal with. Moreover, the range of use of the oscillator's drain or collector bias resistor, which acts as a damping resistor to prevent parasitic oscillation, is wide, from several Ω to approximately 6 Ω. This also has the effect of allowing you to choose the size of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一例のマイクロ波発振器の構成図、第2
図は本発明の一実施例におけるマイクロ波発振器の構成
図、第3図はそのFETのドレイン端子からドレインバ
イアス回路側を見たインビ−ダンスの反射係数IFJ1
の周波数特性図、第4図は本発明の別の一実施例におけ
るマイクロ波発振器の構成図である。 1・・・・・・FET、2・・・・・・ドレイン端子、
4・・・・・・ゲート端子、6・・・・・・ダミー抵抗
、7・・・・・・誘電体共振器、10・・・・・・低域
通過フィルタ、11・・・・・・抵抗、12・・・・・
・コンデンサ、13・・・・・・寄生発振周波数の%波
長の長さを有する終端開放ストリップ線路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 負荷へ 第2図 負荷へ 第3図 周波数(開2)
Figure 1 is a configuration diagram of a conventional microwave oscillator;
The figure is a configuration diagram of a microwave oscillator according to an embodiment of the present invention, and Figure 3 is an impedance reflection coefficient IFJ1 when looking from the drain terminal of the FET to the drain bias circuit side.
FIG. 4 is a configuration diagram of a microwave oscillator in another embodiment of the present invention. 1...FET, 2...Drain terminal,
4... Gate terminal, 6... Dummy resistor, 7... Dielectric resonator, 10... Low pass filter, 11...・Resistance, 12...
- Capacitor, 13... Open-terminated strip line having a length of % wavelength of the parasitic oscillation frequency. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
To the load Figure 2 To the load Figure 3 Frequency (open 2)

Claims (2)

【特許請求の範囲】[Claims] (1)電界効果トランジスタもしくはバイポーラトラン
ジスタのドレインもしくはコレクタ端子に長さが発振周
波数の約3波長で終端開放の第1の伝送線路を接続し、
前記電界効果トランジスタもしくはバイポーラトランジ
スタのゲートもしくはベース端子に誘電体共振器を用い
た共振回路を付加してドレインもしくはコレクタ接地型
のマイクロ波発振回路を構成するとともに、第1の伝送
線路に低域通過フィルタの一端を接続し、この低域通過
フィルタの他端にドレインもしくはコレクタ抵抗の一端
を接続し、このドレインもしくはコレクタ抵抗の他端に
長さが前記マイクロ波発振回路の不要発振周波数の約3
波長で終端開放の第2の伝送線路を接続し、前記ドレイ
ンもしくはコレクタ抵抗の他端より前記電界効果トラン
ジスタもしくはバイポーラトランジスタのバイアス電圧
を印加するようにしたことを特徴とするマイクロ波発振
器。
(1) A first open-ended transmission line with a length of about three wavelengths of the oscillation frequency is connected to the drain or collector terminal of the field effect transistor or bipolar transistor,
A resonant circuit using a dielectric resonator is added to the gate or base terminal of the field effect transistor or bipolar transistor to configure a drain or collector-grounded microwave oscillation circuit, and a low-pass oscillator is connected to the first transmission line. One end of the filter is connected to the other end of the low-pass filter, and one end of the drain or collector resistor is connected to the other end of the drain or collector resistor, the length of which is approximately 3 times the unnecessary oscillation frequency of the microwave oscillation circuit.
A microwave oscillator, characterized in that a second open-ended transmission line is connected to the wavelength, and a bias voltage of the field effect transistor or bipolar transistor is applied from the other end of the drain or collector resistor.
(2)電界効果トランジスタもしくはバイポーラトラン
ジスタのドレインもしくはコレクタ端子より低域通過フ
ィルタ側を見たインピーダンスの反射係数がマイクロ波
発振回路の不要発振周波数において小さくなるようにド
レインもしくはコレクタ抵抗の抵抗値を設定したことを
特徴とする特許請求の範囲第1項記載のマイクロ波発振
器。
(2) Set the resistance value of the drain or collector resistor so that the reflection coefficient of the impedance when looking at the low-pass filter side from the drain or collector terminal of the field effect transistor or bipolar transistor is small at the unnecessary oscillation frequency of the microwave oscillation circuit. A microwave oscillator according to claim 1, characterized in that:
JP15056182A 1982-08-30 1982-08-30 Microwave oscillator Granted JPS5940708A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15056182A JPS5940708A (en) 1982-08-30 1982-08-30 Microwave oscillator
US06/526,279 US4541123A (en) 1982-08-30 1983-08-25 Mixer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15056182A JPS5940708A (en) 1982-08-30 1982-08-30 Microwave oscillator

Publications (2)

Publication Number Publication Date
JPS5940708A true JPS5940708A (en) 1984-03-06
JPS643403B2 JPS643403B2 (en) 1989-01-20

Family

ID=15499564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15056182A Granted JPS5940708A (en) 1982-08-30 1982-08-30 Microwave oscillator

Country Status (1)

Country Link
JP (1) JPS5940708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145337A (en) * 1991-11-22 1993-06-11 Matsushita Electric Ind Co Ltd Microwave oscillator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499554U (en) * 1977-12-23 1979-07-13
JPS5647107A (en) * 1979-09-25 1981-04-28 Matsushita Electric Ind Co Ltd Ultrahigh-frequency oscillating circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499554U (en) * 1977-12-23 1979-07-13
JPS5647107A (en) * 1979-09-25 1981-04-28 Matsushita Electric Ind Co Ltd Ultrahigh-frequency oscillating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145337A (en) * 1991-11-22 1993-06-11 Matsushita Electric Ind Co Ltd Microwave oscillator

Also Published As

Publication number Publication date
JPS643403B2 (en) 1989-01-20

Similar Documents

Publication Publication Date Title
US4783638A (en) Frequency doubling oscillator working at ultra-high frequencies
KR100462086B1 (en) oscillator
US7498893B2 (en) Circuit for generating a high-frequency oscillation in a specified frequency band
JPS58168306A (en) Microwave oscillator
CA2058369C (en) Current sink
US5079524A (en) Microwave oscillation circuit
JPS5940708A (en) Microwave oscillator
US4075580A (en) Microwave transistor oscillator for wide band frequency tuning
US4541123A (en) Mixer circuit
US6215370B1 (en) Crystal oscillator circuit with crystal reducing resistance and integrated circuit therefor
EP0127238A1 (en) Oscillator circuit
EP0580320B1 (en) High performance oscillator with low frequency pulling at turn on
US6346862B2 (en) Quartz oscillation circuit and quartz oscillation integrated circuit device
JPH09205329A (en) Low noise amplifier
JPH10163786A (en) Attenuator
JPS6024604B2 (en) FET oscillator
JP3004817B2 (en) Crystal oscillation circuit
US3883823A (en) Broad band high frequency converter with independent control of harmonic fields
JP2000101393A (en) Active inductor
EP1265357A1 (en) Driver circuit
JPS62109410A (en) Bias circuit for microwave amplifier
JP4483119B2 (en) High frequency oscillator
JPS60261205A (en) Oscillating circuit
JP3590123B2 (en) Voltage controlled oscillator
JPS6256004A (en) Microwave oscillator