JPS5940265B2 - Thermal billet eddy current flaw detection equipment - Google Patents

Thermal billet eddy current flaw detection equipment

Info

Publication number
JPS5940265B2
JPS5940265B2 JP53014139A JP1413978A JPS5940265B2 JP S5940265 B2 JPS5940265 B2 JP S5940265B2 JP 53014139 A JP53014139 A JP 53014139A JP 1413978 A JP1413978 A JP 1413978A JP S5940265 B2 JPS5940265 B2 JP S5940265B2
Authority
JP
Japan
Prior art keywords
billet
thermal
flaw detection
cylindrical body
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53014139A
Other languages
Japanese (ja)
Other versions
JPS54107793A (en
Inventor
勝彦 島田
勇 小峰
久幸 青井
正義 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP53014139A priority Critical patent/JPS5940265B2/en
Priority to GB7904617A priority patent/GB2014317B/en
Priority to DE19792905399 priority patent/DE2905399A1/en
Priority to IT20161/79A priority patent/IT1111101B/en
Publication of JPS54107793A publication Critical patent/JPS54107793A/en
Publication of JPS5940265B2 publication Critical patent/JPS5940265B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9093Arrangements for supporting the sensor; Combinations of eddy-current sensors and auxiliary arrangements for marking or for rejecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 この発明は、熱ビレツトの如き円柱もしくは円筒状の金
属体をオンラインで全面探傷するための熱ビレツト渦流
探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal billet eddy current flaw detection device for on-line full-surface flaw detection of a cylindrical or cylindrical metal body such as a thermal billet.

従来、丸ビレツト圧延のコントロールデータとして、ビ
レツトの割れ、剥離、形状不良を目視で観察していた。
Conventionally, as control data for round billet rolling, billet cracking, peeling, and poor shape were visually observed.

し力化、圧延速度が速いため事実上ビレツト表面に生じ
た疵を検出することは不可能であつた。また、熱間探傷
が不可能であつたため、手入不要な良材も見誤りにより
精整工程を通すこととなり、疵取作業工程を混乱させる
一因となり、生産効率の低下を来す一因ともなつていた
。その他、目視に代るべき設備として、第1図に示す如
き、水冷コイル1を使用し、渦流検出回路2で被検材3
の表面疵を検出する貫通型渦流探傷機が存在したが、次
の様な問題がある。即ち、渦流検出回路2にブリッジ平
衡回路を用いることから小欠陥に対する検出能力が十分
でなく、良・不良材の振り分けに使用できず。また、被
検材3の径が変更される毎にコイル1の交換が必要で作
業性が極めて悪い。また、第2図に示す如く、プローブ
コイル4を鍜接管5の鍜接部に近接配置して渦流検出回
路6で鍜接部を探傷するプローブ型渦流探傷機も一部で
使用されているが、ブリッジ平衡回路も使用した従来の
探傷回路では、プローブコイル4と被検材とのギヤツプ
が十分にとれないため、水冷機構が極めて大きなものと
なり、疵深さの分類、全面探傷という点で問題が多く、
特にビレツト特有な軸方向の線状疵及び割れ疵の検出は
不可能に近かつた。
Because of the high rolling force and high rolling speed, it was virtually impossible to detect any flaws on the billet surface. In addition, since hot flaw detection was not possible, good materials that did not require maintenance were mistakenly passed through the refining process, which caused confusion in the flaw removal work process and caused a decline in production efficiency. I was getting used to it. In addition, as an alternative to visual inspection, a water cooling coil 1 as shown in Fig. 1 is used, and an eddy current detection circuit 2 is used to
Penetrating eddy current flaw detectors exist that detect surface flaws, but they have the following problems. That is, since a bridge balance circuit is used in the eddy current detection circuit 2, the detection ability for small defects is insufficient, and it cannot be used for sorting out good and defective materials. Furthermore, the coil 1 must be replaced every time the diameter of the material 3 to be inspected is changed, resulting in extremely poor workability. Further, as shown in FIG. 2, a probe type eddy current flaw detector is used in some cases, in which a probe coil 4 is placed close to the welded part of the welded pipe 5 and the welded part is detected by an eddy current detection circuit 6. In the conventional flaw detection circuit that also uses a bridge balanced circuit, the gap between the probe coil 4 and the material to be inspected cannot be maintained sufficiently, so the water cooling mechanism becomes extremely large, which causes problems in terms of flaw depth classification and full-surface flaw detection. There are many
In particular, it was nearly impossible to detect linear flaws and cracks in the axial direction that are unique to billets.

この発明の目的は、熱問丸ビレツトの一定の範囲内にあ
る各種サイズのものを、高感度且つ高精度をもつて全面
探傷し、取り出された疵情報に基づきオンラインでミル
コントロール、良・不良材の振り分け、疵の大きさに応
じたマーキングを行なうことにより、探傷速度及び精度
の向上、歩留り向上を通じて作業コストの低減を大巾に
図ることのできる熱ビレツト渦流探傷装置を提供するも
のである。
The purpose of this invention is to perform full-surface flaw detection of various sizes of round billets within a certain range with high sensitivity and precision, and perform online mill control based on the retrieved flaw information. The present invention provides a thermal billet eddy current flaw detection device that can significantly reduce work costs by improving flaw detection speed and accuracy and improving yield by sorting materials and marking according to the size of flaws. .

以下に図面に基づいて、この発明の望ましい実施例を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

第3図は、この発明の渦流探傷装置の基本構成を示すも
ので、検出コイルで成る探傷センサー7を円筒状の回転
体8の周壁に取り付けて定速回転することで、貫通移送
される熱ビレツト11の外周面を全面探傷する。
FIG. 3 shows the basic configuration of the eddy current flaw detection device of the present invention, in which a flaw detection sensor 7 consisting of a detection coil is attached to the peripheral wall of a cylindrical rotating body 8 and rotated at a constant speed, thereby allowing heat to be transferred through the body. The entire outer peripheral surface of the billet 11 is inspected for flaws.

探傷センサー7で検知された信号は、スリツプリングも
しくは静電トランスを用いた信号伝達装置9を介して検
出回路10に与えられ、疵信号が取り出される。この検
出回路10は、同一出願人により特願昭49−1704
8号及び米国特許第4,030,027号として提案さ
れた帰還増幅回路を使用したものであり、従来のブリツ
ジ平衡回路を使用したものが、約2〜3mmのギヤツプ
を必要としたのに対し、この発明で用いる帰還増幅回路
を使用したものは、同じ感度について7〜10m7!l
のギヤツプを取ることができ、熱ビレツト11による温
度の影響を大巾に低減すると共に、回転体8に取り付け
るときの設計許容度を大巾に緩和できたものである。ま
た、第3図では省略されているが、この発明の渦流探傷
器は、疵信号を探傷センサー7に対向する熱ビレツト1
1の位置に対応して表すための位置情報を取り出す手段
、及び移送される熱ビレツト1の曲りによる回転体8の
軸心即ち探傷センサー7の回転中心に対する偏心を自動
修正する自動センタリング手段をも合せ持つものである
The signal detected by the flaw detection sensor 7 is given to a detection circuit 10 via a signal transmission device 9 using a slip ring or an electrostatic transformer, and a flaw signal is extracted. This detection circuit 10 was filed in Japanese Patent Application No. 49-1704 by the same applicant.
No. 8 and U.S. Patent No. 4,030,027, this uses the feedback amplifier circuit proposed in U.S. Patent No. 8 and U.S. Patent No. 4,030,027. , the one using the feedback amplifier circuit used in this invention has the same sensitivity of 7 to 10 m7! l
This makes it possible to eliminate the gap in temperature, thereby greatly reducing the influence of temperature caused by the thermal billet 11, and also greatly relaxing the design tolerance when attaching to the rotating body 8. Although omitted in FIG. 3, the eddy current flaw detector of the present invention transmits flaw signals to the thermal billet 1 facing the flaw detection sensor 7.
1, and automatic centering means for automatically correcting the eccentricity with respect to the axis of the rotating body 8, that is, the rotation center of the flaw detection sensor 7, due to the bending of the thermal billet 1 being transferred. It is something that you have together.

第4図は、この発明の熱ビレツト渦流探傷装置の機械的
構成の具体的な一実施例を示したものである。第4図に
おいて、12は円筒体で、内面に断熱材28をコーテン
グし、プーリ−13に対するモータ等の駆動源よりのベ
ルト掛けで定速回転され、内部を熱ビレツト11が貫通
移送される。
FIG. 4 shows a specific embodiment of the mechanical structure of the thermal billet eddy current flaw detection apparatus of the present invention. In FIG. 4, numeral 12 is a cylindrical body whose inner surface is coated with a heat insulating material 28, which is rotated at a constant speed by a belt hooked to a pulley 13 from a drive source such as a motor, and the thermal billet 11 is passed through the inside of the cylindrical body.

14は複数のプローブコイルを複数個横配列した探傷セ
ンサーで、センサー位置調整機構27をもつて円筒体1
2の円周上に取り付けられ、給水機構26による冷却水
が循環されている。
Reference numeral 14 denotes a flaw detection sensor in which a plurality of probe coils are arranged horizontally.
2, and cooling water is circulated by a water supply mechanism 26.

また探傷センサー14の両端には保護ロール15が取り
付けられ、探傷センサー14が直接熱ビレツト11の周
面に接触することを防いでいる。この探傷センサー14
の円筒体12に対する配置は第5図に示す如く、一例と
してπ/2の角度をもつて4ケ所に取り付けられている
。ここで、使用する探傷センサー14の数をN個とする
と、探傷機に対する熱ビレツト11の送り速度(7)は
、−Nln×10−3〔m/Min〕 (1)但し
、l一探傷センサーを構成するプローブコイル1個当り
の軸方向有効長さ(Mm)n一円筒体12の回転速度(
Rpm) として定められる。
Furthermore, protective rolls 15 are attached to both ends of the flaw detection sensor 14 to prevent the flaw detection sensor 14 from coming into direct contact with the circumferential surface of the thermal billet 11. This flaw detection sensor 14
As shown in FIG. 5, these are attached to the cylindrical body 12 at four locations at an angle of π/2, for example. Here, if the number of flaw detection sensors 14 used is N, the feeding speed (7) of the thermal billet 11 to the flaw detector is -Nln×10-3 [m/Min] (1) However, l - flaw detection sensor Axial effective length (Mm) per probe coil constituting n-rotational speed of cylindrical body 12 (
Rpm).

また第5図で明らかな如く、探傷センサー14と別個に
熱ビレツ口1とのギヤツプを検知する第1の距離センサ
ー16が配置され、同様にして水冷却されている。
Further, as is clear from FIG. 5, a first distance sensor 16 for detecting a gap between the flaw detection sensor 14 and the thermal bilge opening 1 is arranged separately, and is similarly water-cooled.

再び第4図を参照するに、17は円筒体12を回転自在
に支承支持する台車で、車輪19によりレール20上を
熱ビレツト送り方向と直角な方向に移動でき、円筒体1
2を昇降装置18のベアリング25をもつて回転自在に
取付けている。
Referring again to FIG. 4, reference numeral 17 denotes a cart for rotatably supporting the cylindrical body 12, which can be moved on rails 20 by wheels 19 in a direction perpendicular to the feeding direction of the thermal billet.
2 is rotatably attached to the lifting device 18 using a bearing 25.

この台車10及びその昇降装置18により、円筒体12
は熱ビレツト11に対し、上下及び左右方向に移動自在
とされている。探傷センサー14及び第1の距離センサ
ー16の信号を外部に取り出すための信号伝達装置とし
て、この実施例では、回転する円筒体12に取り付けら
れた可動コイル21と昇降装置18の支持体27に取り
付けられ可動コイル21に対し所定ギヤツプを介して配
置された固定コイル22で構成される静電トランスによ
るカツプリング手段を用いる。
This trolley 10 and its elevating device 18 allow the cylindrical body 12
is movable vertically and horizontally with respect to the thermal billet 11. In this embodiment, a movable coil 21 attached to the rotating cylindrical body 12 and a support body 27 of the lifting device 18 are used as signal transmission devices for extracting the signals of the flaw detection sensor 14 and the first distance sensor 16 to the outside. Coupling means using an electrostatic transformer is used, which is comprised of a fixed coil 22 disposed with a predetermined gap to a moving coil 21.

勿論、静電トランスに代えてスリツプリングを用いるこ
ともできる。23は円転角度センサーで、昇降装置18
の支持体27に固定され、回転される円筒体12に取り
付けられた回転円板24の周側に一定間隔に形成された
複数の突起に対向することによりパルス状の誘起電圧を
取り出す。
Of course, a slip ring can also be used in place of the electrostatic transformer. 23 is a rotation angle sensor, and a lifting device 18
A pulse-like induced voltage is extracted by facing a plurality of protrusions formed at regular intervals on the circumferential side of a rotating disk 24 that is fixed to a support 27 and attached to a rotating cylindrical body 12.

即ち、回転円板24は第6図に示される如く、例えば1
0転間隔で複数の突起28及び基準信号用の突起29が
形成され、この突起28,29が回転角度センサー16
に対向することで、パルス状の角度位置を表す電圧が誘
起される。尚、第4図では示されていないが、前記第(
1)式で与えられる速度(7)で送られる熱ビレツト1
1の探傷送り長さを検知するための第2の距離センサー
が設けられ、具体的には熱ビレツト11の移送構機にパ
ルスジェネレータ等を設けておけば良い。
That is, as shown in FIG.
A plurality of protrusions 28 and reference signal protrusions 29 are formed at zero rotation intervals, and these protrusions 28 and 29 serve as the rotation angle sensor 16.
, a voltage representing a pulsed angular position is induced. Although not shown in FIG. 4, the above-mentioned (
1) Thermal billet 1 sent at the speed (7) given by Eq.
A second distance sensor is provided to detect the flaw detection feed length of the thermal billet 11, and specifically, a pulse generator or the like may be provided in the transfer mechanism of the thermal billet 11.

更に、給水機構26は探傷センサー14のみならず、円
筒体12に対しても、その遠心力により冷却用水を供給
している。第7図は、第4図の機械的構成と組合される
この発明の渦流探傷装置における電気系統の一実施ン例
を示す回路プロツク図であるっ第7図において、14は
探傷センサー、16は回転角度センサー、23は熱ビレ
ツトに対する回転ギヤツプの大きさを取り出す第1の距
離センサー、30は熱ビレツトの探傷送り長さを取り出
す第2の距離センサーである。
Further, the water supply mechanism 26 supplies cooling water not only to the flaw detection sensor 14 but also to the cylindrical body 12 by its centrifugal force. FIG. 7 is a circuit block diagram showing an embodiment of the electrical system in the eddy current flaw detection apparatus of the present invention combined with the mechanical configuration of FIG. 4. In FIG. 7, 14 is a flaw detection sensor, 16 is a A rotation angle sensor 23 is a first distance sensor that measures the size of the rotation gap with respect to the thermal billet, and 30 is a second distance sensor that measures the flaw detection feed length of the thermal billet.

また、31はAGC回路、32はピーク検出器、33は
増幅器、34は疵出力を位置情報と共に取り出す演算装
置、35はマーキング装置、36は記録装置、37は自
動調心制御器で、探傷センサ、一14の回転中心に対す
る熱ビレツトの偏心を取り出し、第4図の昇降装置18
を作動せしめる上下,駆動装置38及び台車10を作動
せしめる左右駆動装置39に修正信号を送出する。
Further, 31 is an AGC circuit, 32 is a peak detector, 33 is an amplifier, 34 is an arithmetic device that takes out the flaw output together with position information, 35 is a marking device, 36 is a recording device, 37 is an automatic centering controller, and a flaw detection sensor , -14, and the eccentricity of the thermal billet with respect to the center of rotation is taken out, and the lifting device 18 of FIG.
A correction signal is sent to the vertical drive device 38 that operates the carriage 10, and the left and right drive device 39 that operates the trolley 10.

そこで、各回路部の作用と共にその動作を説明5すると
、複数の探傷センサー14で取り出された熱ビレツトの
疵信号は、各疵信号毎にピーク検出器32で疵信号の尖
頭値が取り出され、演算装置34に与えられる。
Therefore, to explain the function and operation of each circuit part, the flaw signals of the thermal billet taken out by the plurality of flaw detection sensors 14 are detected by the peak detector 32 for each flaw signal, and the peak value of the flaw signal is taken out for each flaw signal. , to the arithmetic unit 34.

一方、第1の距離センサー23により熱ビレツト表面に
対するギヤツプの大ηきさが検出されており、このギヤ
ツプ変動により探傷センサー14よりの疵信号が変動し
ないように、AGC回路31が距離センサー23よりの
信号に基づいてピーク検出器32で取り出すべき尖頭値
の自動利得制御を行なつている。そのため、熱ビレツト
と探傷センサー14との間のギヤツプの変動で変る疵信
号のレベル変動は略完全に除去されている。ピーク検出
器32で取り出された疵信号は増幅器33で所定のレベ
ルに増幅され、演算装置34に与えられる。
On the other hand, the first distance sensor 23 detects a large gap with respect to the surface of the thermal billet, and the AGC circuit 31 detects the gap from the distance sensor 23 so that the flaw signal from the flaw detection sensor 14 does not fluctuate due to this gap variation. Automatic gain control of the peak value to be extracted by the peak detector 32 is performed based on the signal. Therefore, level fluctuations in the flaw signal caused by fluctuations in the gap between the thermal billet and the flaw detection sensor 14 are almost completely eliminated. The flaw signal extracted by the peak detector 32 is amplified to a predetermined level by an amplifier 33 and is provided to an arithmetic unit 34.

演算装置34に入力された疵出力は単に時間軸上に並ん
だもので、熱ビレツトとの位置関係は不明であることか
ら、回転角度センサー16及び第2の距離センサー30
よりの角度信号及び距離信号に基づいて、所定の疵信号
が得られた時刻における探傷位置を表す位置情報を演算
により取り出し、疵出力と共に位置情報を送出する。記
録装置35にはペンレコーダ等を使用し、演算装置34
の出力により、位置情報に対応した疵の大きさを記録紙
等に表示記録する。またマーキング装置36は、データ
処理装置を利用することで疵の大きさと位置をメモリー
して所定の時間遅れをもつて作動され、探傷が終了して
送られて来る熱ビレツトの疵発生部に、疵の大きさに応
じて識別できるように色分けした塗料等によりマーキン
グを施す。一方、自動調心制御器37は、距離センサー
23による距離信号と、回転角度センサー16による角
度信号から決められる180ン位相が異つた位置の距離
信号との偏差を取り出しており、この偏差が常に零とな
るように上下駆動装置38及び左右1駆動装置39をコ
ントロールして、熱ビレツトが曲つていても探傷センサ
ー14の回転中心が常に熱ビレツトの中心軸線に一致す
るように自動センタリング制御している。
The flaw outputs input to the calculation device 34 are simply arranged on the time axis, and the positional relationship with the thermal billet is unknown. Therefore, the rotation angle sensor 16 and the second distance sensor 30
Based on the angle signal and the distance signal, the position information representing the flaw detection position at the time when the predetermined flaw signal was obtained is extracted by calculation, and the position information is sent together with the flaw output. A pen recorder or the like is used as the recording device 35, and the arithmetic device 34
By the output, the size of the flaw corresponding to the position information is displayed and recorded on a recording paper or the like. Furthermore, the marking device 36 uses a data processing device to memorize the size and position of the flaw and is activated with a predetermined time delay, marking the flaw occurrence part of the thermal billet sent after flaw detection. Mark the flaw with color-coded paint, etc. so that it can be identified according to the size of the flaw. On the other hand, the self-aligning controller 37 extracts the deviation between the distance signal from the distance sensor 23 and the distance signal determined from the angle signal from the rotation angle sensor 16 at a position 180 degrees out of phase, and this deviation is always The vertical drive device 38 and the left and right drive devices 39 are controlled so that the temperature is zero, and automatic centering control is performed so that the rotation center of the flaw detection sensor 14 always coincides with the central axis of the thermal billet even if the thermal billet is bent. ing.

第7図の実施例は、この発明の渦流探傷装置の出力をマ
ーキング装置の制御に用いる場合を示したが、その,他
に、熱間鋸断機による切断位置決めに用いても良く、更
に疵を生じたビレツトのはね出し等に用いることで精整
ラインでの横持のむだを排除できる。
The embodiment shown in FIG. 7 shows a case where the output of the eddy current flaw detection device of the present invention is used to control a marking device, but it may also be used for positioning cutting with a hot saw, and furthermore, By using it for popping out billets that have occurred, it is possible to eliminate wasteful horizontal holding on the finishing line.

加えて、この発明の装置で取り出された疵情報、即ち疵
発生位置、疵発生率、疵の長さ及び深さ等を用いて、ミ
ルコントロールへのフイードバツクを行ない、必要なら
ば圧下スケジユールの変更、ロール交換、ホツトスカー
フ増減の選択等を行ない、圧延工程において発生疵の減
少を図るオンライン制御が実現できる。
In addition, the flaw information extracted by the device of this invention, that is, the flaw occurrence position, flaw occurrence rate, flaw length and depth, etc., is used to provide feedback to the mill control, and if necessary, change the reduction schedule. It is possible to implement online control to reduce the occurrence of defects in the rolling process by changing the rolls, selecting whether to increase or decrease the number of hot scarves, etc.

以上説明した如く、この発明の熱ビレツト渦流探傷装置
は、その探傷検出回路に帰還増幅型のものを使用するこ
とから熱ビレツトとプローブコイルとのギヤツプを十分
とることができ、熱ビレツトに対し探傷センサーを回転
することによる全面探傷が高精度且つ高感度で行なうこ
とができ、且つ探傷速度は探傷センサーの回転数と探傷
センサーの数に比例して任意に定めることができると共
に高速化することができ、熱ビレツトの曲りに対し探傷
センサーの回転中心のずれを自動修正する手段を有する
ことから、疵信号のギヤツプ変動による影響を確実に除
去せしめ、その結果、探傷された疵のマーキング、マー
キングに対応した熱鋸断、疵あリビレツトのはね出し等
の精整処理を自動化でき、さらに疵発生の原因となるミ
ルコントロールへのフイードバツクにより疵の発生を低
減せしめる制御をオンラインで行うことができ、丸ビレ
ツト製造ラインの省力化と歩留向上をもたらし、全体と
しての作業コストの大巾な低減をもたらすことができた
ものである。
As explained above, since the thermal billet eddy current flaw detection device of the present invention uses a feedback amplification type for its flaw detection circuit, it is possible to maintain a sufficient gap between the thermal billet and the probe coil. Full-surface flaw detection can be performed with high accuracy and sensitivity by rotating the sensor, and the flaw detection speed can be set arbitrarily in proportion to the rotation speed of the flaw detection sensor and the number of flaw detection sensors, and can be increased in speed. Since it has a means to automatically correct the deviation of the rotation center of the flaw detection sensor due to the bending of the thermal billet, it is possible to reliably eliminate the influence of gap fluctuations in the flaw signal, and as a result, the marking of detected flaws can be improved. It is possible to automate the corresponding finishing processes such as thermal sawing and popping out the flaw riblet, and furthermore, it is possible to perform online control to reduce the occurrence of flaws by providing feedback to the mill control that causes flaws. This resulted in labor savings and improved yields on the round billet production line, and resulted in a significant reduction in overall operating costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の貫通型渦流探傷機の概要を示す説明図、
第2図は従来のプローブ型渦流探傷機の概要を示す説明
図、第3図は、この発明の渦流探傷装置の基本構成を示
す説明図、第4図は、この発明の渦流探傷装置の機械的
構成の一実施例を示す説明図、第5図は第4図の実施例
における探傷センサーの配置を示す説明図、第6図は、
第4図の実施例における角度検知用の回転円板を示す説
明図、第7図は第5図の実施例に組合わされる、この発
明の渦流探傷装置の電気系統の一実施例を示す回路プロ
ツク図である。 1・・・・・・水冷コイル、2,6・・・・・・渦流検
出回路、3・・・・・・被検材、4・・・・・・プロー
ブコイル、5・・・・・・鍜接管、7・・・・・・探傷
センサー、8・・・・・・回転体、9・・・・・・信号
伝達装置、10・・・・・・検出回路、11・・・・・
・熱ビレツト、12・・・・・・円筒体、13・・・・
・・プーリ一、14・・・・・・探傷センサー 15・
・・・・・保護ロール、16・・・・・・第1の距離セ
ンサー、17・・・・・・台車、18・・・・・・昇降
装置、19・・・・・・車輪、20・・・・・ルール、
21・・・・・・回転コイル、22・・・・・・固定コ
イル、23・・・・・・回転角度センサー、24・・・
・・・回転円板、25・・・・・・ベアリング、26・
・・・・・給水機構、27・・・・・・センサー位置調
整機構、28・・・・・・突起、29・・・・・・基準
用突起、30・・・・・・第2の距離センサー、31.
.....AGC回路、32・・・・・・ピーク検出器
、33・・・・・・増幅器、34・・・・・・演算装置
、35・・・・・・記録装置、36・・・・・・マーキ
ング装置、37・・・・・・自動調心制御器、38・・
・・・・上下駆動装置、39・・・・・・左右駆動装置
Figure 1 is an explanatory diagram showing an overview of a conventional penetrating eddy current flaw detector.
Fig. 2 is an explanatory diagram showing the outline of a conventional probe type eddy current flaw detector, Fig. 3 is an explanatory diagram showing the basic configuration of the eddy current flaw detector of the present invention, and Fig. 4 is a mechanical diagram of the eddy current flaw detector of the present invention. FIG. 5 is an explanatory diagram showing the arrangement of the flaw detection sensor in the embodiment of FIG. 4, and FIG.
FIG. 7 is an explanatory diagram showing a rotating disk for angle detection in the embodiment of FIG. 4, and FIG. 7 is a circuit showing an embodiment of the electrical system of the eddy current flaw detection apparatus of the present invention, which is combined with the embodiment of FIG. 5. It is a block diagram. 1... Water cooling coil, 2, 6... Eddy current detection circuit, 3... Test material, 4... Probe coil, 5... - Connection pipe, 7...flaw detection sensor, 8...rotating body, 9...signal transmission device, 10...detection circuit, 11...・
・Thermal billet, 12... Cylindrical body, 13...
...Pulley 1, 14...Flaw detection sensor 15.
... Protection roll, 16 ... First distance sensor, 17 ... Dolly, 18 ... Lifting device, 19 ... Wheel, 20 ·····rule,
21...Rotating coil, 22...Fixed coil, 23...Rotation angle sensor, 24...
... Rotating disk, 25 ... Bearing, 26.
... Water supply mechanism, 27 ... Sensor position adjustment mechanism, 28 ... Protrusion, 29 ... Reference protrusion, 30 ... Second Distance sensor, 31.
.. .. .. .. .. AGC circuit, 32...Peak detector, 33...Amplifier, 34...Arithmetic device, 35...Recording device, 36... Marking device, 37... Automatic alignment controller, 38...
... Vertical drive device, 39... Left and right drive device.

Claims (1)

【特許請求の範囲】 1 熱ビレツト等の円柱状金属体の全面探傷を行なう熱
ビレツト渦流探傷装置において、熱ビレツトが貫通移送
されると共に駆動源により定速回転される円筒体と、該
円筒体の円周上に配置されて熱ビレツトの疵を検知する
探傷センサーと、前記円筒体の円周上に配置され熱ビレ
ツト外周面よりの距離を測定する第1の距離センサーと
、前記円筒体を上下左右方向に移動調整自在に且つ回動
自在に支持する台車と、該台車の支持部と前記円筒体と
の間に介在されて前記探傷センサー及び第1の距離セン
サーに対する信号経路を形成する信号伝達装置と、前記
円筒体の回転位置を検知する回転角度センサーと、熱ビ
レツトの長手方向の探傷送り距離を検知する第2の距離
センサーと、前記探傷センサー、第1および第2の距離
センサー及び回転角度センサーよりの各検知信号に基づ
いて熱ビレツトの位置情報と共に熱ビレツトの疵信号を
送出する演算装置と、前記第1の距離センサー及び回転
角度センサーよりの各検知信号に基づいて前記円筒体に
対する熱ビレツトの偏心を検出して台車に支持された円
筒体の位置を調整する自動調心制御器とを備えたことを
特徴とする熱ビレツト渦流探傷装置。 2 円筒体の円周上に配置される探傷センサーとして、
被検材の外径に合せて可動調整もしくは交換できる取付
け構造を有する特許請求の範囲第1項記載の熱ビレツト
渦流探傷装置。
[Scope of Claims] 1. A thermal billet eddy current flaw detection device that performs full-surface flaw detection on a cylindrical metal body such as a thermal billet, comprising a cylindrical body through which a thermal billet is transferred and rotated at a constant speed by a drive source, and the cylindrical body. a flaw detection sensor arranged on the circumference of the cylindrical body to detect flaws in the thermal billet; a first distance sensor arranged on the circumference of the cylindrical body to measure a distance from the outer peripheral surface of the thermal billet; A dolly supported so as to be movably adjustable and rotatable in vertical and horizontal directions, and a signal interposed between a support portion of the dolly and the cylindrical body to form a signal path for the flaw detection sensor and the first distance sensor. a transmission device, a rotation angle sensor that detects the rotational position of the cylindrical body, a second distance sensor that detects the flaw detection feed distance in the longitudinal direction of the thermal billet, the flaw detection sensor, first and second distance sensors, and an arithmetic unit that transmits a flaw signal on the thermal billet together with positional information on the thermal billet based on each detection signal from the rotation angle sensor; 1. A thermal billet eddy current flaw detection device comprising: an automatic centering controller that detects the eccentricity of the thermal billet with respect to the vehicle and adjusts the position of the cylindrical body supported on the trolley. 2 As a flaw detection sensor placed on the circumference of a cylindrical body,
The thermal billet eddy current flaw detection device according to claim 1, having a mounting structure that can be movably adjusted or replaced according to the outer diameter of the material to be tested.
JP53014139A 1978-02-13 1978-02-13 Thermal billet eddy current flaw detection equipment Expired JPS5940265B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP53014139A JPS5940265B2 (en) 1978-02-13 1978-02-13 Thermal billet eddy current flaw detection equipment
GB7904617A GB2014317B (en) 1978-02-13 1979-02-09 Suface defect detecting apparatus for round or cylindrical metallic material
DE19792905399 DE2905399A1 (en) 1978-02-13 1979-02-13 DEVICE AND DETERMINATION OF SURFACE DEFECTS ON METALLIC OBJECTS
IT20161/79A IT1111101B (en) 1978-02-13 1979-02-13 SURFACE DEFECT DETECTOR EQUIPMENT, ESPECIALLY FOR CIRCULAR EXTERNAL METALLIC MATERIALS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53014139A JPS5940265B2 (en) 1978-02-13 1978-02-13 Thermal billet eddy current flaw detection equipment

Publications (2)

Publication Number Publication Date
JPS54107793A JPS54107793A (en) 1979-08-23
JPS5940265B2 true JPS5940265B2 (en) 1984-09-28

Family

ID=11852806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53014139A Expired JPS5940265B2 (en) 1978-02-13 1978-02-13 Thermal billet eddy current flaw detection equipment

Country Status (4)

Country Link
JP (1) JPS5940265B2 (en)
DE (1) DE2905399A1 (en)
GB (1) GB2014317B (en)
IT (1) IT1111101B (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2937865A1 (en) * 1979-09-19 1981-04-02 Kraftwerk Union AG, 4330 Mülheim Automatic measuring signal evaluation system for flaw detection - is typically for heat exchanger tubes and controls sampling by probe displacement
DE3034426A1 (en) * 1980-09-12 1982-03-25 Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft in Bonn, dieser vertreten durch den Präsidenten der Bundesanstalt für Materialprüfung (BAM), 1000 Berlin Pulse eddy current conducting material testing - using synchronised test head energising and signal processing circuit for non-destructive examination
DD160599A3 (en) * 1980-11-26 1983-11-16 Otto Grotewohl Boehlen Boehlen PART-AUTOMATED FUEL CLEANING MEASUREMENT METHOD
EP0057068B1 (en) * 1981-01-27 1985-10-23 British Steel Corporation Improvements in or relating to non-destructive testing apparatus
DE3109437C2 (en) * 1981-03-12 1985-10-10 Institut Dr. Friedrich Förster Prüfgerätebau GmbH & Co KG, 7410 Reutlingen Arrangement for outputting fault location information
DE3132808C2 (en) * 1981-08-19 1984-01-26 Nukem Gmbh, 6450 Hanau "Device for the non-destructive testing of ferromagnetic bodies"
JPS599551A (en) * 1982-07-08 1984-01-18 Sumitomo Metal Ind Ltd Flaw detector
GB2149116B (en) * 1983-10-31 1987-03-25 Texaco Development Corp Method and apparatus for measuring wall thickness
GB8425870D0 (en) * 1984-10-12 1984-11-21 Cruickshank J S Servicing and inspection of pipes
US4644271A (en) * 1985-02-25 1987-02-17 Ltv Steel Company, Inc. Method and apparatus for examining a workpiece
SE456534B (en) * 1985-11-25 1988-10-10 Bengt Hjalmar Tornblom DEVICE FOR SEATING AND / OR CONTROL OF PROVOBJECT WITH AN OSCILLATING SENSOR
JPS63198863A (en) * 1987-02-13 1988-08-17 Nippon Steel Corp Eddy current flaw detecting device
DE3937261C2 (en) * 1989-11-09 1996-04-11 Foerster Inst Dr Friedrich Rotating head for scanning metallic test material
DE4003330A1 (en) * 1990-02-05 1991-08-08 Foerster Inst Dr Friedrich Eddy current tester
US5175498A (en) * 1990-03-05 1992-12-29 General Electric Company Method and apparatus for making spatially correlated eddy current measurements
US5210492A (en) * 1991-04-22 1993-05-11 Tokyo Gas Co., Ltd. Remote field eddy current flaw detector for metal pipes having a pair of receiver coils providing a differential offset amplitude signal
GB2281399B (en) * 1991-04-22 1995-08-16 Tokyo Gas Co Ltd Flaw detector for metal material
DE19850055C1 (en) * 1998-09-03 2000-05-11 Georgsmarienhuette Gmbh Device for the non-destructive testing of especially hot rod-shaped rolled material
ATE270592T1 (en) * 1998-09-03 2004-07-15 Georgsmarienhuette Gmbh DEVICE FOR THE NON-DESTRUCTIVE TESTING OF ESPECIALLY HOT BAR-SHAPED ROLLED MATERIAL
DK1105721T3 (en) * 1999-06-15 2007-07-02 Georgsmarienhuette Gmbh Valsemölle
DE202005003685U1 (en) 2005-03-08 2005-10-13 Zindler, Pascale Mignard Technical innovations in the magnetic circuit of the Hochenergiewechselfeldjoch
DE102005061273A1 (en) * 2005-12-20 2007-06-21 Prüftechnik Dieter Busch AG Rotating head for scanning the surface of an elongated test piece comprises two probe carriers with stray flux or eddy current sensors and elastic elements for tandem coupling of the pivoting movements of the probe carriers
EP2069774A1 (en) * 2006-09-28 2009-06-17 Prüftechnik Dieter Busch Ag Magnetic leakage flux test system for tubular test samples
DE102008038174A1 (en) 2008-08-18 2010-02-25 Prüftechnik Dieter Busch AG Device and method for the non-destructive and non-contact detection of faults in a test object
DE102008053778B4 (en) * 2008-10-23 2020-08-06 Institut Dr. Foerster Gmbh & Co. Kg Test method and test device for testing elongated objects by means of a through coil
US8264221B2 (en) 2009-07-31 2012-09-11 Olympus Ndt Eddy current probe assembly adjustable for inspecting test objects of different sizes
EP2287603B1 (en) * 2009-08-19 2016-05-04 PRÜFTECHNIK Dieter Busch AG Device and method for non-destructive and contactless detection of defects in a testpiece
CN105806935B (en) * 2016-05-27 2024-03-12 三峡大学 Quick detection device for weld defects of large-scale metal round pipe
CN112114030B (en) * 2020-09-23 2023-11-17 成都鳌峰机电设备有限责任公司 Drill rod thread detection device and method based on ferrite eddy current thermal imaging
CN112697807B (en) * 2020-12-09 2024-03-26 江汉大学 Method for detecting surface crack width of cylindrical object
CN112946066A (en) * 2021-02-05 2021-06-11 内蒙古科技大学 Surface detection device for revolving body
CN113466116B (en) * 2021-06-25 2023-01-31 中核四达建设监理有限公司 Device for detecting corrosion resistance of carbon steel
CN115990557B (en) * 2023-03-15 2023-10-31 连云港市大正水泥制品有限公司 Detection maintenance device for reinforced concrete drain pipe and application method thereof
CN118268376B (en) * 2024-06-04 2024-07-23 太原理工大学 Electric field auxiliary periodic rolling equipment and method for particle reinforced metal matrix composite tube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1423980A1 (en) * 1960-10-14 1968-10-03 Gkn Group Services Ltd Process and device for testing defects in materials and workpieces
FR1600873A (en) * 1968-09-13 1970-08-03
DE1807725A1 (en) * 1968-11-08 1970-09-17 Reisholz Stahl & Roehrenwerk Process for centering the test head in the case of non-destructive material testing and device for carrying out the process
US3694735A (en) * 1970-07-27 1972-09-26 United States Steel Corp Water-cooled eddy-current transducer for testing product while at high temperature
US4024470A (en) * 1974-05-20 1977-05-17 Republic Steel Corporation Eddy current detector for hot test pieces having coolant fluid and purge features
JPS5190875A (en) * 1975-02-07 1976-08-09 Karyutanshoho oyobi sonosochi

Also Published As

Publication number Publication date
IT1111101B (en) 1986-01-13
IT7920161A0 (en) 1979-02-13
JPS54107793A (en) 1979-08-23
GB2014317A (en) 1979-08-22
DE2905399A1 (en) 1979-08-16
GB2014317B (en) 1982-06-23

Similar Documents

Publication Publication Date Title
JPS5940265B2 (en) Thermal billet eddy current flaw detection equipment
EP0185761B1 (en) Eddy current flaw detector having rotatable field defining sleeve
US4641092A (en) Rotary probe apparatus for detecting flaws in a test object
US3612987A (en) Inspection apparatus for moving elongated articles including means for extending and retracting a sensor relative to the article
US4785243A (en) Electronically scanned eddy current flaw inspection
US10583520B2 (en) Device and method for homogeneously welding two-dimensionally bent structures by friction stir welding
EP0081243A3 (en) Articulated test probe mechanism with fluid bearing in roll gap
EP0521096A1 (en) Process and device for machine-working of rolls and similar workpieces.
US3469182A (en) Flaw detecting apparatus with mechanical scanning of detection means
JPH05141909A (en) Rotary attitude detector
CA1240379A (en) Eddy current flaw detector method and apparatus
JP2008170408A (en) Method and device for inspecting nonmetallic inclusion in component of rolling apparatus
JPH05312652A (en) Pressure roller surface temperature measuring device
JPH07148656A (en) Hot-rolled stock surface flaw eliminating method
JP3216320B2 (en) Sheet thickness fluctuation measuring device
JPS5850407A (en) Device for measuring bending of tube body end part
JPH02236157A (en) Eddy current flaw detection system of heat transfer pipe
JPH05164743A (en) Method and device for inspecting internal surface of hollow body
JPS59120905A (en) Device for measuring flatness of metallic strip under tension
JPH0540408Y2 (en)
JPH1038555A (en) Method and device for measuring outer diameter and shape of steel pipe
JPS61277052A (en) Eddy current flaw detection test for steel plate
JPS593347A (en) Flaw detector
KR20200049327A (en) defective position indicator and indicating method of wire rod
JP2659349B2 (en) Roll roll angle adjusting device and method