EP2069774A1 - Magnetic leakage flux test system for tubular test samples - Google Patents

Magnetic leakage flux test system for tubular test samples

Info

Publication number
EP2069774A1
EP2069774A1 EP07817570A EP07817570A EP2069774A1 EP 2069774 A1 EP2069774 A1 EP 2069774A1 EP 07817570 A EP07817570 A EP 07817570A EP 07817570 A EP07817570 A EP 07817570A EP 2069774 A1 EP2069774 A1 EP 2069774A1
Authority
EP
European Patent Office
Prior art keywords
test
sensor
coil
longitudinal axis
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07817570A
Other languages
German (de)
French (fr)
Inventor
Bernd Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prueftechnik Dieter Busch AG
Original Assignee
Prueftechnik Dieter Busch AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prueftechnik Dieter Busch AG filed Critical Prueftechnik Dieter Busch AG
Publication of EP2069774A1 publication Critical patent/EP2069774A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Definitions

  • the present invention relates to a test device for nondestructive testing of tubular specimens.
  • the test device uses a device and a method for detecting defects on such test objects by means of sensors based on magnetic leakage flux.
  • Such devices are known per se. They consist of a plurality of ring-shaped arranged around the test specimen test coils, which are permanently installed in a holder. In this arrangement, the user has the choice either to choose the diameter of the passage opening through the arrangement of the test coils larger than the diameter of the specimen or with a matched diameter of the arrangement of the test coils strong wear of the arrangement of test coils. With increasing diameter of the arrangement of the test coils, the distance of the individual test coil from the surface of the specimen increases. This reduces the sensitivity of the measuring arrangement. Therefore, designing an array of test coils of conventional design is always a compromise between measurement accuracy, on the one hand, and the acceptable cost of replacing the array of test coils, on the other. Such exchange becomes necessary when e.g. the test object does not pass through the opening in the arrangement of test coils exactly centrically or else raised defects on the surface of the test object damage the arrangement of test coils.
  • the aim of the present invention is to provide an improved sensor system for detecting defects in tube-shaped test specimens.
  • test device for testing tubular test specimens which is characterized in that a plurality of individual, from the outside of the tubular test specimen radially inwardly movable test probes is provided, each test probe on the one hand has a test coil, whose surface normal is directed perpendicular to the longitudinal axis of the specimen, and on the other hand, each test probe further comprises a second test coil whose surface normal is oriented substantially parallel to the longitudinal axis of the specimen.
  • the test probes are fastened in one embodiment of the invention on finger-shaped, elastic and provided with a mechanical bias brackets and by means of devices Hard metal protected from impact and abrasion by the test specimen.
  • the rigid finger-shaped holders of the test probes are rotatably mounted.
  • a further embodiment provides for a regulation of the rotational movement, so that the test probe in its finger-shaped holder always bears against the tubular test piece.
  • the invention is advantageously used to test larger steel and iron pipes, e.g. For example, those used for oil transportation (pipelines).
  • the invention is capable of detecting defects on said tubes which tend to extend transverse to the tube longitudinal axis.
  • FIG. 1 shows a perspective view of a tubular test specimen 10 having a tube wall 13 and a transverse defect 12 drawn by way of example.
  • FIG. 3 shows a particularly space-saving arrangement of a sensor holder.
  • Figure 1 shows a sensor carrier 20 which is slotted and flexed to provide a number (e.g., 4 to 8) of terminal and finger-shaped sensor mounts 21-25.
  • the shaping takes place in such a way that the sensor holders have a resilient bias and the sensors 53 mounted thereon can resiliently rest on the test piece for the purpose of detecting stray magnetic flux quantities.
  • the shape is such that the sensor mounts 21-25 are disposed on an imaginary cylindrical surface around the sample, as shown in the figure.
  • a number (usually 2, 3, 4 or 8 pieces) of individual sensor carriers 20 are inserted into a higher-level holder (not shown), so that the sensor carriers enclose the entire tube circumference.
  • a sensor carrier 20 is suitable to be formed by bending about its longitudinal axis so that it can be inserted into different sized oversized brackets. With just a few sizes of sensor carriers or sensor holders, testers for many different tube diameters can easily be used (preferably in the range of 60mm to 370mm). As a result, although for each pipe diameter own higher-level brackets required, the individual sensor carrier 20, sensor brackets 21 - 25 with the associated sensors but can be used for several different pipe diameters.
  • the sensor carrier 20 and the sensor holders 21 - 25 are not made of one part. It thus becomes possible to exchange individual sensor holders 21 between different sensor carriers 20, wherein the sensor carriers 20 are each adapted to a specific or a number of different tube diameters. If the sensor carriers 20 are designed to be deformable, the number of required sensor carriers is reduced during the transition to a corresponding smaller tube diameter. For rigid sensor carriers 20, a separate type of sensor carrier is required for each tube diameter. There are contact devices 31 - 35 are provided so that electrical outputs of sensors used can be connected to connection cables, which in turn are associated with symbolically indicated contact devices 41 - 45 in connection.
  • FIG. 1 The arrangement shown in FIG. 1 is thus suitable for scanning a tubular test specimen, in particular in its longitudinal direction, as indicated by the arrow in FIG. 1.
  • the actual sensor 53 shown in FIG. 2 includes sensor coils 52, 52 'and 54', 54 "for detecting stray magnetic flux quantities respectively located on the underside of the sensor holders, as shown in FIG In principle, it is a sensor coil combination consisting of a respective lying flat coil whose turns 54 ', 54 "are shown in cross-section and whose axis extends radially to the DUT, and in each case a perpendicular thereto, ie upright standing coil with turns 52, 52 ', whose axis is parallel to the transport direction of the specimen 13. Both the flat-lying coil 52, 52 'and the upright coil 54' 54 "extends in area over virtually the entire width of a sensor holder (eg 21).
  • stops 62, 64 are provided on a holder 60 in order to limit the possibility of movement of the sensor holder in the radial direction.
  • the coils 52, 54 embedded in a suitable filler are normally directly on the DUT or the surface of the tube 10. It is also possible to design the sensor coil 54, the axis of which points radially away from the test object and receives the magnetic field components extending radially to the test object, as a flat coil.
  • the winding of this coil may also be e.g. take the form of an applied to a circuit board spiral of conductive material.
  • a particularly space-saving design is further illustrated by a single sensor holder.
  • the individual sensor holders 61 are in the form of rohrfbrmigen test piece 10 formed radially extending tubes and thus require less space in the transport direction of rohrfbrmigen DUT as in the embodiment shown in Fig. 1.
  • the sensors 52, 52 'and 54', 54 "are protected by an annular cemented carbide piece 26.
  • a contact device 31 is provided on the sensors through which the supply and through a connecting cable In the interior of the tube, that is to say on the side of the sensor which is remote from the test object, there is, in addition to the contact device 31, an alignment device 59 which, in conjunction with devices not shown, is connected to the sensor element.
  • the sensor itself is pressed, for example, by means of a helical spring 58 against the wall 13 of the test piece 10.
  • An adjustment of the pressing force is made possible by a screw 56, for example If a control of the distance of the sensors from the wall 13 of the device under test 10 is provided, then this can be done with compressed air or over a linear motor or spindle drive in the tubular sensor holder 61 are effected. In this design, the space required for two of these devices in a row for gapless coverage of the specimen is particularly low.
  • the fingers run parallel or perpendicular to the transport device, it may prove expedient that the fingers have a different orientation to the transport direction.
  • the modular design of the test device from sensor holder 21 - 25, sensor carrier 20 and parent holder allows a significant reduction in the variety of parts.
  • the resilient support or a regulation of the distance from the sensor to the DUT the wear of the sensors is reduced.
  • such a simple replacement of individual sensors in the event of a defect is possible, which can occur after wear of the hard metal part.
  • the entire test head must be replaced with every defect of a single coil since all sensors in the test head are cast. Therefore, any such replacement will always replace all coils, regardless of whether they are still intact.

Abstract

The magnetic leakage flux test system for testing tubular metallic test samples has a plurality of individual finger-shaped test probes, movable radially relative to the longitudinal axis of the test sample, which are applied to the test sample externally from all sides. Said test sample is thus surrounded by test probes and can be moved underneath said probes. Each of the test probes additionally has a second test coil next to a first test coil, the surface normal of which is aligned essentially parallel to the longitudinal axis of the test sample. The surface normal of the second test coil is oriented essentially perpendicular to the longitudinal axis of the test sample.

Description

MAGNETISCHE STREUFLUSS-TESTVORRICHTUNG FUR ROHRFÖRMIGE PRÜFLINGE MAGNETIC STREUFLUSS TEST DEVICE FOR TUBULAR TEST TESTS
Die vorliegende Erfindung betrifft eine Testvorrichtung zur zerstörungsfreien Untersuchung rohrförrniger Prüflinge. Die Testvorrichtung bedient sich dabei einer Vorrichtung und eines Verfahrens zur Erkennung von Defekten an solchen Prüflingen mittels Sensoren auf Basis magnetischen Streuflusses.The present invention relates to a test device for nondestructive testing of tubular specimens. The test device uses a device and a method for detecting defects on such test objects by means of sensors based on magnetic leakage flux.
Solche Vorrichtungen sind an sich bekannt. Sie bestehen aus einer Vielzahl ringförmig um den Prüfling angeordneter Prüfspulen, die fest in einer Halterung eingebaut sind. In dieser Anordnung hat der Anwender die Wahl, entweder den Durchmesser der Durchtrittsöffnung durch die Anordnung der Prüfspulen größer zu wählen als den Durchmesser des Prüflings oder bei angepasstem Durchmesser der Anordnung der Prüfspulen starken Verschleiß der Anordnung von Prüfspulen hinzunehmen. Mit größer werdendem Durchmesser der Anordnung der Prüfspulen erhöht sich der Abstand der einzelnen Prüfspule von der Oberfläche des Prüflings. So verringert sich die Empfindlichkeit der Messanordnung. Deshalb ist die Auslegung einer Anordnung von Prüfspulen herkömmlicher Bauart immer ein Kompromiss zwischen Messgenauigkeit einerseits und den hinnehmbaren Kosten für den Austausch der Anordnung von Prüfspulen andererseits. Ein solcher Austausch wird nötig, wenn z.B. der Prüfling nicht exakt zentrisch durch die Öffnung in der Anordnung von Prüfspulen hindurchtritt oder aber erhabene Fehler an der Oberfläche des Prüflings die Anordnung von Prüfspulen beschädigen.Such devices are known per se. They consist of a plurality of ring-shaped arranged around the test specimen test coils, which are permanently installed in a holder. In this arrangement, the user has the choice either to choose the diameter of the passage opening through the arrangement of the test coils larger than the diameter of the specimen or with a matched diameter of the arrangement of the test coils strong wear of the arrangement of test coils. With increasing diameter of the arrangement of the test coils, the distance of the individual test coil from the surface of the specimen increases. This reduces the sensitivity of the measuring arrangement. Therefore, designing an array of test coils of conventional design is always a compromise between measurement accuracy, on the one hand, and the acceptable cost of replacing the array of test coils, on the other. Such exchange becomes necessary when e.g. the test object does not pass through the opening in the arrangement of test coils exactly centrically or else raised defects on the surface of the test object damage the arrangement of test coils.
Die vorliegende Erfindung hat zum Ziel, eine verbesserte Sensorik zur Erkennung von Fehlern an rohrfb'rmigen Prüflingen bereitzustellen.The aim of the present invention is to provide an improved sensor system for detecting defects in tube-shaped test specimens.
Diese Aufgabe wird dadurch gelöst, dass eine Testvorrichtung zur Prüfung von rohrförmigen Prüflingen geschaffen ist, welche dadurch gekennzeichnet ist, dass eine Vielzahl einzelner, von der Außenseite des rohrförmigen Prüflings radial nach innen beweglicher Testsonden vorgesehen wird, wobei jede Testsonde einerseits jeweils eine Prüfspule aufweist, deren Flächennormale senkrecht zur Längsachse des Prüflings gerichtet ist, und andererseits weiterhin jede Testsonde eine zweite Prüfspule aufweist, deren Flächennormale im wesentlichen parallel zur Längsachse des Prüflings orientiert ist. Die Testsonden sind dabei in einer Ausführungsform der Erfindung an fingerförmigen, elastischen und mit einer mechanischen Vorspannung versehenen Halterungen befestigt und mittels Vorrichtungen aus Hartmetall vor Stößen und Abrieb durch den Prüfling geschützt. In einer anderen Ausfuhrungsform sind die starren fingerförmigen Halterungen der Testsonden drehbar gelagert. Eine weitere Ausfuhrungsform sieht eine Regelung der Drehbewegung vor, so dass die Testsonde in ihrer fingerförmigen Halterung immer an dem rohrförmigen Prüfling anliegt.This object is achieved in that a test device for testing tubular test specimens is provided, which is characterized in that a plurality of individual, from the outside of the tubular test specimen radially inwardly movable test probes is provided, each test probe on the one hand has a test coil, whose surface normal is directed perpendicular to the longitudinal axis of the specimen, and on the other hand, each test probe further comprises a second test coil whose surface normal is oriented substantially parallel to the longitudinal axis of the specimen. The test probes are fastened in one embodiment of the invention on finger-shaped, elastic and provided with a mechanical bias brackets and by means of devices Hard metal protected from impact and abrasion by the test specimen. In another embodiment, the rigid finger-shaped holders of the test probes are rotatably mounted. A further embodiment provides for a regulation of the rotational movement, so that the test probe in its finger-shaped holder always bears against the tubular test piece.
Insbesondere wird die Erfindung mit Vorteil dazu benutzt, größere Stahl- und Eisenrohre zu testen, z. B. solche, die für den Erdöltransport verwendet werden (Pipelines). Die Erfindung ist insbesondere dazu geeignet, Defekte an den genannten Rohren zu erkennen, die sich eher quer zur Rohr-Längsachse erstrecken.In particular, the invention is advantageously used to test larger steel and iron pipes, e.g. For example, those used for oil transportation (pipelines). In particular, the invention is capable of detecting defects on said tubes which tend to extend transverse to the tube longitudinal axis.
Die Erfindung wird im Folgenden an den Zeichnungen 1, 2 und 3 erläutert.The invention is explained below with reference to the drawings 1, 2 and 3.
Fig. 1 zeigt in perspektivischer Ansicht einen rohrförmigen Prüfling 10 mit einer Rohrwandung 13 sowie einem beispielhaft gezeichneten querliegenden Defekt 12.1 shows a perspective view of a tubular test specimen 10 having a tube wall 13 and a transverse defect 12 drawn by way of example.
Fig. 2 enthält eine Darstellung einer Sensor-Halterung 21 und des eigentlichen Sensors 53.2 contains an illustration of a sensor holder 21 and of the actual sensor 53.
hα Fig. 3 ist eine besonders raumsparende Anordnung einer Sensor-Halterung dargestellt.3 shows a particularly space-saving arrangement of a sensor holder.
Fig. 1. zeigt einen Sensor-Träger 20, der geschlitzt und durch Biegung so geformt ist, dass eine Anzahl (beispielsweise 4 bis 8) endständiger und fingerförmiger Sensor-Halterungen 21 - 25 bereitgestellt wird. Die Formgebung erfolgt dabei so, dass die Sensor-Halterungen eine elastische Vorspannung aufweisen und die dort angebrachten Sensoren 53 zur Detektion von magnetischen Streufluß-Größen federnd auf dem Prüfling aufliegen lassen. Weiterhin ist die Formgebung so, dass die Sensor-Halterungen 21 - 25 auf einer gedachten zylindrischen Fläche um den Prüfling angeordnet sind, wie in der Figur gezeigt.Figure 1 shows a sensor carrier 20 which is slotted and flexed to provide a number (e.g., 4 to 8) of terminal and finger-shaped sensor mounts 21-25. The shaping takes place in such a way that the sensor holders have a resilient bias and the sensors 53 mounted thereon can resiliently rest on the test piece for the purpose of detecting stray magnetic flux quantities. Furthermore, the shape is such that the sensor mounts 21-25 are disposed on an imaginary cylindrical surface around the sample, as shown in the figure.
Gemäß der Erfindung wird eine Anzahl (normalerweise 2, 3, 4 oder 8 Stück) einzelner Sensor-Träger 20 in eine übergeordnete Halterung (nicht gezeigt) eingelegt, so dass die Sensor-Träger den gesamten Rohrumfang umschließen. Gemäß einer Ausfuhrungsform der Erfindung ist ein Sensor-Träger 20 geeignet, durch Biegung um seine Längsachse so geformt zu werden, dass er in unterschiedlich groß dimensionierte übergeordnete Halterungen eingelegt werden kann. So können mit nur wenigen Baugrößen an Sensor-Trägern bzw. Sensor-Halterungen dennoch leicht Testgeräte für viele unterschiedliche Rohrdurchmesser (bevorzugt im Bereich von 60 mm bis 370 mm) bereitgestellt werden. Dadurch sind für jeden Rohrdurchmesser zwar eigene übergeordnete Halterungen erforderlich, die einzelnen Sensor- Träger 20, Sensor-Halterungen 21 - 25 mit den zugehörigen Sensoren sind aber für mehrere verschiedene Rohrdurchmesser einsetzbar.According to the invention, a number (usually 2, 3, 4 or 8 pieces) of individual sensor carriers 20 are inserted into a higher-level holder (not shown), so that the sensor carriers enclose the entire tube circumference. According to one embodiment of the invention, a sensor carrier 20 is suitable to be formed by bending about its longitudinal axis so that it can be inserted into different sized oversized brackets. With just a few sizes of sensor carriers or sensor holders, testers for many different tube diameters can easily be used (preferably in the range of 60mm to 370mm). As a result, although for each pipe diameter own higher-level brackets required, the individual sensor carrier 20, sensor brackets 21 - 25 with the associated sensors but can be used for several different pipe diameters.
In einer weiteren vorteilhaften Ausgestaltungsform der Erfindung sind der Sensor-Träger 20 und die Sensor-Halterungen 21 - 25 nicht aus einem Teil gefertigt. So wird es möglich, einzelne Sensor-Halterungen 21 zwischen verschiedenen Sensor-Trägern 20 auszutauschen, wobei die Sensor-Träger 20 jeweils an einen bestimmten oder eine Anzahl verschiedener Rohrdurchmesser angepasst sind. Sind die Sensor-Träger 20 verformbar ausgeführt, so reduziert sich die Zahl benötigten Sensor-Träger beim Übergang zu einem entsprechenden kleineren Rohrdurchmesser. Bei starren Sensor-Trägern 20 ist für jeden Rohrdurchmesser ein eigener Typ Sensor-Träger erforderlich. Es sind Kontakt- Vorrichtungen 31 - 35 vorgesehen, so dass elektrische Ausgänge von verwendeten Sensoren an Verbindungskabel angeschlossen werden können, welche ihrerseits mit symbolisch angedeuteten Kontaktvorrichtungen 41 - 45 in Verbindung stehen.In a further advantageous embodiment of the invention, the sensor carrier 20 and the sensor holders 21 - 25 are not made of one part. It thus becomes possible to exchange individual sensor holders 21 between different sensor carriers 20, wherein the sensor carriers 20 are each adapted to a specific or a number of different tube diameters. If the sensor carriers 20 are designed to be deformable, the number of required sensor carriers is reduced during the transition to a corresponding smaller tube diameter. For rigid sensor carriers 20, a separate type of sensor carrier is required for each tube diameter. There are contact devices 31 - 35 are provided so that electrical outputs of sensors used can be connected to connection cables, which in turn are associated with symbolically indicated contact devices 41 - 45 in connection.
Die in Fig. 1 gezeigte Anordnung ist somit geeignet, einen rohrformigen Prüfling insbesondere in dessen Längsrichtung abzutasten, wie dies durch den Pfeil in Fig. 1 angedeutet wird.The arrangement shown in FIG. 1 is thus suitable for scanning a tubular test specimen, in particular in its longitudinal direction, as indicated by the arrow in FIG. 1.
Es ist von Vorteil, zwei dieser in Fig. 1 dargestellten Vorrichtungen in Transportrichtung hintereinander anzuordnen. Dann ist eine lückenlose Abtastung des gesamten Rohrumfanges möglich, indem die einzelnen Sensoren auf der zweiten Vorrichtung so gegenüber den Sensoren der ersten Vorrichtung versetzt sind, dass sie genau die Lücken zwischen den Sensoren der ersten Vorrichtung erfassen. Weiter kann es beim Einsatz derselben Größe an Sensor-Trägern und Sensoren bei verschiedenen Rohrdurchmessern dazu kommen, dass der Abstand zweier Sensoren zu groß ausfällt, weil die maximal mögliche Zahl der Sensoren pro Rohrdurchmesser durch das Verhältnis der Breite der Sensor-Träger zum Rohramfang bestimmt wird. Deshalb liegen bei derselben Größe von Sensor-Halterung 21 - 25 und Sensor- Träger 20 bei unterschiedlichen Rohrdurchmessern unterschiedliche Abstände zwischen den einzelnen Sensoren vor. Insbesondere können auch Abstände auftreten; die eigentlich zu groß für eine lückenlose Abtastung der Oberfläche des Prüflings sind. Auch in diesen Fällen wird eine lückenlose Ermittlung von Defekten möglich, wenn zwei dieser Vorrichtungen hintereinander angeordnet sind. Weiter wird so eine genauere Bestimmung der Größe eines Defekts im Prüfling möglich, wenn sie angestrebt wird. Der in Fig. 2 dargestellte eigentliche Sensor 53 enthält Sensorspulen 52, 52' bzw. 54', 54" zur Detektion von magnetischen Streufluß-Größen, die sich jeweils auf der Unterseite der Sensor-Halterungen befinden, wie dies in Fig. 2 gezeigt wird. Im Prinzip handelt es sich um eine Sensorspulen-Kombination bestehend aus jeweils einer flach liegenden Spule, deren Windungen 54', 54" im Querschnitt gezeigt sind und deren Achse radial zum Prüfling verläuft, und jeweils einer senkrecht dazu, d.h. aufrecht stehenden Spule mit Windungen 52, 52', deren Achse parallel zur Transportrichtung des Prüflings 13 verläuft. Sowohl die flach liegende Spule 52, 52' als auch die aufrecht stehende Spule 54' 54" erstreckt sich flächenmäßig über praktisch die gesamte Breite einer Sensor-Halterung (e.g. 21).It is advantageous to arrange two of these devices shown in Fig. 1 in the transport direction one behind the other. Then, a complete scan of the entire tube circumference is possible by the individual sensors on the second device being offset from the sensors of the first device so as to accurately detect the gaps between the sensors of the first device. Furthermore, when using the same size of sensor carriers and sensors with different tube diameters, the distance between two sensors may be too great because the maximum possible number of sensors per tube diameter is determined by the ratio of the width of the sensor carrier to the tube intercept , Therefore, with the same size of sensor holder 21-25 and sensor carrier 20 at different pipe diameters different distances between the individual sensors are present. In particular, distances may occur; which are actually too large for a complete scanning of the surface of the specimen. Even in these cases, a complete determination of defects is possible if two of these devices are arranged one behind the other. Furthermore, a more accurate determination of the size of a defect in the test piece is possible if it is desired. The actual sensor 53 shown in FIG. 2 includes sensor coils 52, 52 'and 54', 54 "for detecting stray magnetic flux quantities respectively located on the underside of the sensor holders, as shown in FIG In principle, it is a sensor coil combination consisting of a respective lying flat coil whose turns 54 ', 54 "are shown in cross-section and whose axis extends radially to the DUT, and in each case a perpendicular thereto, ie upright standing coil with turns 52, 52 ', whose axis is parallel to the transport direction of the specimen 13. Both the flat-lying coil 52, 52 'and the upright coil 54' 54 "extends in area over virtually the entire width of a sensor holder (eg 21).
Zum Schutz gegen Beschädigung der Spulen sind Hartmetall-Stücke 26, 27 vorgesehen. Weiterhin sind Anschläge 62, 64 an einem Halter 60 vorgesehen, um die Bewegungsmöglichkeit der Sensor-Halterung in radialer Richtung zu limitieren.To protect against damage to the coils carbide pieces 26, 27 are provided. Furthermore, stops 62, 64 are provided on a holder 60 in order to limit the possibility of movement of the sensor holder in the radial direction.
Aufgrund der mechanischen Vorspannung der Sensor-Halterungen (e.g. 21 - 25) oder eines anderen Mechanismus, wie er im folgenden Abschnitt oder im Zusammenhang mit Fig. 3 beschrieben ist, liegen die in einem geeigneten Füllmaterial eingebetteten Spulen 52, 54 normalerweise direkt auf dem Prüfling bzw. der Oberfläche des Rohrs 10 auf. Es ist auch möglich, die Sensorspule 54, deren Achse radial vom Prüfling weg weist und die zum Prüfling radial verlaufende Magnetfeldkomponenten aufnimmt, als eine Flachspule auszuführen. Die Wicklung dieser Spule kann auch z.B. die Form einer auf eine Leiterplatte aufgebrachten Spirale aus leitfähigem Material annehmen.Due to the mechanical bias of the sensor mounts (eg, FIGS. 21-25) or some other mechanism, as described in the following or in connection with FIG. 3, the coils 52, 54 embedded in a suitable filler are normally directly on the DUT or the surface of the tube 10. It is also possible to design the sensor coil 54, the axis of which points radially away from the test object and receives the magnetic field components extending radially to the test object, as a flat coil. The winding of this coil may also be e.g. take the form of an applied to a circuit board spiral of conductive material.
An die Stelle der federnden Gestaltung der Sensor-Halterungen kann auch ein Andrücken drehbar gelagerter, starrer Sensor-Halterungen mittels Pressluft, motorischer Ansteuerung oder einer anderen Art der Regelung erfolgen, um eine maximale Empfindlichkeit der einzelnen Sensoren zu gewährleisten. Die drehbare Lagerung bzw. federnde Wirkung wird durch den Doppelpfeil 69 in Fig. 2 angedeutet. Eine Regelung, die die Zustellung drehbar gelagerter Sensor-Halterungen motorisch vornimmt, wobei die Erfassung der relativen Position der Sensoren zum Prüfling mittels Lichtschranken, induktiver Sensoren oder anderer geeigneter Sensoren stattfindet, ist ebenfalls möglich.Instead of the resilient design of the sensor holders, it is also possible to press on rotatably mounted, rigid sensor holders by means of compressed air, motor control or another type of regulation in order to ensure maximum sensitivity of the individual sensors. The rotatable mounting or resilient action is indicated by the double arrow 69 in Fig. 2. A regulation, which makes the delivery of rotatably mounted sensor mounts by motor, whereby the detection of the relative position of the sensors to the DUT takes place by means of light barriers, inductive sensors or other suitable sensors is also possible.
In Fig. 3 ist weiter eine besonders raumsparende Bauform anhand einer einzelnen Sensor- Halterung dargestellt. Dabei sind die einzelnen Sensor-Halterungen 61 in Form zum rohrfbrmigen Prüfling 10 radial verlaufender Rohre ausgebildet und benötigen somit in Transportrichtung des rohrfbrmigen Prüflings weniger Raum als in der in Fig. 1 gezeigten Ausfuhrungsform. Hier sind die Sensoren 52, 52' und 54', 54" durch ein ringförmiges Hartmetall-Stück 26 geschützt. Wie in den Fig. 1 und 2 ist an den Sensoren eine Kontakt- Vorrichtung 31 vorgesehen, über die durch ein Verbindungskabel die Versorgung und Ableitung der Sensorsignale für die einzelnen Sensoren erfolgt. Im Innern des Rohrs, also an der radial vom Prüfling entfernten Seite des Sensors, befindet sich außer der Kontakt- Vorrichtung 31 eine Ausricht- Vorrichtung 59, die in Zusammenspiel mit nicht gezeigten Vorrichtungen an der Sensor-Halterung 61 für die korrekte axiale Ausrichtung der Sensoren sorgt. Der Sensor selbst wird z.B. mittels einer Schraubenfeder 58 an die Wand 13 des Prüflings 10 angedrückt. Eine Einstellung der Andrückkraft wird z.B. durch eine Schraube 56 ermöglicht. In einer Bohrung dieser Schraube 56 verläuft das Verbindungskabel. Wenn eine Regelung des Abstands der Sensoren von der Wand 13 des Prüflings 10 vorgesehen ist, so kann diese mit Pressluft oder auch über einen Linearmotor oder Spindelantrieb in der rohrförmigen Sensor-Halterung 61 bewirkt werden. Bei dieser Bauform wird der Platzbedarf für zwei dieser Vorrichtungen hintereinander zur lückenlosen Abdeckung des Prüflings besonders gering.In Fig. 3, a particularly space-saving design is further illustrated by a single sensor holder. The individual sensor holders 61 are in the form of rohrfbrmigen test piece 10 formed radially extending tubes and thus require less space in the transport direction of rohrfbrmigen DUT as in the embodiment shown in Fig. 1. Here, the sensors 52, 52 'and 54', 54 "are protected by an annular cemented carbide piece 26. As in Figures 1 and 2, a contact device 31 is provided on the sensors through which the supply and through a connecting cable In the interior of the tube, that is to say on the side of the sensor which is remote from the test object, there is, in addition to the contact device 31, an alignment device 59 which, in conjunction with devices not shown, is connected to the sensor element. The sensor itself is pressed, for example, by means of a helical spring 58 against the wall 13 of the test piece 10. An adjustment of the pressing force is made possible by a screw 56, for example If a control of the distance of the sensors from the wall 13 of the device under test 10 is provided, then this can be done with compressed air or over a linear motor or spindle drive in the tubular sensor holder 61 are effected. In this design, the space required for two of these devices in a row for gapless coverage of the specimen is particularly low.
Außer den beiden in Fig. 1 und Fig. 3 gezeigten Ausführungsformen, in denen die Finger parallel bzw. senkrecht zur Transportvorrichtung verlaufen, kann es sich als sinnvoll erweisen, dass die Finger eine andere Orientierung zur Transportrichtung aufweisen.Apart from the two embodiments shown in FIGS. 1 and 3, in which the fingers run parallel or perpendicular to the transport device, it may prove expedient that the fingers have a different orientation to the transport direction.
Der modulare Aufbau der Testvorrichtung aus Sensor-Halterung 21 - 25, Sensor- Träger 20 und übergeordneter Halterung ermöglicht eine signifikante Reduktion der Teilevielfalt. Durch die federnde Halterung oder eine Regelung des Abstands vom Sensor zum Prüfling wird der Verschleiß der Sensoren verringert. Weiter wird so ein einfacher Austausch einzelner Sensoren im Falle eines Defekts möglich, der nach Abnutzung des Hartmetallteils auftreten kann. Bei den bisher verfugbaren Prüfköpfen für Streuflussmessungen an Rohren muss bei jedem Defekt einer einzelnen Spule der gesamte Prüfkopf ausgetauscht werden, da alle Sensoren im Prüfkopf vergossen sind. Deshalb werden bei einem solchen Tausch immer alle Spulen ersetzt, unabhängig davon, ob sie noch intakt sind. The modular design of the test device from sensor holder 21 - 25, sensor carrier 20 and parent holder allows a significant reduction in the variety of parts. By the resilient support or a regulation of the distance from the sensor to the DUT, the wear of the sensors is reduced. Furthermore, such a simple replacement of individual sensors in the event of a defect is possible, which can occur after wear of the hard metal part. In the case of previously available probes for stray flux measurements on pipes, the entire test head must be replaced with every defect of a single coil since all sensors in the test head are cast. Therefore, any such replacement will always replace all coils, regardless of whether they are still intact.

Claims

Patentansprüche : Claims:
1. Testvorrichtung zur Prüfung von rohrförmigen Prüflingen, gekennzeichnet durch eine Vielzahl einzelner radial beweglicher Testsonden (53), wobei jede Testsonde (53) jeweils eine Prüfspule (54', 54") aufweist, deren Flächennormale senkrecht zur Längsachse des Prüflings (10) gerichtet ist, und weiterhin jede Testsonde eine zweite (52, 52') Prüf spule aufweist, deren Flächennormale im wesentlichen parallel zur Längsachse des Prüflings (10) orientiert ist.1. Test device for testing tubular test specimens, characterized by a plurality of individual radially movable test probes (53), each test probe (53) each having a Prüfspule (54 ', 54 "), the surface normal directed perpendicular to the longitudinal axis of the test piece (10) is, and further each test probe has a second (52, 52 ') test coil, the surface normal is oriented substantially parallel to the longitudinal axis of the specimen (10).
2. Testvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Testsonden sich an fingerförmigen, elastischen und /oder drehbar gelagerten Sonden- Trägern (21 - 25) befinden und die Finger im wesentlichen parallel zur Längsachse des Prüflings verlaufen.2. Test device according to claim 1, characterized in that the test probes are on finger-shaped, elastic and / or rotatably mounted probe carriers (21 - 25) and the fingers are substantially parallel to the longitudinal axis of the specimen.
3. Testvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Testsonden sich in fingerförmigen Sonden-Trägern (61) befinden und die Finger im wesentlichen senkrecht zur Längsachse des Prüflings verlaufen.3. Test device according to claim 1, characterized in that the test probes are in finger-shaped probe carriers (61) and extend the fingers substantially perpendicular to the longitudinal axis of the test specimen.
4. Testvorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass dass die Spule (54), deren Achse radial zum rohrförmigen Prüfling (13) verläuft, eine Flachspule ist.4. Test device according to claim 2 or 3, characterized in that that the coil (54) whose axis extends radially to the tubular test piece (13) is a flat coil.
5. Testvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass dass die Spule (54), deren Achse radial zum rohrförmigen Prüfling (13) verläuft, eine spiralförmige Wicklung aufweist. 5. Test device according to claim 4, characterized in that the coil (54) whose axis extends radially to the tubular test specimen (13) has a spiral winding.
EP07817570A 2006-09-28 2007-09-25 Magnetic leakage flux test system for tubular test samples Withdrawn EP2069774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006046339 2006-09-28
PCT/DE2007/001728 WO2008040312A1 (en) 2006-09-28 2007-09-25 Magnetic leakage flux test system for tubular test samples

Publications (1)

Publication Number Publication Date
EP2069774A1 true EP2069774A1 (en) 2009-06-17

Family

ID=38962793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07817570A Withdrawn EP2069774A1 (en) 2006-09-28 2007-09-25 Magnetic leakage flux test system for tubular test samples

Country Status (4)

Country Link
US (1) US7579831B2 (en)
EP (1) EP2069774A1 (en)
JP (1) JP5140677B2 (en)
WO (1) WO2008040312A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2566933C (en) * 2006-10-17 2013-09-24 Athena Industrial Technologies Inc. Inspection apparatus and method
DE102011055409A1 (en) * 2011-11-16 2013-05-16 V&M Deutschland Gmbh Stray flux probe for non-destructive stray flux testing of bodies made of magnetisable material
CN103592364B (en) * 2013-11-23 2016-05-18 清华大学 The finger contact unit of leakage magnetic detection device in floating type pipeline
CN105241950B (en) * 2015-10-22 2018-11-23 安东检测有限公司 Magnetic leakage probe shell, magnetic leakage probe and Magnetic Flux Leakage Inspecting equipment
EP3171164A1 (en) * 2015-11-20 2017-05-24 General Electric Technology GmbH A tool and a method to measure a contamination in a slot of a conductor bar
CN107167516B (en) * 2017-05-24 2023-09-26 昆明理工大学 Double differential pulse eddy current probe unit, array probe and detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029382A (en) * 1959-08-31 1962-04-10 Russell C Heldenbrand Electro-magnetic flaw finder

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504276A (en) * 1967-04-19 1970-03-31 American Mach & Foundry Printed circuit coils for use in magnetic flux leakage flow detection
JPS5269381A (en) * 1975-12-05 1977-06-09 Sumitomo Metal Ind Method of magnetically detecting flaw
JPS5940265B2 (en) * 1978-02-13 1984-09-28 日本鋼管株式会社 Thermal billet eddy current flaw detection equipment
DE2847716C3 (en) * 1978-11-03 1981-04-23 Institut Dr. Friedrich Förster Prüfgerätebau, 7410 Reutlingen Rotating head for testing elongated ferromagnetic test material
JPH02247556A (en) * 1989-03-20 1990-10-03 Sumitomo Metal Ind Ltd Method and device for detecting decarburized layer
JPH04269653A (en) * 1991-02-25 1992-09-25 Nippon Telegr & Teleph Corp <Ntt> Leakage magnetic flux detector
JPH08101167A (en) * 1994-09-30 1996-04-16 Tokyo Gas Co Ltd Non-destructive inspection sensor and its manufacture
FR2743890B1 (en) * 1996-01-24 1998-04-03 Intercontrole Sa EDGE CURRENT SENSOR AND TUBE CONTROL TOOLS COMPRISING AT LEAST ONE SUCH SENSOR
JP2002533659A (en) * 1998-12-18 2002-10-08 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー Operation method of eddy current sensor and eddy current sensor
US6720764B2 (en) * 2002-04-16 2004-04-13 Thomas Energy Services Inc. Magnetic sensor system useful for detecting tool joints in a downhold tubing string
JP2004028897A (en) * 2002-06-27 2004-01-29 Osaka Gas Co Ltd Eddy-current flaw detection apparatus
EP1394360A1 (en) * 2002-08-23 2004-03-03 Siemens Aktiengesellschaft Nondestructive method for testing a component as well as method to produce a gas turbine blade
US6891380B2 (en) * 2003-06-02 2005-05-10 Multimetrixs, Llc System and method for measuring characteristics of materials with the use of a composite sensor
DE102004035174B4 (en) * 2004-07-16 2006-08-10 V&M Deutschland Gmbh Method and device for non-destructive testing of pipes
GB0428127D0 (en) * 2004-12-22 2005-01-26 Pll Ltd A sensor system for an in-line inspection tool
US20060132123A1 (en) * 2004-12-22 2006-06-22 General Electric Company Eddy current array probes with enhanced drive fields

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029382A (en) * 1959-08-31 1962-04-10 Russell C Heldenbrand Electro-magnetic flaw finder

Also Published As

Publication number Publication date
JP5140677B2 (en) 2013-02-06
US7579831B2 (en) 2009-08-25
JP2010505093A (en) 2010-02-18
US20080079427A1 (en) 2008-04-03
WO2008040312A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
EP1769239B1 (en) Method for testing pipes in a non-destructive manner
DE2608430C3 (en) Holder for programmable probes for connection to a component being tested
WO2008040312A1 (en) Magnetic leakage flux test system for tubular test samples
EP1643208B1 (en) Feeler head and changeable feeler head holder for a coordinates measuring apparatus
EP2569592B1 (en) Probe for a coordinate measuring device for determining the space coordinates on a measurement object
EP1662232A1 (en) Linear position sensor
EP1241437A1 (en) Magnetical position sensor, valve stem with magnetic tube ( ring slices )
DE3235734A1 (en) TURN HEAD PROFILOMETER PROBE
DE2151870B2 (en) Device for detecting errors according to the eddy current method in a workpiece moving along a work path
EP0346689A2 (en) Apparatus for the eddy current testing of the pipes in a heat exchanger
DE102010028017A1 (en) A moving vehicle system and method for detecting a position of a moving vehicle
EP1920263B1 (en) Method of testing unloaded, large-area printed circuit boards with a finger tester
EP0185187B1 (en) Method and eddy current probe for the examination of screws
DE102016123255A1 (en) Device for measuring current flowing in an electrical conductor
EP1393013B1 (en) Testing apparatus for fuel rod
DE102016123122B3 (en) Haptic test measuring device and method for determining a force-displacement curve in a haptic test measurement
EP1227296B1 (en) Measuring system for evaluating the thickness of an oxide layer ( shadow corrosion, lift off ) with a leading sledge
DE2416120A1 (en) METHOD OF MEASURING GEOMETRIC PARAMETERS OF MECHANICAL WORKPIECES
DE69934604T2 (en) DEVICE FOR TESTING CONDOMS
CH673896A5 (en) Non-destructive eddy-current tester - has pairs of coils excited and sampled by multiplexer in clock circuit pre-programmed for computerised scanning of flexible test mat
DE202013103151U1 (en) Device for non-destructive eddy current testing of a component
EP3514509B1 (en) Monitoring sensor for dosed quantities of powder
DE1816207A1 (en) Procedure for non-destructive material testing and device for carrying out the procedure
DE202008007404U1 (en) Measuring device for determining the characteristic of a built-in position encoder on a machine
DE19937205C1 (en) Guide device for measuring sensor engaging workpiece surface has longitudinal element supported in guide device via rollers for precise linear movement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090929

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150724