JPH1038555A - Method and device for measuring outer diameter and shape of steel pipe - Google Patents

Method and device for measuring outer diameter and shape of steel pipe

Info

Publication number
JPH1038555A
JPH1038555A JP19245996A JP19245996A JPH1038555A JP H1038555 A JPH1038555 A JP H1038555A JP 19245996 A JP19245996 A JP 19245996A JP 19245996 A JP19245996 A JP 19245996A JP H1038555 A JPH1038555 A JP H1038555A
Authority
JP
Japan
Prior art keywords
measured
sensor
distance
measuring
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19245996A
Other languages
Japanese (ja)
Inventor
Yoshiaki Itami
美昭 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19245996A priority Critical patent/JPH1038555A/en
Publication of JPH1038555A publication Critical patent/JPH1038555A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously evaluate absolute radius and circularity by a method wherein a non-contact type distance sensor and an angle detecting device are fitted to a hollow cylinder, and a circumferential direction position of the hollow cylinder is measured while the radial distance between a substance to be measured and the distance sensor in the circumferential direction is measured, while eccentricity of the substance to be measured is corrected. SOLUTION: A primary standard having a diameter close to a steel pipe to be measured is set inside a cylinder of a rotary hollow roller with high precision, and the position of a non-contact distance sensor 2 is adjusted by sensor position moving means 7 and height adjustment mechanism 15, and thereafter, measurement instrument signals from a CPU are transmitted to a servo motor 6. The servo motor 6 rotates a high precision rotary hollow roller, and the non-contact distance sensor 2 on a rotary table 12 rotates around the reference primary standard, and a distance to an outer circumference of the reference primary standard is measured. Data are transmitted to the CPU together with a rotation angle measured by a rotary encoder via a slip ring to calculate a distance from a rotation center of the sensor. Next, an actual to-be-measured substance 1 is set to acquire the absolute radius.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測長距離の短いセ
ンサーを用いて、鋼管等の被測定物を広範囲に絶対半径
で測定する鋼管の外径形状測定方法及び装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring an outer diameter of a steel pipe, which measures an object to be measured such as a steel pipe in a wide range with an absolute radius using a sensor having a short measuring distance.

【0002】[0002]

【従来の技術】従来の金属管をはじめとするパイプの外
径測定方法は、例えばノギス、マイクロメーターあるい
は光切断法を用いて測定する直径法による測定のため、
外径は同じでも半径は異なる形状、すなわち等径歪円の
ような形状は検出できない。この方式としては、例えば
実公昭40−46377号公報あるいは特開昭52−1
19253号公報等棒材の全周にわたる直径を測定する
方式があるが、正確な輪郭形状は把握できない。これら
の方式では対称なものしか正確に形状を把握することは
できず、正確な形状測定には適していない。
2. Description of the Related Art A conventional method for measuring the outer diameter of a pipe such as a metal pipe is based on a diameter method, for example, using a caliper, a micrometer, or a light cutting method.
Shapes having the same outer diameter but different radii, that is, shapes such as equal diameter strain circles cannot be detected. This method is disclosed in, for example, Japanese Utility Model Publication No.
Although there is a method of measuring the diameter of a bar material over the entire circumference as disclosed in Japanese Patent No. 19253, an accurate contour shape cannot be grasped. In these methods, only the symmetric type can accurately grasp the shape, and is not suitable for accurate shape measurement.

【0003】図1(c)に示した同じ外径である3次の
等径歪円を、直径法で測定した場合の例を図1(b)に
示す。このように従来の直径法で測定すると、実際の形
状は真円ではないにも関わらず、真円であるかのような
測定結果が得られてしまうことがある。
FIG. 1B shows an example in which the third-order equal-diameter strain circle having the same outer diameter shown in FIG. 1C is measured by a diameter method. As described above, when the measurement is performed by the conventional diameter method, a measurement result as if the actual shape is a perfect circle may be obtained although the actual shape is not a perfect circle.

【0004】また、半径法で測定する場合には、測定距
離の短いセンサーを使用すると、被測定物の最大半径、
最小半径の差を真円度として表示するのみにとどまり、
半径値自体を測定することができないという問題があ
る。一方、測定距離が長いセンサーは、レーザー距離セ
ンサーや磁気方式のギャップセンサー等を用いた非接触
測定を行う場合、分解能が低くなるため高精度な形状測
定ができないという問題がある。
In the case of measurement by the radius method, if a sensor having a short measurement distance is used, the maximum radius of the object to be measured can be reduced.
It only displays the difference between the minimum radii as roundness,
There is a problem that the radius value itself cannot be measured. On the other hand, when a non-contact measurement using a laser distance sensor, a magnetic gap sensor, or the like is performed on a sensor having a long measurement distance, there is a problem in that high-resolution shape measurement cannot be performed because the resolution is low.

【0005】[0005]

【発明が解決しようとする課題】本発明は、絶対半径と
真円度の評価を同時に行うことを可能にする鋼管の外径
形状測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus for measuring the outer diameter of a steel pipe, which makes it possible to simultaneously evaluate the absolute radius and the roundness.

【0006】[0006]

【課題を解決するための手段】本発明は、以下の通りで
ある。 (1)鋼管の外径形状を測定するに際して、被測定物の
外径よりも大なる中空円筒体に非接触型の距離センサー
および角度検出装置を取り付け、該角度検出で該中空円
筒体の円周方向位置を測定しつつ、当該円周方位におけ
る被測定物と距離センサーの半径方向の距離を測定しつ
つ、被測定物の偏心を補正し、被測定物の円周方向の各
位置における絶対半径を算出することを特徴とする鋼管
の外径形状測定方法。 (2)被測定物より大なる高精度軸受にて回転する中空
円筒に非接触距離測定センサーの半径方向位置調整テー
ブルと高さ調整テーブルを持ち、中空円筒に直接一体に
取り付けたリング状のロータリーエンコーダによる角度
検出と、当該角度に同期した測定センサーからの距離情
報をスリップリングを介し、電気信号伝達させ、CPU
による演算処理を行い絶対半径を算出する鋼管の外径形
状測定装置。
SUMMARY OF THE INVENTION The present invention is as follows. (1) When measuring the outer diameter shape of a steel pipe, a non-contact type distance sensor and an angle detection device are attached to a hollow cylinder larger than the outer diameter of an object to be measured, and the circle of the hollow cylinder is detected by the angle detection. While measuring the circumferential position, the eccentricity of the measured object is corrected while measuring the radial distance between the measured object and the distance sensor in the circumferential direction, and the absolute value of each position of the measured object in the circumferential direction is measured. A method for measuring the outer diameter shape of a steel pipe, comprising calculating a radius. (2) A ring-shaped rotary that has a radial position adjustment table and a height adjustment table for a non-contact distance measurement sensor in a hollow cylinder that rotates with a high-precision bearing larger than the object to be measured, and is directly attached to the hollow cylinder. The angle detection by the encoder and the distance information from the measurement sensor synchronized with the angle are transmitted via a slip ring to an electric signal, and the CPU
The outer diameter shape measuring device for steel pipes that calculates the absolute radius by performing arithmetic processing according to.

【0007】すなわち、本発明は外径形状を測定する例
えば鋼管に近い径の基準原器を用いて、予め基準原器の
中心と非接触距離センサーとの間の距離を測定してお
き、次いで基準原器を取り外し、形状を測定する鋼管を
基準原器の後に装着して非接触距離センサーと鋼管との
距離を測定し、その測定結果から鋼管の半径を測定する
ようにしたものである。
That is, according to the present invention, the distance between the center of the reference prototype and the non-contact distance sensor is measured in advance by using a reference prototype having a diameter close to a steel pipe for measuring the outer diameter shape, and then, The reference prototype is removed, and a steel pipe whose shape is to be measured is mounted after the reference prototype, the distance between the non-contact distance sensor and the steel pipe is measured, and the radius of the steel pipe is measured from the measurement result.

【0008】予め、基準原器の中心と非接触式距離セン
サーとの距離は、該距離センサーからの入射光が基準原
器からの反射光を受光し、基準原器の半径も判っている
ことから測定可能となっている。従って、距離センサー
の位置を変えずに基準原器に代って鋼管を装着し、該距
離センサーから鋼管の外面よりの反射光を測定し、距離
センサーを鋼管の回りに周回することにより、鋼管の外
径形状を測定するようにしたものである。
In advance, the distance between the center of the reference prototype and the non-contact distance sensor is such that incident light from the distance sensor receives reflected light from the reference prototype and the radius of the reference prototype is known. Can be measured from Therefore, a steel pipe is attached in place of the reference prototype without changing the position of the distance sensor, the reflected light from the outer surface of the steel pipe is measured from the distance sensor, and the distance sensor circulates around the steel pipe, whereby the steel pipe is rotated. Is to measure the outer diameter shape.

【0009】[0009]

【発明の実施の形態】まず、測定距離の短いセンサーを
用いて絶対半径の測定を可能にするために、被測定物の
半径に近い基準原器を測定し、センサーの位置を読み取
り、回転中心からの位置を算出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, in order to make it possible to measure an absolute radius using a sensor having a short measuring distance, a reference prototype close to the radius of an object to be measured is measured, the position of the sensor is read, and the rotation center is read. From the position.

【0010】この場合の基準原器とは、真円形状に近い
既知平均寸法の円筒と定義する。基準位置からの被測定
物の測定値との差を用いて、被測定物を測定したときに
絶対値の算出が可能となり、真円度のみならず絶対半径
の測定が可能となり、真円度のみならず、絶対半径の測
定が可能となる。
In this case, the reference prototype is defined as a cylinder having a known average size close to a perfect circle. Using the difference between the measured value of the measured object from the reference position and the measured object, the absolute value can be calculated when the measured object is measured. In addition, the absolute radius can be measured.

【0011】また、被測定物の回転中心からのズレ(偏
心)の影響は具体的には以下に示すような偏心項を数値
処理にて除去することで、正確な形状を求めることがで
きる。これにより、被測定物の形状を極座標により測定
し、正確な形状表示と共に絶対半径の測定を可能とし
た。
Further, the influence of the deviation (eccentricity) from the center of rotation of the object to be measured can be determined more precisely by removing the eccentricity term shown below by numerical processing. As a result, the shape of the object to be measured can be measured in polar coordinates, and the absolute shape can be measured together with accurate shape display.

【0012】具体的な計算法を以下に示す。計算法は半
径rと角度θを測定する方法を用いる。絶対半径の算出
方法は、測定範囲の狭いセンサーでは、センサーの基準
位置を測定できれば、測定範囲内にある円筒体の絶対半
径を求めることができる。図2に計算概略図を示す。ま
ず、前述の真円形状に近い既知の半径の基準原器r0
測定し、センサーの相対位置における値を求める。(こ
こでは、偏心がない場合を想定したが、以下の手法にて
偏心は除去する。) 次に被測定物を測定しセンサー原点と基準原器との差を
0 ’とすると、これら0次項の差から被測定物の平均
の絶対半径値rm =r0 +a0 ’+a0 が算出できる。
A specific calculation method will be described below. The calculation method uses a method of measuring the radius r and the angle θ. The method for calculating the absolute radius is such that, for a sensor having a narrow measurement range, if the reference position of the sensor can be measured, the absolute radius of the cylinder within the measurement range can be obtained. FIG. 2 shows a schematic diagram of the calculation. First, a reference prototype r 0 having a known radius close to the above-mentioned perfect circular shape is measured, and a value at a relative position of the sensor is obtained. (Here, it is assumed that there is no eccentricity, but the eccentricity is removed by the following method.) Next, when the measured object is measured and the difference between the sensor origin and the reference prototype is a 0 ′, these 0 absolute radius value r m = r 0 + a 0 average of the object to be measured from the difference in the next section '+ a 0 can be calculated.

【0013】また、偏心項については被測定物の回転中
心とセンサーの回転中心のずれを補正することで解決で
きる。以下、具体的に計算方法を示す。被測定物を固定
してセンサーが回転するとした場合、任意の角度θとす
ると、偏心成分である一次項a1 sinθ+b1 cos
θを引くことで除去でき、形状(相対半径)は抽出でき
る(図2点線部)。ここで、角度360/m°(m:測
定点数)ごとに測定したとすると、 である。
The eccentric term can be solved by correcting the deviation between the rotation center of the object to be measured and the rotation center of the sensor. Hereinafter, a specific calculation method will be described. Assuming that the sensor is rotated with the object to be measured fixed, assuming an arbitrary angle θ, the primary term a 1 sin θ + b 1 cos which is an eccentric component
The shape (relative radius) can be extracted by subtracting θ (dotted line in FIG. 2). Here, if it is measured every angle 360 / m ° (m: number of measurement points), It is.

【0014】以上を組み合わせることで、次式に示すよ
うに絶対半径による測定で形状測定が可能となる。形状
をε(θ)とすると、 ε(θ)=r0 +a0 ’+a0+r(θ)−(a0 +a
1 sinθ+b1 cosθ) 但し、偏心量が大きい場合は偏心によるθの補正をし
て、計算を行う必要がある。
By combining the above, shape measurement can be performed by measurement using an absolute radius as shown in the following equation. Assuming that the shape is ε (θ), ε (θ) = r 0 + a 0 ′ + a 0 + r (θ) − (a 0 + a
(1 sin θ + b 1 cos θ) However, when the amount of eccentricity is large, it is necessary to perform correction by correcting θ by eccentricity.

【0015】以上のように、本発明は測長距離の狭いセ
ンサーを用いて、パイプの偏心成分の影響による形状を
除去し、さらに既知の基準原器を用いて測定を行うこと
ができるので、非常に広い範囲の絶対半径の測定が可能
となり、円形の形状測定が、正確かつ廉価にできる。
As described above, according to the present invention, it is possible to remove the shape due to the influence of the eccentric component of the pipe by using a sensor having a short measuring distance, and to perform measurement using a known reference prototype. A very wide range of absolute radii can be measured, and circular shape measurement can be performed accurately and at low cost.

【0016】基準原器で測定を行い、それからの移動が
正確にわかるよう測長センサーの半径方向の位置センサ
ーを付加した移動装置を付加すれば、センサー移動ごと
の基準原器の測定を省略することも可能である。
If a measuring device is added with a measuring device and a position sensor in the radial direction of the length measuring sensor is added so that the movement from the measuring device can be accurately recognized, the measurement of the measuring standard device for each movement of the sensor is omitted. It is also possible.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。図3は本発明の実施例の正面図であ
り、図4は同側面断面図である。この装置は、主として
ハウジング13、高さ調整テーブル8、高精度回転中空
ローラー3、回転テーブル12、非接触距離測定センサ
ー2からなっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a front view of the embodiment of the present invention, and FIG. 4 is a side sectional view of the embodiment. This device mainly includes a housing 13, a height adjustment table 8, a high-precision rotary hollow roller 3, a rotary table 12, and a non-contact distance measuring sensor 2.

【0018】高さ調整テーブル8はハウジング13上に
配置されており、高さ調節機構15によってハウジング
13からの高さを調節可能である。高精度回転中空ロー
ラー3は、高さ調節テーブル8に高精度軸受を介して設
置されていて、同じく高さ調節テーブル8上に配置され
たサーボモーター6からの駆動力が駆動力伝達機構16
を介して伝達される。高精度回転中空ローラー3は、ロ
ータリーエンコーダー4によって回転角度を検出可能で
ある。高精度回転中空ローラー3の側方には回転テーブ
ル12が設置されていて、高精度回転中空ローラー3と
一体となって回転する。回転テーブル12には非接触距
離測定センサー2が、センサー位置移動手段7で半径方
向に移動可能に配置されている。非接触距離測定センサ
ー2は回転テーブル12を貫通する接点によってスリッ
プリング5と接触しており、入出力電圧等を供給するよ
うになっている。非接触距離測定センサー2とロータリ
ーエンコーダー4からの出力はそれぞれCPUに伝達さ
れ、鋼管の形状を算出する。
The height adjusting table 8 is arranged on the housing 13, and the height from the housing 13 can be adjusted by a height adjusting mechanism 15. The high-precision rotary hollow roller 3 is installed on the height adjustment table 8 via a high-precision bearing, and the driving force from the servo motor 6 also arranged on the height adjustment table 8 is transmitted by a driving force transmission mechanism 16.
Is transmitted via The rotation angle of the high-precision rotating hollow roller 3 can be detected by a rotary encoder 4. A rotary table 12 is provided beside the high-precision rotary hollow roller 3, and rotates integrally with the high-precision rotary hollow roller 3. The non-contact distance measuring sensor 2 is arranged on the turntable 12 so as to be movable in the radial direction by the sensor position moving means 7. The non-contact distance measuring sensor 2 is in contact with the slip ring 5 by a contact penetrating the rotary table 12, and supplies an input / output voltage or the like. Outputs from the non-contact distance measuring sensor 2 and the rotary encoder 4 are transmitted to the CPU, respectively, to calculate the shape of the steel pipe.

【0019】また、このCPUは、サーボモーター6を
制御するようにもなっている。さらに、高さ調節機構1
5をモーター駆動の機構として、CPUにより制御する
ようにしてもよい。このような構造とすれば、センサー
からのフィードバックにより高さ調整テーブル8とセン
サー位置移動手段7を自動的に位置設定することが可能
となる。
The CPU controls the servo motor 6. Furthermore, height adjustment mechanism 1
5 may be controlled by a CPU as a motor-driven mechanism. With such a structure, the height adjustment table 8 and the sensor position moving means 7 can be automatically set in position by feedback from the sensor.

【0020】回転テーブル12上には非接触距離測定セ
ンサー2のデジタル処理装置9と、デジタル処理装置9
に電源を供給する電圧安定装置10も配置されている。
A digital processing device 9 for the non-contact distance measuring sensor 2 and a digital processing device 9
A voltage stabilizer 10 for supplying power to the power supply is also provided.

【0021】この装置を用いて鋼管の形状を測定する方
法について説明する。まず、測定する鋼管と径が近い基
準原器を高精度回転中空ローラー3の円筒内部にセット
し、必要に応じて非接触距離センサー2の位置をセンサ
ー位置移動手段7及び高さ調節機構15で調整した後、
CPUからの測定命令信号がサーボモーター6に伝達さ
れる。サーボモーター6は高精度回転中空ローラー3を
回転させ、回転テーブル12上の非接触距離測定センサ
ー2は基準原器の回りを回転する。非接触距離測定セン
サー2は基準原器の外周までの距離を測定する。測定し
た距離データは、スリップリング5を介してロータリー
エンコーダー4で測定した回転角度とともにCPUに伝
達され、センサーの回転中心からの距離が計算される。
次に、実際に測定する鋼管などの被測定物1をセットし
て鋼管外周までの距離Lを測定すれば、前述の計算方法
に従って、絶対半径による寸法形状が把握できる。
A method for measuring the shape of a steel pipe using this apparatus will be described. First, a reference prototype whose diameter is close to the steel pipe to be measured is set inside the cylinder of the high-precision rotating hollow roller 3, and the position of the non-contact distance sensor 2 is adjusted by the sensor position moving means 7 and the height adjusting mechanism 15 as necessary. After adjusting,
A measurement command signal from the CPU is transmitted to the servo motor 6. The servo motor 6 rotates the high-precision rotary hollow roller 3, and the non-contact distance measuring sensor 2 on the rotary table 12 rotates around the reference prototype. The non-contact distance measuring sensor 2 measures the distance to the outer circumference of the reference prototype. The measured distance data is transmitted to the CPU via the slip ring 5 together with the rotation angle measured by the rotary encoder 4, and the distance from the rotation center of the sensor is calculated.
Next, if the object 1 such as a steel pipe to be actually measured is set and the distance L to the outer circumference of the steel pipe is measured, the dimensional shape based on the absolute radius can be grasped in accordance with the above-described calculation method.

【0022】上述した装置及び方法で、外径D=75.
0mmで、肉厚t=1.6mm(t/D=2.1%)の薄肉
電縫鋼管を4つに分割したロールで定形した場合の形状
測定結果を図4に示す。基準原器を半径37.15mm
(直径74.3mm)を用いて、37.13mmの孔型径で
成形したパイプ形状である。
With the apparatus and method described above, the outer diameter D = 75.
FIG. 4 shows a shape measurement result when a thin-walled electric resistance welded steel pipe having a thickness of t = 1.6 mm (t / D = 2.1%) having a thickness of 0 mm is formed with four divided rolls. 37.15mm radius for reference prototype
(Diameter: 74.3 mm) with a hole diameter of 37.13 mm.

【0023】図5の左が鋼管の上、右が鋼管の下を示
す。ロールとロールの間の部分にロールのフランジによ
るパイプ凹みはロール位置のズレによって発生するが、
このように左下にあるパイプの形状不良(ロールマー
ク)を捉えることができた。
FIG. 5 shows the upper part of the steel pipe and the right part shows the lower part of the steel pipe. The pipe dent due to the roll flange in the part between the rolls is caused by the displacement of the roll position,
In this way, it was possible to catch the shape defect (roll mark) of the pipe at the lower left.

【0024】[0024]

【発明の効果】本発明方法は、鋼管の定形ラインにおい
て、パイプ寸法や真円度のオンラインでの寸法測定を廉
価にかつ高精度に行うことを可能にするものであり、外
径の寸法精度の高い鋼管を造る上で工業上有益な効果を
もたらすものである。
The method of the present invention makes it possible to measure the dimensions of pipes and their roundness on-line at low cost and with high accuracy in a fixed steel pipe line. This has an industrially beneficial effect in producing a steel pipe having a high hardness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来法と、本発明法の比較図である。FIG. 1 is a comparison diagram between the conventional method and the method of the present invention.

【図2】偏心補正による形状抽出方法および基準原器を
用いた絶対半径への比較方法の説明図である。
FIG. 2 is an explanatory diagram of a shape extraction method by eccentricity correction and a comparison method to an absolute radius using a reference prototype.

【図3】本発明の実施例に係る装置の正面図である。FIG. 3 is a front view of the apparatus according to the embodiment of the present invention.

【図4】本発明の実施例に係る装置の側面断面図であ
る。
FIG. 4 is a side sectional view of an apparatus according to an embodiment of the present invention.

【図5】図3、図4に示した装置により鋼管の形状を測
定した結果を示す図表である。
FIG. 5 is a table showing the results of measuring the shape of a steel pipe with the apparatus shown in FIGS. 3 and 4.

【符号の説明】[Explanation of symbols]

1 被測定物 2 非接触距離センサー 3 高精度回転中空円筒ローラー 4 ロータリーエンコーダー 5 スリップリング 6 サーボモーター 7 センサー位置移動手段 8 高さ調整テーブル 9 デジタル処理装置 10 電圧安定装置 12 回転テーブル 13 ハウジング 15 高さ調整機構 16 駆動力伝達機構 L センサーから鋼管外周までの距離 DESCRIPTION OF SYMBOLS 1 Measurement object 2 Non-contact distance sensor 3 High precision rotating hollow cylindrical roller 4 Rotary encoder 5 Slip ring 6 Servo motor 7 Sensor position moving means 8 Height adjustment table 9 Digital processing device 10 Voltage stabilizer 12 Rotary table 13 Housing 15 Height Adjustment mechanism 16 Driving force transmission mechanism L Distance from sensor to outer circumference of steel pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼管の外径形状を測定するに際して、被
測定物の外径よりも大なる中空円筒体に非接触型の距離
センサーおよび角度検出装置を取り付け、該角度検出で
該中空円筒体の円周方向位置を測定しつつ、当該円周方
位における被測定物と距離センサーの半径方向の距離を
測定しつつ、被測定物の偏心を補正し、被測定物の円周
方向の各位置における絶対半径を算出することを特徴と
する鋼管の外径形状測定方法。
When measuring the outer diameter shape of a steel pipe, a non-contact type distance sensor and an angle detecting device are attached to a hollow cylindrical body larger than the outer diameter of an object to be measured, and the hollow cylindrical body is detected by the angle detection. While measuring the circumferential position of the object, the eccentricity of the object to be measured is corrected while measuring the radial distance of the object to be measured and the distance sensor in the circumferential azimuth, and each position of the object to be measured in the circumferential direction is measured. A method for measuring an outer diameter shape of a steel pipe, wherein an absolute radius is calculated.
【請求項2】 被測定物より大なる高精度軸受にて回転
する中空円筒に非接触距離測定センサーの半径方向位置
調整テーブルと高さ調整テーブルを持ち、中空円筒に直
接一体に取り付けたリング状のロータリーエンコーダに
よる角度検出と、当該角度に同期した測定センサーから
の距離情報をスリップリングを介し、電気信号伝達さ
せ、CPUによる演算処理を行い絶対半径を算出する鋼
管の外径形状測定装置。
2. A ring-shaped cylinder having a radial position adjustment table and a height adjustment table of a non-contact distance measuring sensor mounted on a hollow cylinder rotating with a high-precision bearing larger than an object to be measured, and directly attached to the hollow cylinder. An outer diameter shape measuring device for a steel pipe, in which an angle is detected by a rotary encoder and distance information from a measurement sensor synchronized with the angle is transmitted as an electric signal via a slip ring, and an arithmetic process is performed by a CPU to calculate an absolute radius.
JP19245996A 1996-07-22 1996-07-22 Method and device for measuring outer diameter and shape of steel pipe Withdrawn JPH1038555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19245996A JPH1038555A (en) 1996-07-22 1996-07-22 Method and device for measuring outer diameter and shape of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19245996A JPH1038555A (en) 1996-07-22 1996-07-22 Method and device for measuring outer diameter and shape of steel pipe

Publications (1)

Publication Number Publication Date
JPH1038555A true JPH1038555A (en) 1998-02-13

Family

ID=16291657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19245996A Withdrawn JPH1038555A (en) 1996-07-22 1996-07-22 Method and device for measuring outer diameter and shape of steel pipe

Country Status (1)

Country Link
JP (1) JPH1038555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396264B1 (en) * 2001-06-13 2003-09-02 삼성전자주식회사 Mehtod for measuring bare fiber roundness of optical fiber drawing equipments
JP2008157863A (en) * 2006-12-26 2008-07-10 Nissan Diesel Motor Co Ltd Device and method for measuring roundness
CN109211169A (en) * 2018-09-18 2019-01-15 江苏神通阀门股份有限公司 A kind of detection system and its detection method measuring line size parameter
WO2023113470A1 (en) * 2021-12-14 2023-06-22 주식회사 엘지에너지솔루션 Electrode assembly external diameter measurement device and external diameter measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396264B1 (en) * 2001-06-13 2003-09-02 삼성전자주식회사 Mehtod for measuring bare fiber roundness of optical fiber drawing equipments
JP2008157863A (en) * 2006-12-26 2008-07-10 Nissan Diesel Motor Co Ltd Device and method for measuring roundness
CN109211169A (en) * 2018-09-18 2019-01-15 江苏神通阀门股份有限公司 A kind of detection system and its detection method measuring line size parameter
WO2023113470A1 (en) * 2021-12-14 2023-06-22 주식회사 엘지에너지솔루션 Electrode assembly external diameter measurement device and external diameter measurement method

Similar Documents

Publication Publication Date Title
KR102680987B1 (en) Shaft workpiece in-place non-contact detection method
CA2682635C (en) Method for measuring the roundness of round profiles
JP2000501505A (en) Surface shape measurement
CN110470243B (en) Non-contact sensor-based workpiece-biasable inner circle measurement method and device
WO2011069219A1 (en) A system for the measurement of the deviations from form and position of the surfaces and axes of rotational work-pieces towards a virtual primary datum
Chen et al. A stitching linear-scan method for roundness measurement of small cylinders
JPH01195309A (en) Measuring instrument for cylindrical body
Li et al. High-accuracy roundness measurement of small cylindrical workpieces by a high-frequency filtering method
JP2002005653A (en) Method and apparatus for measurement of screw dimension
JPH1038555A (en) Method and device for measuring outer diameter and shape of steel pipe
GB2197477A (en) Diametral variation determination for workpieces
CN107378643A (en) Circular shell wall thickness is in position detecting method
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JPH06147879A (en) Measuring method of cylindrical profile
CN207180615U (en) Non-contact type bearing lasso inner diameter measuring device
JPH0711412B2 (en) Pipe shape measuring device
JPH05272958A (en) Automatic detection method and detector for rotation center position by flat substrate and three sensors
Osanna et al. Cylindricity—a well known problem and new solutions
JP3722288B2 (en) Cylindrical shape measurement method
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
JPH073327B2 (en) Method and apparatus for automatic measurement of tubular products
JPH0648333Y2 (en) Roll bending / wear measuring device
JPH0712501A (en) Shape measuring device of tubular body
JPH05272959A (en) Measurement of roll profile
JPH07318301A (en) Method and device for measuring uneven wall thickness of cylindrical body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007