JP3722288B2 - Cylindrical shape measurement method - Google Patents

Cylindrical shape measurement method Download PDF

Info

Publication number
JP3722288B2
JP3722288B2 JP2003055486A JP2003055486A JP3722288B2 JP 3722288 B2 JP3722288 B2 JP 3722288B2 JP 2003055486 A JP2003055486 A JP 2003055486A JP 2003055486 A JP2003055486 A JP 2003055486A JP 3722288 B2 JP3722288 B2 JP 3722288B2
Authority
JP
Japan
Prior art keywords
displacement
cross
cylindrical body
measurement target
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003055486A
Other languages
Japanese (ja)
Other versions
JP2004264191A (en
Inventor
勝幸 遠藤
Original Assignee
福島県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福島県 filed Critical 福島県
Priority to JP2003055486A priority Critical patent/JP3722288B2/en
Publication of JP2004264191A publication Critical patent/JP2004264191A/en
Application granted granted Critical
Publication of JP3722288B2 publication Critical patent/JP3722288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はオフセット印刷機械用インクの練りロール、ゴム圧延用のカレンダロール、鉄鋼圧延ロールなど、比較的大型で高精度な形状が要求される円筒型機械加工物の形状を、三次元的に高精度に測定する円筒体の形状測定方法に関するものである。
【0002】
【従来の技術】
オフセット印刷機械に使われるインクの練りロールは、高精度な円筒形状であることが求められる。形状が理想的な円筒形状からずれていると、印刷のムラが生じる。同様に、ゴム圧延、鉄鋼圧延のロールも、形状の誤差がそのまま製品に転写されるため、高精度な円筒体であることが要求されている。
【0003】
このような円筒形状を測定するために、比較的小型の円筒体に限っては、汎用円筒形状測定機が市販され、広く使われている。この汎用円筒形状測定機では、ひとつの変位検出器を用い、測定対象円筒体あるいは変位検出器の回転運動と、変位検出器の測定対象円筒体の軸方向に沿った直進運動により、変位検出器を測定対象円筒体の表面に沿って走査させ、形状を測定するものである。
【0004】
この汎用円筒形状測定機では、回転運動と直進運動における運動誤差と軸方向に移動するためのガイドレールの曲がりや傾きなどの誤差が測定精度に大きく影響される。特に大型の円筒体を測定する場合には、変位検出器を円筒体表面上に高精度に走査させることは難しく、精度の高い測定ができなかった。
【0005】
そこで、この問題を解決するために、例えば広く知られている3点法真円度測定(例えば特許文献1参照)を用いて、測定対象円筒体の軸直角断面の周囲に3本の変位検出器を配し、運動誤差を伴いながら回転する測定対象円筒体の運動誤差と形状を3本で同時に検出・記録し、検出結果の演算処理によって、測定対象円筒体の軸直角断面の形状を得ることができる。
【0006】
しかしこの方法で得られるのは、3本の変位検出器を順次軸方向にずらせて測定していくので、測定できるのは軸直角断面の形状だけであり、各測定点における相対的な位置関係を測定することができない。このため運動誤差や軸方向に移動するためのガイドレールの曲がりや傾きなどの誤差、測定対象円筒体を水平に置いて測定した場合、重力によるたわみの影響などを除去することができない。特許文献1の段落(0056)には、「振れ回りに起因する誤差が混入するが、(中略)その影響は抑制される」と記載されているが数式22、23には誤りがあり、軸心ずれ量や、テーパ形状などに相当する各断面の相対的な位置関係は測定することができない。
【0007】
【特許文献1】
特開平6ー147879(段落0010−0013、0056 図1)
【0008】
【発明が解決しようとする課題】
本発明は上記問題を改善し、簡単な構造の装置で、測定対象円筒体の回転中の運動誤差やガイドレールの変形に起因する変位検出器の位置姿勢誤差の影響を受けずに、測定対象円筒体の三次元的な形状を高精度に測定できる円筒体の形状測定方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明の請求項1記載の円筒体の形状測定方法は、少なくとも6本の変位検出器を、測定対象円筒体の軸方向に沿って等間隔dだけ離れた3カ所の軸直角断面の外周上に、少なくとも3本、少なくとも2本、少なくとも1本ずつそれぞれ配置すると共に、各変位検出器の検出角度をずらせて、測定対象円筒体の半径方向に設置し、測定対象円筒体を回転させながら、各変位検出器の相対位置を保った状態で軸方向への距離dのm分の1が整数となる距離ずつ移動させて変位データの収集を同時に行ない、同一外周上に配置した少なくとも3本の変位検出器で収集した変位データから、測定対象円筒体の、各断面における真円度形状と平均半径を求めると共に、相対位置を保った前記各変位検出器で同時に収集した変位データから、各中心軸の曲がりに相当する各断面の心ずれ量を求め、これらの結果を合成することにより、測定対象円筒体の三次元的な形状を測定することを特徴とするものである。
【0010】
本発明の請求項2記載の円筒体の形状測定方法は、相対位置を保った各変位検出器で同時に収集した変位データから、3カ所の軸直角断面における相対的な中心位置の心ずれ量を求め、これを基準点から順次演算して各軸直角断面における心ずれ量を測定することを特徴とするものである。
【0011】
【発明の実施の形態】
以下本発明の実施の一形態を図1ないし図8を参照して詳細に説明する。図1は円筒体の形状測定装置を示すもので、これは円柱体または円筒体など断面円形状をなす測定対象円筒体1を水平に支持して回転させる回転機構2と、変位検出器取付台3と、この変位検出器取付台3を測定対象円筒体1の軸方向に沿って平行に移動させる水平移動機構4とから構成されている。
【0012】
前記変位検出器取付台3には、図2に示すように合計6本の変位検出器S1〜S6が、測定対象円筒体1の外周に位置するように取付けられ、各変位検出器S1〜S6は、測定対象円筒体1の軸方向に沿って等間隔dだけ離れた3カ所にそれぞれ、3本、2本、1 本ずつ配置されている。また検出器S1〜S6の検出方向は、測定対象円筒体1の半径方向に一致するようにそれぞれ角度を、例えば図3に示すように水平基準線からの周方向に配置角φ1 〜φ6 ずらせてセットされている。
【0013】
測定方法は、まず変位検出器取付台3を固定した状態で、測定対象円筒体1を数回、回転させる。なお、このとき測定対象円筒体1は振れ周りなどの回転運動誤差を伴っている。回転角度に同期して、6本の変位検出器S1〜S6の出力値を同時に測定して記録する。次に変位検出器取付台3を、各変位検出器S1〜S6の相対的な位置関係を保ったまま、測定対象円筒体1の軸方向にdだけ移動させる。ここで再び測定対象円筒体1を回転させながら各変位検出器S1〜S6の出力を同時に記録する。この操作を、測定する測定対象円筒体1の軸方向の全範囲にわたって順次測定して、これを記録していく。
【0014】
次に記録した測定値から、演算により形状を算出する方法について説明する。まず、測定対象円筒体1の軸方向に沿って間隔dずつ離れた位置の各軸直角断面に、それぞれ1、2、・・・、n、・・・、Nと番号をふる。図2に示すような、n番目の軸直角断面nの真円度形状rn(θ)は、同一軸直角断面に取付けた3本の変位検出器S1〜S3で検出された出力値から、よく知られた3点法真円度測定法により算出する。この方法により、変位検出器S1〜S3が走査した全軸直角断面1〜Nの真円度形状r1 (θ)〜rN (θ)を得ることができる。
【0015】
次に図4に示すような、各軸直角断面の平均半径rnoは、次のようにして求める。まず、変位検出器S1〜S3の水平基準線からの周方向の配置角φ1 〜φ3 から、次のベクトル外積の数式を用いて定数b1 〜b3 を算出する。
【0016】
【数1】

Figure 0003722288
【0017】
ある断面n上で記録された変位検出器S1〜S3の出力値mn1(θ)〜mn3(θ)から、既に得られている前記軸直角断面の真円度形状rn(θ)を差し引き、それぞれb1〜b3を乗算して加算し、その結果をb1〜b3の和で除せば、断面nの平均半径rnoと、変位検出器の電気的オフセット量などから決まる定数m0 の和を、次の数式のように求めることができる。
【0018】
【数2】
Figure 0003722288
【0019】
m0 を直接知ることは本手法では困難であるが、この値は断面を移動しても常に一定であるので、平均半径rnoの軸方向の相対的な変化を知ることができる。
【0020】
次に、各軸直角断面の心ずれ量を算出する方法について説明する。変位検出器S1〜S3が、測定対象円筒体1のn番目の軸直角断面にあるとき、変位検出器S4、S5はn+1番目、変位検出器S6はn+2番目の位置にある。
【0021】
測定データを採取する回転運動を行っているとき、変位検出器S1〜S3の出力には、軸直角断面nの真円度形状rn(θ)、平均半径rnoと心ずれ量hnx、hny、回転運動誤差(平行移動と振れ回り)、ガイドレールの曲がりに起因する変位検出器S1〜S3の位置姿勢誤差が混入している。
【0022】
変位検出器S1〜S3から間隔dだけ離れた、変位検出器S4、S5の出力にも、同様に軸直角断面n+1の真円度形状r(n+1)(θ)と平均半径r(n+1)0と心ずれ量h(n+1)x、h(n+1)y、測定対象円筒体の回転運動誤差(平行移動と振れ回り)、ガイドレールの曲がりに起因する変位検出器S4、S5の位置姿勢誤差が混入している。
【0023】
更に変位検出器S4、S5から間隔dだけ離れた変位検出器S6の出力値には、軸直角断面n+2の真円度形状 r(n+2)(θ) と平均半径r(n+2)0と心ずれ量h(n+2)x、h(n+2)y 、測定対象円筒体1の回転運動誤差(平行移動と振れ回り)、ガイドレールの曲がりに起因する変位検出器S6の位置姿勢誤差が混入している。
【0024】
このうち、軸直角断面n、 n+1、n+2のそれぞれの真円度形状 rn(θ)、r(n+1)(θ)、 r(n+2)(θ) と、平均半径rno、r(n+1)o、 r(n+2) o は、数式1と数式2で求めた結果を用いて、変位検出器の出力値から取り除くことができる。この結果、残されるのは、変位検出器S1〜S3の出力には、軸直角断面nの心ずれ量、測定対象円筒体1の回転運動誤差(平行移動と振れ回り)、ガイドレールの曲がりに起因する変位検出器S1〜S3の位置姿勢誤差の成分になる。
【0025】
同様に、変位検出器S4、S5の出力には、軸直角断面n+1 の心ずれ量、測定対象円筒体1の回転運動誤差(平行移動と振れ回り)、ガイドレールの曲がりに起因する変位検出器S4、S5の位置姿勢誤差の成分になる。更に、変位検出器S6の出力値には、軸直角断面n+2の心ずれ量、測定対象円筒体1の回転運動誤差(平行移動と振れ回り)、ガイドレールの曲がりに起因する変位検出器S6の位置姿勢誤差の成分になる。
【0026】
この、測定対象円筒体1の回転運動誤差(平行移動と振れ回り)、ガイドレールの曲がりに起因する変位検出器S1〜S6の位置姿勢誤差の成分を取り除くには、次のようにする。まず、6本の変位検出器S1〜S6の周方向配置角度と、軸方向配置位置によって決定される定数a1 〜a6を求める。このa1 〜a6は、次の式を一般的な数値演算法を用いて解くことにより算出する。
【0027】
【数3】
Figure 0003722288
【0028】
このa1 〜a6を、変位検出器S1〜S6の出力値から真円度形状と平均半径を取り除いた値にそれぞれ乗算し、その結果を加算する。すると、測定対象円筒体1の回転運動誤差(平行移動と振れ回り)、ガイドレールの曲がりに起因する変位検出器S1〜S6の位置姿勢誤差の成分は取り除かれ、最終的に、各軸直角断面の値のみに依存した次の数式が残される。
【0029】
【数4】
Figure 0003722288
【0030】
数4において、Cは電気的オフセットなどに依存する定数であり、この式を(θ)について積分することにより容易に求めることができる。この式の結果から、(平行移動と振れ回り)求めたCを除き、たとえばθ=360ーφ6 の値を用いればcos の項の係数(hnxー2h(n+1) x +h(n+2)x )a6のみが得られ、θ=90ーφ6 のを用いればsinの項の係数(hnyー2h(n+1)y+h(n+2)y ) a6のみが得られる。
【0031】
すなわち心ずれ量の軸方向の二階微分に相当する関係式が得られる。この関係式から、測定開始軸直角断面と測定終了軸直角断面の心ずれ量を0と置くことなどにより、確立されている一般的な数値演算法を用いて、各軸直角断面の心ずれ量h1x〜hNx、h1y〜hNy を求めることができる。
【0032】
なお上記説明では、説明を容易にするため、変位検出器S1〜S3と、変位検出器S4、S5および変位検出器S6の設置間隔をdとし、測定対象円筒体1の軸方向に沿って間隔dずつずらせながら測定する場合について示したが、軸方向への距離dのm分の1が整数となる距離ずつ移動させて変位データの収集を同時に行なうことにより分解能を向上させることができる。また変位検出器は合計7本以上で、少なくとも3本、少なくとも2本、少なくとも1本ずつでも、距離dずつ離れて設置すれば良く、その配列順序は任意に選定することができる。
【0033】
【実施例】
以上説明した円筒体形状測定装置を用いて本発明の手法により円筒体の形状測定を行なった。変位検出器S1〜S6は作動トランス式を用いた。変位検出器S1〜S3と、変位検出器S4、S5、および変位検出器S6の設置間隔dは50mmとした。また変位検出器S1の水平基準線からの周方向の配位角φ1 =90度、変位検出器S2の配位角φ2 =150度、変位検出器S3の配位角φ3 =240度、変位検出器S4の配位角φ4 =120度、変位検出器S5の配位角φ5 =210度、変位検出器S6の配位角φ6 =180度とした。
【0034】
また測定対象円筒体1として直径50mm、長さ700mmのシャフトを用い、測定間隔を設置間隔dの5分の1の10mmとした。測定長は300mmで、測定断面数は31か所とした。
【0035】
変位検出器S1〜S6を10mmずつ移動させ、測定対象円筒体1を回転させながら測定した結果、各断面の相対的な平均半径rnoは、図5に示すようになった。また各軸直角断面におけるX方向の心ずれ量hnxは、図6に示すようになった。またY方向の心ずれ量hnyは、図7に示すようになった。両端面を基準とした時の円筒度は10.0μmとなった。これらの結果から、シャフトの形状を三次元的に表示すると図8のようになった。また図8には正面と平面の母線形状も示した。
【0036】
【発明の効果】
以上説明した如く本発明に係る請求項1記載の円筒体の形状測定方法によれば、精度の低い機構を用いても、測定時の測定対象円筒体の回転運動誤差、ガイドレールの曲がりに起因する変位測定機の位置姿勢誤差の影響を受けずに、高精度に円筒形状の各断面の真円度形状と平均半径と心ずれ量を求めることができ、三次元的な形状を評価することが可能である。
【0037】
また請求項2記載の円筒体の形状測定方法は、相対位置を保った各変位検出器で同時に収集した変位データから、3カ所の軸直角断面における相対的な中心位置の心ずれ量を求め、これを基準点から順次演算することにより、全体形状を正確に測定することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態による円筒体の形状測定装置の概略構成を示す正面図である。
【図2】本発明の形状測定装置における変位検出器の、測定対象円筒体の軸方向に沿った配置関係を示す正面図である。
【図3】本発明の形状測定装置における変位検出器の、測定対象円筒体の周方向に沿った配置関係を示す側面図である。
【図4】本発明方法による軸直角断面の平均半径を示す説明図である。
【図5】本発明方法により測定した各軸直角断面の相対的な平均半径を示すグラフである。
【図6】本発明方法により測定した各軸直角断面のX方向の心ずれ量を示すグラフである。
【図7】本発明方法により測定した各軸直角断面のY方向の心ずれ量を示すグラフである。
【図8】本発明方法により測定した測定値に基づいてシャフトを三次元的に表示した説明図である。
【符号の説明】
1 測定対象円筒体
2 回転機構
3 変位検出器取付台
4 水平移動機構
S1〜S6変位検出器[0001]
BACKGROUND OF THE INVENTION
The present invention three-dimensionally increases the shape of cylindrical machined products that require a relatively large and highly accurate shape, such as an ink kneading roll for offset printing machines, a calender roll for rubber rolling, and a steel rolling roll. The present invention relates to a method for measuring the shape of a cylindrical body that is accurately measured.
[0002]
[Prior art]
An ink kneading roll used in an offset printing machine is required to have a highly accurate cylindrical shape. If the shape deviates from the ideal cylindrical shape, uneven printing occurs. Similarly, rolls for rubber rolling and steel rolling are also required to be highly accurate cylindrical bodies because the shape error is transferred to the product as it is.
[0003]
In order to measure such a cylindrical shape, a general-purpose cylindrical shape measuring machine is commercially available and widely used only for relatively small cylindrical bodies. In this general-purpose cylindrical shape measuring machine, a single displacement detector is used, and the displacement detector is driven by the rotational movement of the measuring object cylinder or the displacement detector and the linear movement along the axial direction of the measuring object cylinder of the displacement detector. Is scanned along the surface of the cylindrical body to be measured, and the shape is measured.
[0004]
In this general-purpose cylindrical shape measuring machine, measurement errors are greatly affected by movement errors in rotational movement and linear movement, and errors such as bending and inclination of the guide rail for moving in the axial direction. In particular, when measuring a large cylindrical body, it is difficult to scan the displacement detector on the surface of the cylindrical body with high accuracy, and measurement with high accuracy cannot be performed.
[0005]
Therefore, in order to solve this problem, for example, three displacement detections are made around the axis-perpendicular section of the cylindrical body to be measured by using a well-known three-point method roundness measurement (see, for example, Patent Document 1). The motion error and shape of the measurement target cylinder that rotates with motion error are simultaneously detected and recorded by three, and the shape of the cross section perpendicular to the axis of the measurement target cylinder is obtained by processing the detection results. be able to.
[0006]
However, since this method can measure the three displacement detectors sequentially shifted in the axial direction, only the shape of the cross section perpendicular to the axis can be measured, and the relative positional relationship at each measurement point. Can not be measured. For this reason, it is not possible to remove the influence of deflection due to gravity, etc., when measuring with movement errors, errors such as bending or tilting of the guide rail for moving in the axial direction, and the measurement target cylinder placed horizontally. In paragraph (0056) of Patent Document 1, it is described that “an error due to a whirling is mixed, but the effect is suppressed”, but Equations 22 and 23 are erroneous, The relative positional relationship between the cross sections corresponding to the amount of misalignment and the tapered shape cannot be measured.
[0007]
[Patent Document 1]
JP-A-6-147879 (paragraphs 0010-0013, 0056 FIG. 1)
[0008]
[Problems to be solved by the invention]
The present invention improves the above-mentioned problem, and is a device having a simple structure, without being affected by the movement error during rotation of the measurement target cylinder and the position and orientation error of the displacement detector due to the deformation of the guide rail. It is an object of the present invention to provide a cylindrical shape measuring method capable of measuring a three-dimensional shape of a cylindrical body with high accuracy.
[0009]
[Means for Solving the Problems]
According to the cylindrical shape measuring method of the first aspect of the present invention, at least six displacement detectors are arranged on the outer circumference of three axially perpendicular cross sections that are separated by an equal interval d along the axial direction of the measurement target cylindrical body. In addition, at least three, at least two, and at least one each are arranged, the detection angle of each displacement detector is shifted, and is installed in the radial direction of the measurement target cylinder, while rotating the measurement target cylinder, While maintaining the relative position of each displacement detector, the displacement data are collected simultaneously by moving the distance in the axial direction, which is 1 / m, as an integer, and at least three arranged on the same outer circumference. From the displacement data collected by the displacement detector, the roundness shape and average radius of each cross section of the cylindrical body to be measured are obtained, and each center is obtained from the displacement data simultaneously collected by each displacement detector maintaining the relative position. Axial Determine the misalignment amount of each cross section corresponding to a rising, by combining these results, is characterized in that to measure the three-dimensional shape of the measurement target cylinder.
[0010]
The cylindrical shape measuring method according to claim 2 of the present invention is based on the displacement data collected simultaneously by the displacement detectors maintaining the relative positions, and the amount of relative center misalignment at the three axially perpendicular sections is determined. This is calculated and sequentially calculated from the reference point to measure the amount of misalignment in the cross section perpendicular to each axis.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 shows a cylindrical shape measuring apparatus, which includes a rotating mechanism 2 that horizontally supports and rotates a measuring object cylindrical body 1 having a circular cross section such as a cylindrical body or a cylindrical body, and a displacement detector mounting base. 3 and a horizontal movement mechanism 4 for moving the displacement detector mounting base 3 in parallel along the axial direction of the measurement target cylindrical body 1.
[0012]
As shown in FIG. 2, a total of six displacement detectors S1 to S6 are attached to the displacement detector mounting base 3 so as to be positioned on the outer periphery of the measurement target cylindrical body 1, and each of the displacement detectors S1 to S6 is attached. Are arranged at three locations separated by an equal interval d along the axial direction of the measuring object cylindrical body 1, respectively. Further, the detection directions of the detectors S1 to S6 are shifted from each other so as to coincide with the radial direction of the cylindrical body 1 to be measured, for example, by shifting the arrangement angles φ1 to φ6 in the circumferential direction from the horizontal reference line as shown in FIG. It is set.
[0013]
In the measurement method, first, the measurement object cylindrical body 1 is rotated several times while the displacement detector mounting base 3 is fixed. At this time, the measurement target cylindrical body 1 is accompanied by a rotational motion error such as a swing around. In synchronization with the rotation angle, the output values of the six displacement detectors S1 to S6 are simultaneously measured and recorded. Next, the displacement detector mounting base 3 is moved by d in the axial direction of the measurement target cylindrical body 1 while maintaining the relative positional relationship between the displacement detectors S1 to S6. Here, the outputs of the displacement detectors S1 to S6 are simultaneously recorded while rotating the measurement target cylindrical body 1 again. This operation is sequentially measured over the entire range in the axial direction of the measurement target cylindrical body 1 and recorded.
[0014]
Next, a method for calculating the shape from the recorded measurement values by calculation will be described. First, numbers 1, 2,..., N,..., N are assigned to the cross sections perpendicular to each axis at positions d apart from each other along the axial direction of the measurement target cylindrical body 1. As shown in FIG. 2, the roundness shape rn (θ) of the n-th axis perpendicular section n is obtained from the output values detected by the three displacement detectors S1 to S3 attached to the same axis perpendicular section. It is calculated by a known three-point roundness measurement method. By this method, it is possible to obtain the roundness shapes r1 (.theta.) To rN (.theta.) Of the cross sections 1 to N perpendicular to all axes scanned by the displacement detectors S1 to S3.
[0015]
Next, as shown in FIG. 4, the average radius rno of the cross section perpendicular to each axis is obtained as follows. First, constants b1 to b3 are calculated from the arrangement angles φ1 to φ3 in the circumferential direction from the horizontal reference line of the displacement detectors S1 to S3 using the following vector outer product formula.
[0016]
[Expression 1]
Figure 0003722288
[0017]
From the output values mn1 (θ) to mn3 (θ) of the displacement detectors S1 to S3 recorded on a certain section n, the roundness shape rn (θ) of the cross section perpendicular to the axis already obtained is subtracted. Multiplying b1 to b3 and adding the result, and dividing the result by the sum of b1 to b3, the sum of the constant radius m0 determined from the average radius rno of the cross section n and the electrical offset amount of the displacement detector is It can be calculated like a mathematical formula.
[0018]
[Expression 2]
Figure 0003722288
[0019]
Although it is difficult to know m0 directly by this method, since this value is always constant even if the section is moved, it is possible to know the relative change in the axial direction of the average radius rno.
[0020]
Next, a method for calculating the misalignment amount of the cross section perpendicular to each axis will be described. When the displacement detectors S1 to S3 are in the n-th axis perpendicular section of the measurement target cylindrical body 1, the displacement detectors S4 and S5 are in the (n + 1) th position, and the displacement detector S6 is in the (n + 2) th position.
[0021]
When the rotational movement for collecting measurement data is performed, the outputs of the displacement detectors S1 to S3 include the roundness shape rn (θ) of the cross section perpendicular to the axis n, the average radius rno, the misalignment amounts hnx and hny, and the rotation. The position and orientation errors of the displacement detectors S1 to S3 due to movement errors (parallel movement and swinging) and bending of the guide rail are mixed.
[0022]
Similarly, the outputs of the displacement detectors S4 and S5, which are separated from the displacement detectors S1 to S3 by the distance d, similarly have a roundness shape r (n + 1) (θ) and an average radius r (n + 1) 0 of the cross section perpendicular to the axis n + 1. And misalignment amounts h (n + 1) x, h (n + 1) y, rotational motion error (parallel movement and swinging) of the measurement target cylindrical body, and position and orientation errors of the displacement detectors S4 and S5 due to the bending of the guide rail. It is mixed.
[0023]
Further, the output value of the displacement detector S6 which is separated from the displacement detectors S4 and S5 by the distance d includes the roundness shape r (n + 2) (θ) and the average radius r (n + 2) 0 of the cross section perpendicular to the axis n + 2. Misalignment amounts h (n + 2) x, h (n + 2) y, rotational motion error (parallel movement and swinging) of the measurement target cylindrical body 1, and position / posture error of the displacement detector S6 due to the bending of the guide rail are mixed. ing.
[0024]
Of these, the roundness shapes rn (θ), r (n + 1) (θ), r (n + 2) (θ) of the cross-sections n, n + 1, n + 2 of the axis and the average radii rno, r (n + 1) o and r (n + 2) o can be removed from the output value of the displacement detector using the results obtained by Equation 1 and Equation 2. As a result, all that is left out of the outputs of the displacement detectors S1 to S3 is the amount of misalignment of the cross section perpendicular to the axis n, the rotational motion error (parallel movement and swinging) of the cylindrical body 1 to be measured, and the bending of the guide rail. This is a component of the position and orientation error of the displacement detectors S1 to S3.
[0025]
Similarly, the outputs of the displacement detectors S4 and S5 include the amount of misalignment of the cross section perpendicular to the axis n + 1, the rotational motion error (parallel movement and swinging) of the measurement target cylindrical body 1, and the displacement caused by the bending of the guide rail. It becomes a component of the position and orientation error of the detectors S4 and S5. Further, the output value of the displacement detector S6 includes the amount of misalignment of the cross section perpendicular to the axis n + 2, the rotational motion error (parallel movement and swinging) of the measurement target cylindrical body 1, and the displacement detector S6 caused by the bending of the guide rail. It becomes a component of position and orientation error.
[0026]
In order to remove the components of the position / posture error of the displacement detectors S <b> 1 to S <b> 6 due to the rotational motion error (parallel movement and swinging) of the measurement target cylindrical body 1 and the bending of the guide rail, the following is performed. First, constants a1 to a6 determined by the circumferential arrangement angles of the six displacement detectors S1 to S6 and the axial arrangement positions are obtained. These a1 to a6 are calculated by solving the following equations using a general numerical calculation method.
[0027]
[Equation 3]
Figure 0003722288
[0028]
The a1 to a6 are multiplied by the values obtained by removing the roundness shape and the average radius from the output values of the displacement detectors S1 to S6, respectively, and the results are added. Then, the rotational motion error (translation and swinging) of the measurement target cylindrical body 1 and the position and orientation error components of the displacement detectors S1 to S6 due to the bending of the guide rail are removed, and finally each axis perpendicular section is removed. The following mathematical expression that depends only on the value of is left.
[0029]
[Expression 4]
Figure 0003722288
[0030]
In Equation 4, C is a constant that depends on an electrical offset or the like, and can be easily obtained by integrating this equation with respect to (θ). If the value of θ = 360−φ6 is used, for example, if the value of θ = 360−φ6 is removed from the result of this equation (translation and swing), the coefficient of the cos term (hnx−2h (n + 1) x + h (n + 2) x) a6 If θ = 90−φ6 is used, only the coefficient of the term sin (hny−2h (n + 1) y + h (n + 2) y) a6 is obtained.
[0031]
That is, a relational expression corresponding to the second order differential of the amount of misalignment in the axial direction is obtained. From this relational expression, set the amount of misalignment between the cross section perpendicular to the measurement start axis and the cross section perpendicular to the measurement end axis to 0, etc. h1x to hNx and h1y to hNy can be obtained.
[0032]
In the above description, for ease of explanation, the installation interval between the displacement detectors S1 to S3, the displacement detectors S4 and S5, and the displacement detector S6 is d, and the interval along the axial direction of the measurement target cylindrical body 1 is d. Although the case where the measurement is performed while being shifted by d is shown, the resolution can be improved by simultaneously moving the displacement by 1 / m of the distance d in the axial direction and collecting the displacement data at the same time. Further, the total number of displacement detectors is 7 or more, and at least 3, at least 2, and at least one displacement detector may be installed at a distance d, and the arrangement order can be arbitrarily selected.
[0033]
【Example】
The cylindrical body shape was measured by the method of the present invention using the cylindrical body shape measuring apparatus described above. The displacement detectors S1 to S6 used an operating transformer type. The installation distance d between the displacement detectors S1 to S3, the displacement detectors S4 and S5, and the displacement detector S6 was 50 mm. Further, the circumferential orientation angle φ1 = 90 degrees from the horizontal reference line of the displacement detector S1, the coordination angle φ2 = 150 degrees of the displacement detector S2, the coordination angle φ3 = 240 degrees of the displacement detector S3, the displacement detection The coordination angle φ4 = 120 degrees of the device S4, the coordination angle φ5 = 210 degrees of the displacement detector S5, and the coordination angle φ6 = 180 degrees of the displacement detector S6.
[0034]
Further, a shaft having a diameter of 50 mm and a length of 700 mm was used as the measurement target cylindrical body 1, and the measurement interval was set to 10 mm, which is one fifth of the installation interval d. The measurement length was 300 mm, and the number of measurement cross sections was 31.
[0035]
As a result of moving the displacement detectors S1 to S6 by 10 mm and rotating the measurement target cylindrical body 1, the relative average radius rno of each cross section is as shown in FIG. Further, the misalignment amount hnx in the X direction in the cross-section perpendicular to each axis is as shown in FIG. Further, the misalignment amount hny in the Y direction is as shown in FIG. The cylindricity with respect to both end faces was 10.0 μm. From these results, the shape of the shaft is displayed three-dimensionally as shown in FIG. FIG. 8 also shows the front and plane bus bar shapes.
[0036]
【The invention's effect】
As described above, according to the cylindrical shape measuring method according to the first aspect of the present invention, even if a low-accuracy mechanism is used, the rotational motion error of the measurement target cylindrical body at the time of measurement and the bending of the guide rail are caused. The roundness, average radius, and misalignment of each cylindrical cross section can be determined with high accuracy without being affected by the position and orientation error of the displacement measuring machine that evaluates the three-dimensional shape. Is possible.
[0037]
Further, in the cylindrical shape measuring method according to claim 2, from the displacement data simultaneously collected by the displacement detectors maintaining the relative position, the amount of relative center misalignment in the three cross-sections perpendicular to the axis is obtained. By calculating this sequentially from the reference point, the entire shape can be accurately measured.
[Brief description of the drawings]
FIG. 1 is a front view showing a schematic configuration of a cylindrical shape measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a front view showing an arrangement relationship of the displacement detector in the shape measuring apparatus of the present invention along the axial direction of a measurement target cylindrical body.
FIG. 3 is a side view showing the positional relationship of the displacement detector in the shape measuring apparatus of the present invention along the circumferential direction of the measurement target cylindrical body.
FIG. 4 is an explanatory diagram showing an average radius of a cross section perpendicular to an axis according to the method of the present invention.
FIG. 5 is a graph showing a relative average radius of a cross section perpendicular to each axis measured by the method of the present invention.
FIG. 6 is a graph showing the amount of misalignment in the X direction of a cross section perpendicular to each axis measured by the method of the present invention.
FIG. 7 is a graph showing the amount of misalignment in the Y direction of a cross section perpendicular to each axis measured by the method of the present invention.
FIG. 8 is an explanatory diagram in which a shaft is three-dimensionally displayed based on measurement values measured by the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical object to be measured 2 Rotating mechanism 3 Displacement detector mounting base 4 Horizontal movement mechanism S1-S6 Displacement detector

Claims (2)

少なくとも6本の変位検出器を、測定対象円筒体の軸方向に沿って等間隔dだけ離れた3カ所の軸直角断面の外周上に、少なくとも3本、少なくとも2本、少なくとも1本ずつそれぞれ配置すると共に、各変位検出器の検出角度をずらせて、測定対象円筒体の半径方向に設置し、測定対象円筒体を回転させながら、各変位検出器の相対位置を保った状態で、軸方向への距離dのm分の1が整数となる距離ずつ移動させて変位データの収集を同時に行ない、同一外周上に配置した少なくとも3本の変位検出器で収集した変位データから、測定対象円筒体の、各断面における真円度形状と平均半径を求めると共に、相対位置を保った前記各変位検出器で同時に収集した変位データから、各中心軸の曲がりに相当する各断面の心ずれ量を求め、これらの結果を合成することにより、測定対象円筒体の三次元的な形状を測定することを特徴とする円筒体の形状測定方法。At least three, at least two, and at least one displacement detector are arranged on the outer circumference of three axially perpendicular cross-sections that are separated by an equal interval d along the axial direction of the measurement target cylindrical body. At the same time, the detection angle of each displacement detector is shifted and installed in the radial direction of the measurement target cylinder, and while rotating the measurement target cylinder, the relative position of each displacement detector is maintained in the axial direction. The displacement data is collected at the same time by moving the distance d, which is 1 / m of the distance d, by an integer, and from the displacement data collected by at least three displacement detectors arranged on the same outer circumference, In addition to determining the roundness shape and average radius in each cross section, from the displacement data collected at the same time by each displacement detector maintaining the relative position, determine the amount of misalignment of each cross section corresponding to the bending of each central axis, this Of by combining the results, the shape measuring method of the cylindrical body and measuring the three-dimensional shape of the measurement target cylinder. 相対位置を保った各変位検出器で同時に収集した変位データから、3カ所の軸直角断面における相対的な中心位置の心ずれ量を求め、これを基準点から順次演算して各軸直角断面における心ずれ量を測定することを特徴とする請求項1記載の円筒体の形状測定方法。From the displacement data collected at the same time with each displacement detector maintaining the relative position, the amount of relative misalignment of the center position in the three cross-sections perpendicular to the axis is obtained, and this is sequentially calculated from the reference point to obtain the cross-section in each cross-axis perpendicular The method of measuring a shape of a cylindrical body according to claim 1, wherein an amount of misalignment is measured.
JP2003055486A 2003-03-03 2003-03-03 Cylindrical shape measurement method Expired - Fee Related JP3722288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055486A JP3722288B2 (en) 2003-03-03 2003-03-03 Cylindrical shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055486A JP3722288B2 (en) 2003-03-03 2003-03-03 Cylindrical shape measurement method

Publications (2)

Publication Number Publication Date
JP2004264191A JP2004264191A (en) 2004-09-24
JP3722288B2 true JP3722288B2 (en) 2005-11-30

Family

ID=33119489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055486A Expired - Fee Related JP3722288B2 (en) 2003-03-03 2003-03-03 Cylindrical shape measurement method

Country Status (1)

Country Link
JP (1) JP3722288B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655053B1 (en) 2004-12-08 2006-12-06 두산중공업 주식회사 Apparatus For Three-Dimension Pipe Displacements Measurement With Rotation
CN102072717B (en) * 2010-11-12 2012-11-07 北京信息科技大学 Method and device for acquiring boundary of helical curved surface
CN106524879B (en) * 2016-12-19 2022-04-26 北京天宜上佳高新材料股份有限公司 Dovetail groove angle measuring device
CN110567427B (en) * 2019-09-30 2021-05-18 潍柴动力股份有限公司 Non-coaxiality detection system, method and processing device
CN114111526B (en) * 2021-11-19 2024-03-19 国网四川省电力公司映秀湾水力发电总厂 High-precision water turbine spindle seal circle measuring method and system
CN115077458B (en) * 2022-06-14 2023-06-16 吉林大学 Lever ball type universal precision measuring method for rotary part section bending eccentric

Also Published As

Publication number Publication date
JP2004264191A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
EP1992909B1 (en) Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
US7366637B2 (en) Form measuring instrument
US20070100554A1 (en) Measuring method of cylindrical body
US20110247409A1 (en) Apparatus and method for measuring bores
US11754387B2 (en) Noncontact sensor calibration using single axis movement
JPH0642947A (en) Method and device for measuring run-out or contour
JPH09311034A (en) Method and device for measuring inner diameter and inner circumference length of steel pipe
JPH11108602A (en) Out-of-roundness measuring instrument
JP3722288B2 (en) Cylindrical shape measurement method
US6067720A (en) Method for determining a torsional structure in the surface roughness of a finished shaft journal
JPH01195309A (en) Measuring instrument for cylindrical body
KR20140094545A (en) Method for measuring a three-dimensional object
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP4884091B2 (en) Shape measuring instruments
JP3004488B2 (en) Measuring method of cylindrical shape
JPH04148819A (en) Method and apparatus for measuring roll profile
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JP2009180700A (en) Cylindrical shape measuring device and cylindrical surface shape measuring method
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
JP6893850B2 (en) Rolling bearing squareness measuring device and rolling bearing squareness measuring method
JP2000292161A (en) Circularity measuring instrument
Tiainen Multi-Probe Roundness Measurement of Large Rotors
JP2008170151A (en) Method for measuring cylindrical body
JP6846673B2 (en) Angle correction method and angle correction device for surface shape measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees