JPH06147879A - Measuring method of cylindrical profile - Google Patents

Measuring method of cylindrical profile

Info

Publication number
JPH06147879A
JPH06147879A JP29475792A JP29475792A JPH06147879A JP H06147879 A JPH06147879 A JP H06147879A JP 29475792 A JP29475792 A JP 29475792A JP 29475792 A JP29475792 A JP 29475792A JP H06147879 A JPH06147879 A JP H06147879A
Authority
JP
Japan
Prior art keywords
measured
measurement
measuring
shape
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29475792A
Other languages
Japanese (ja)
Other versions
JP3004488B2 (en
Inventor
Hiroaki Shimazutsu
博章 島筒
Masayoshi Hamaoka
正義 浜岡
Kazue Yamasu
和重 弥益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4294757A priority Critical patent/JP3004488B2/en
Publication of JPH06147879A publication Critical patent/JPH06147879A/en
Application granted granted Critical
Publication of JP3004488B2 publication Critical patent/JP3004488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for measuring cylindrical profile highly accurately with improved operability which is applicable even to a large heavy weight object. CONSTITUTION:Three displacement detectors 31, 32, 33 for measuring surface irregularities are arranged, while opposing to the outer periphery of an object 11 to be measured, on a fixing table 23 installed reciprocally in the direction substantially parallel with the axial direction of the substantially cylindrical object 11. The fixing table 23 is then moved in the axial direction of the object 11 and the variation is measured every time when the table 23 is moved by a predetermined distance over the entire peripheral direction of the object 11. Circularity the average diameter R, and the shift of axis of the object 11 at each measuring position are then operated based on the measurements and circularities (g), average diameters, and shifts of axis at a plurality of measuring positions are evaluated three-dimensionally thus determining cylindrical profile of the object 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、工作機械用の
スピンドルシャフトや板材圧延用のワークロール、印刷
機用ロールなどの長尺の丸物加工物の円筒形状を測定す
る円筒形状の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical shape measurement for measuring the cylindrical shape of a long round workpiece such as a spindle shaft for machine tools, work rolls for rolling plate materials, rolls for printing machines, etc. Regarding the method.

【0002】[0002]

【従来の技術】工作機械用のスピンドルシャフトや板材
圧延用のワークロール、印刷機用ロールなどの長尺の丸
物加工物は、一般に、機械構造物の運転精度に大きな影
響を及ぼす部位に用いられており、その加工にあたって
は、高い形状・寸法精度が求められている。
2. Description of the Related Art Long-sized workpieces such as spindle shafts for machine tools, work rolls for rolling plate materials, and rolls for printing machines are generally used in parts that greatly affect the operating accuracy of machine structures. Therefore, high precision of shape and dimension is required for the processing.

【0003】長尺丸物加工物の形状、精度の重要項目と
して円筒度がある。この円筒度は丸物加工物の軸線方向
に沿った平均半径の変化、真円度形状、中心点の軸心ず
れが総合された3次元的な形状精度であるが、高い測定
精度と簡便な操作性を兼ね備えた測定装置及び測定方法
が実現されていないのが現状である。
The cylindricity is an important item for the shape and accuracy of a long round processed product. This cylindricity is a three-dimensional shape accuracy that integrates the change of the average radius along the axial direction of the round workpiece, the roundness shape, and the axial misalignment of the center point. At present, a measuring device and a measuring method having operability have not been realized yet.

【0004】従来の円筒形状の測定装置及び方法として
は、例えば、X,Y,Zの3次元方向への駆動装置及び
その3次元方向への移動量を測定するためのスケールを
有する3次元測定機上に測定対象物を載置し、測定子を
移動させつつスケールによって対象物の3次元輪郭形状
を把握するものがある。また、ほぼ平面をなす基準面上
に測定対象物を載置し、ダイヤルゲージや高さゲージ等
によって基準面と測定対象物の輪郭部とのへだたり量を
測定することによって対象物の3次元的な輪郭形状を把
握するものがある。
As a conventional cylindrical measuring device and method, for example, a three-dimensional measurement having a driving device in the three-dimensional directions of X, Y and Z and a scale for measuring the amount of movement in the three-dimensional direction. There is a method in which a measurement target is placed on a machine and a three-dimensional contour shape of the target is grasped by a scale while moving a probe. In addition, the object to be measured is placed on a substantially flat reference surface, and the amount of sag between the reference surface and the contour of the object to be measured is measured by a dial gauge, a height gauge, or the like. There is one that grasps the three-dimensional contour shape.

【0005】[0005]

【発明が解決しようとする課題】ところが、上述した従
来のそれぞれの円筒形状の測定装置及び方法にあって
は、大型で大重量の測定対象物には適用することができ
ず、また、測定手順が煩雑で操作性が良くないと共に高
精度な測定が困難であるという問題があった。
However, the above-mentioned conventional cylindrical measuring devices and methods cannot be applied to a large and heavy object to be measured, and the measuring procedure is not applicable. However, there is a problem that it is complicated, the operability is not good, and high-precision measurement is difficult.

【0006】本発明はこのような問題を解決するもので
あって、大型で大重量の測定対象物にも適用することが
でき、操作性及び測定精度の向上を図った円筒形状の測
定方法を提供することを目的とする。
The present invention solves such a problem, and can be applied to a large and heavy object to be measured, and provides a cylindrical measuring method with improved operability and measuring accuracy. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めの本発明の円筒形状の測定方法は、ほぼ円筒形状をな
す測定対象物の軸線方向に対してほぼ平行に往復運動可
能に設けられた取付台に前記測定対象物の外周に臨んで
その表面凹凸を測定する3個の変位検出器を前記測定対
象物の軸直角断面上で且つその検出感度方向が互いに所
定の角度をなして前記測定対象物の中心軸近傍で交わる
ように配置し、前記取付台を前記測定対象物の軸線方向
に移動させてその所定距離移動した位置ごとに前記測定
対象物の周方向全周にわたっての変化を測定し、この測
定値から演算によってその測定位置での測定対象物の真
円度形状及び平均半径、軸心ずれ量を求め、前記測定対
象物の軸線方向の複数の測定位置での前記真円度形状及
び平均半径、軸心ずれ量から前記測定対象物の円筒形状
を求めることを特徴とするものである。
A method of measuring a cylindrical shape according to the present invention for achieving the above object is provided so as to be capable of reciprocating substantially parallel to the axial direction of a measuring object having a substantially cylindrical shape. The three displacement detectors, which face the outer circumference of the object to be measured and measure the surface irregularities of the object, are mounted on a mounting base on a cross section perpendicular to the axis of the object to be measured, and their detection sensitivity directions form a predetermined angle with each other. Arranged to intersect in the vicinity of the central axis of the measurement target, move the mounting base in the axial direction of the measurement target and change the measurement target over the entire circumference in the circumferential direction for each position moved by a predetermined distance. Measure, calculate the circularity shape and average radius of the measurement object at the measurement position, the amount of axial misalignment at this measurement position from the measured value, the perfect circle at a plurality of measurement positions in the axial direction of the measurement object Degree shape, average radius, axis It is characterized in that is obtaining the cylindrical shape of the measurement object from the amount.

【0008】[0008]

【作用】ほぼ円筒形状となる測定対象物の表面の凹凸測
定のため、取付台上に測定対象物の外周に臨んで配置さ
れた3個の変位検出器をガイドレールに沿って対象物の
軸線方向にほぼ平行に移動させ、所定距離移動した位置
ごとに対象物の周方向全周にわたっての対象物表面と変
位検出器配置点とのへだたり量を測定し、その測定値を
演算処理することによって測定時のガイドレールの変形
やうねり及び対象物の回転中の振れ回り誤差の影響を受
けることなく対象物の真円度形状、平均半径、軸心ずれ
量を求めることが可能となり、取付台の所定移動位置で
の対象物の真円度形状、平均半径、軸心ずれ量から対象
物の円筒形状を定めることが可能となる。
[Function] In order to measure the unevenness of the surface of the object to be measured, which has a substantially cylindrical shape, the three displacement detectors arranged on the mounting base so as to face the outer circumference of the object to be measured are provided along the guide rail with the axis line of the object. Direction is moved substantially parallel to each other, and the amount of sag between the object surface and the displacement detector arrangement point is measured over the entire circumference of the object at each position moved by a predetermined distance, and the measured value is arithmetically processed. By doing so, it becomes possible to obtain the roundness shape, average radius, and axial misalignment of the target object without being affected by the deformation of the guide rail during measurement, waviness, and whirling error during rotation of the target object. It is possible to determine the cylindrical shape of the object from the circularity shape of the object, the average radius, and the amount of axial misalignment at the predetermined movement position of the table.

【0009】[0009]

【実施例】以下、図面に基づいて本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1に本発明の一実施例に係る円筒形状の
測定方法を実施するための測定装置の要部断面、図2に
その測定装置の概略正面視、図3に円筒形測定対象物の
真円度測定及び平均半径測定の原理を表す説明、図4に
円筒形測定対象物の軸心ずれ測定の原理を表す説明、図
5に円筒形状測定の原理を表す説明を示す。
FIG. 1 is a sectional view of a main part of a measuring apparatus for carrying out a cylindrical measuring method according to an embodiment of the present invention, FIG. 2 is a schematic front view of the measuring apparatus, and FIG. 3 is a cylindrical object to be measured. Of the circularity measurement and average radius measurement, FIG. 4 shows the principle of measuring the axial misalignment of the cylindrical measurement object, and FIG. 5 shows the principle of measuring the cylindrical shape.

【0011】図1及び図2に示すように、11は円筒形
状の測定対象物であって、軸方向前後一対の支持用治具
12,13によって周方向回転自在に支持されると共に
軸方向一端部に回転駆動装置14が連結されて駆動回転
できるようになっている。
As shown in FIGS. 1 and 2, reference numeral 11 denotes a cylindrical object to be measured, which is rotatably supported in the circumferential direction by a pair of supporting jigs 12 and 13 in the axial direction and has one axial end. A rotary drive device 14 is connected to the portion so that it can be driven and rotated.

【0012】本発明の円筒形状の測定方法を実施するた
めの測定装置21はこの測定対象物11に隣接して配設
されており、測定対象物11の軸方向に沿って平行にガ
イドレール22が配置されており、このガイドレール2
2には変位検出器取付台23が往復移動自在に装着され
ている。そして、変位検出器取付台23には一端にモー
タ24が装着されたねじ軸25が係合しており、変位検
出器取付台23はモータ24の駆動によってねじ軸25
が回転することで移動できるようになっている。また、
変位検出器取付台23には測定対象物11の周方向に沿
う弧状の取付部26が一体に形成され、この取付部26
には3個の変位検出器31,32,33が取付けられて
いる。
A measuring device 21 for carrying out the cylindrical shape measuring method of the present invention is arranged adjacent to the measuring object 11, and is parallel to the guide rail 22 along the axial direction of the measuring object 11. Is arranged and this guide rail 2
A displacement detector mounting base 23 is attached to the unit 2 so as to be reciprocally movable. A screw shaft 25 having a motor 24 attached to one end is engaged with the displacement detector mount 23, and the displacement detector mount 23 is driven by the motor 24 to drive the screw shaft 25.
Can be moved by rotating. Also,
An arc-shaped mounting portion 26 is integrally formed on the displacement detector mounting base 23 along the circumferential direction of the measuring object 11.
Three displacement detectors 31, 32, 33 are attached to the.

【0013】而して、モータ24の駆動によりねじ軸2
5を回転させ、変位検出器取付台23と共に3個の変位
検出器31,32,33を測定対象物11の軸方向に沿
って移動させる。このとき、所定の位置で回転駆動装置
14により測定対象物11を回転し、この測定対象物1
1の1回転にわたって表面凹凸を測定する。そして、各
変位検出器31,32,33によって検出された測定値
を演算処理することによって各測定位置での測定対象物
11の真円度形状及び平均半径、軸心ずれ量から円筒形
状をなす測定対象物11の円筒形状を求めることができ
る。
Thus, the screw shaft 2 is driven by driving the motor 24.
5 is rotated to move the three displacement detectors 31, 32, and 33 together with the displacement detector mount 23 along the axial direction of the measuring object 11. At this time, the measuring object 11 is rotated by the rotation driving device 14 at a predetermined position, and the measuring object 1 is rotated.
Surface irregularities are measured over one revolution of 1. Then, the measured values detected by the displacement detectors 31, 32, 33 are subjected to arithmetic processing to form a circular shape from the roundness shape and average radius of the measurement object 11 at each measurement position, and the amount of axial misalignment. The cylindrical shape of the measuring object 11 can be obtained.

【0014】以下、前述した測定装置21による測定対
象物11の測定原理及び変位検出器31,32,33に
よる測定値の演算処理手順を説明する。
The principle of measuring the object 11 to be measured by the above-described measuring device 21 and the procedure for calculating the measured values by the displacement detectors 31, 32 and 33 will be described below.

【0015】(1)測定対象物の断面形状の定式化 図3に示すように、測定対象物11の軸心Oを原点とす
る断面形状、即ち、円周上の各点と点Oとのへだたり量
をh(θ,X)とすると、h(θ,X)は下記数式1の
ように表すことができる。
(1) Formulation of the cross-sectional shape of the measuring object As shown in FIG. 3, the cross-sectional shape having the axis O of the measuring object 11 as the origin, that is, the points O on the circumference If the amount of sagging is h (θ, X), then h (θ, X) can be expressed as in Equation 1 below.

【数1】h(θ,X)=R(X)+g(θ,X)## EQU1 ## h (θ, X) = R (X) + g (θ, X)

【0016】ここにR(X)は測定対象物11の平均半
径であり、測定対象物11の軸方向位置Xによって変わ
る値であるためにこのように表現した。また、g(θ,
X)は平均半径R(X)からの偏差として表される測定
対象物11の真円度形状であり、一般に、測定対象物1
1の円周上の位置θと測定対象物11の軸方向の位置X
とによって変わる値であるためにこのように表現した。
Here, R (X) is the average radius of the measuring object 11 and is expressed as such because it is a value that changes depending on the axial position X of the measuring object 11. Also, g (θ,
X) is the roundness shape of the measuring object 11 expressed as a deviation from the average radius R (X), and in general, the measuring object 1
The position θ on the circumference of 1 and the position X in the axial direction of the measuring object 11
It is expressed like this because it is a value that changes depending on and.

【0017】(2)変位検出器での測定値 測定装置21のガイドレール22の変形やうねり、ある
いは測定対象物11が回転するときの振れ回り誤差等に
よって測定対象物11の軸心Oと変位検出器31,3
2,33の感度方向の交点O’との間に相対変位Erが
発生した場合について考える。点OO'Pがなす角度を
τとし、相対変位Erによって生じる被測定点(変位検
出器31,32,33で測定される測定対象物11の円
周上の点)のずれを無視して考えると、変位検出器3
1,32,33の測定値da,db,dcは下記数式2
で与えられる。
(2) Measured value by displacement detector The displacement of the axis O of the measuring object 11 due to deformation or waviness of the guide rail 22 of the measuring device 21 or whirling error when the measuring object 11 rotates. Detector 31,3
Consider a case where a relative displacement Er occurs between the intersection point O ′ of the sensitivity directions 2 and 33. Let τ be the angle formed by the point OO′P, and ignore the deviation of the measured point (the point on the circumference of the measuring object 11 measured by the displacement detectors 31, 32, 33) caused by the relative displacement Er. And the displacement detector 3
The measured values da, db, dc of 1, 32, and 33 are the following mathematical formula 2
Given in.

【0018】[0018]

【数2】 da=h(θ−α,X)+Ka+Ercos(τ−α)## EQU00002 ## da = h (.theta .-. Alpha., X) + Ka + Ercos (.tau .-. Alpha.)

【数3】db=h(θ,X)+Kb+Ercosτ(3) db = h (θ, X) + Kb + Ercosτ

【数4】 dc=h(θ+β,X)+Kc+Ercos(τ+β)(4) dc = h (θ + β, X) + Kc + Ercos (τ + β)

【0019】ここに、Ka,Kb,Kcはそれぞれ変位
検出器31,32,33の配置点(点O’からのへだた
り量)及び測定時の電気的オフセットによって定まる定
数であり、それぞれの変位検出器31,32,33の取
付状態を変更しないかぎり不変の値である。また、Er
cos(τ−α),Ercosτ,Ercos(τ+β)は相対
変位Erに起因する誤差成分であり、相対変位の量Er
と方向τとの関数である。
Here, Ka, Kb, and Kc are constants determined by the disposition points (displacement amount from the point O ') of the displacement detectors 31, 32, and 33 and the electrical offset at the time of measurement, respectively. The value is invariable unless the mounting state of the displacement detectors 31, 32, 33 is changed. Also, Er
cos (τ−α), Ercosτ, Ercos (τ + β) are error components caused by the relative displacement Er, and the amount of relative displacement Er
And the direction τ.

【0020】(3)測定値の荷重加算による相対変位に
起因する誤差成分の相殺 定数a=−sinβ/sin(α+β),b=−sinα/sin
(α+β)を設定し、下記数式5,6を満たす定数a,
bを用いて合成測定値Y(θ,X)を計算すると、この
合成測定値Y(θ,X)は下記数式7に示すものとな
る。
(3) Cancellation constants of error components due to relative displacement due to load addition of measured values a = -sin β / sin (α + β), b = -sin α / sin
(Α + β) is set and a constant a, which satisfies the following equations 5 and 6,
When the combined measurement value Y (θ, X) is calculated using b, this combined measurement value Y (θ, X) is given by the following mathematical expression 7.

【数5】1+acosα+bcosβ=0[Equation 5] 1 + acosα + bcosβ = 0

【数6】asinα−bsinβ=0[Equation 6] asinα-bsinβ = 0

【0021】[0021]

【数7】 Y(θ,X)=ada+db+bdc =ah(θ−α,X)+h(θ,X)+bh(θ+β,X) +aKa+Kb+bKc+aErcos(τ−α) +Ercos(τ)+bcos(τ+β) =(1+a+b)R(X)+{ag(θ−α,X) +g(θ,X)+bg(θ+β,X)} +(aKa+Kb+bKc)Y (θ, X) = ada + db + bdc = ah (θ−α, X) + h (θ, X) + bh (θ + β, X) + aKa + Kb + bKc + aErcos (τ−α) + Ercos (τ) + bcos (τ + β) = (1 + a + b) ) R (X) + {ag (θ−α, X) + g (θ, X) + bg (θ + β, X)} + (aKa + Kb + bKc)

【0022】上記数式7からわかるように、合成測定値
Y(θ,X)は相対変位Erに関する項を含んでおら
ず、測定値の荷重計算によって相対変位Erに起因する
誤差がその都度相殺されることがわかる。
As can be seen from the equation (7), the combined measured value Y (θ, X) does not include a term relating to the relative displacement Er, and the error due to the relative displacement Er is canceled each time by the load calculation of the measured value. I understand that

【0023】(4)測定対象物の真円度形状の測定 測定対象物11の1回転にわたって得た合成測定値Y
(θ,X)から測定対象物11の真円度形状を求める方
法及び手順において、前記数式1にて表した真円度形状
g(θ,X)を下記数式8のようなフーリエ級数の和の
形で表す。フーリエ級数の各項も実際には軸方向位置X
の関数であるが、ここでは簡単であるためにXは割愛し
て表現した。
(4) Measurement of the circularity shape of the object to be measured Composite measurement value Y obtained over one revolution of the object to be measured 11
In the method and procedure for obtaining the roundness shape of the measurement object 11 from (θ, X), the roundness shape g (θ, X) expressed by the above-mentioned mathematical expression 1 is the sum of Fourier series as shown in the following mathematical expression 8. It is expressed in the form of. Each term in the Fourier series is actually the axial position X.
However, since it is a simple function here, X is omitted.

【0024】[0024]

【数8】 [Equation 8]

【0025】ここに、Cj ,ψj はそれぞれ真円度形状
のj次成分の振幅と位相ずれである。フーリエ級数の1
次成分(j=1)は断面形状の軸心ずれに起因する成分
であり、点Oを断面形状の最小自乗中心にとれば、Cj
=0となるため、数式8において、j=2からの級数の
和で表した。そして、この数式8を用いることで、合成
測定値Y(θ,X)、即ち、数式7は下記数式9によう
に表すことができる。なお、fj ,δj は角度α,βの
みによって定まる定数であり、下記数式10,11によ
って与えられるものである。
Here, C j and ψ j are the amplitude and phase shift of the j-th order component of the roundness shape, respectively. Fourier series 1
The next component (j = 1) is a component resulting from axial misalignment of the cross-sectional shape, and if the point O is the least square center of the cross-sectional shape, then C j
Since = 0, it is represented by the sum of series from j = 2 in Expression 8. Then, by using this formula 8, the combined measurement value Y (θ, X), that is, formula 7, can be expressed as the following formula 9. Note that f j and δ j are constants that are determined only by the angles α and β, and are given by the following mathematical formulas 10 and 11.

【0026】[0026]

【数9】 [Equation 9]

【0027】[0027]

【数10】 [Equation 10]

【0028】[0028]

【数11】 [Equation 11]

【0029】そして、測定対象物11の1回転にわたっ
て得た合成測定値Y(θ,X)のデータ列の交流成分、
即ち、前記数式9の第3項を下記数式12のようにフー
リエ級数の和の形で表すと、係数の対応関係から数式1
2中の係数Fj ,Gj は数式13,14によって表され
る。そして、この係数Fj ,Gj を用いて真円度形状g
(θ,X)が各数式15によって求められる。
Then, the AC component of the data string of the combined measurement value Y (θ, X) obtained over one revolution of the measurement object 11,
That is, when the third term of the equation 9 is represented by the sum of Fourier series as the following equation 12, the equation 1
The coefficients F j and G j in 2 are represented by the mathematical expressions 13 and 14. Then, using the coefficients F j and G j , the roundness shape g
(Θ, X) is calculated by each equation 15.

【0030】[0030]

【数12】 [Equation 12]

【0031】[0031]

【数13】 Fj =fj j (cosψj cosδj −sinψj sinδj Equation 13] F j = f j C j ( cosψ j cosδ j -sinψ j sinδ j)

【0032】[0032]

【数14】 Gj =−fj j (sinψj cosδj −cosψj sinδj Equation 14] G j = -f j C j ( sinψ j cosδ j -cosψ j sinδ j)

【0033】[0033]

【数15】 [Equation 15]

【0034】即ち、下記に示す手順で測定対象物11の
軸方向位置Xにおける真円度形状g(θ,X)を求める
ことが可能となり、しかも、これはガイドレール22の
変形やうねり、測定対象物11の軸心ずれ、振れ回りと
いった機械系の不具合に起因する測定誤差に影響されな
い真の真円度形状である。
That is, it is possible to obtain the roundness shape g (θ, X) at the axial position X of the object to be measured 11 by the following procedure, and moreover, this is the deformation of the guide rail 22, waviness, and measurement. It is a true roundness shape that is not affected by measurement errors caused by mechanical system defects such as axial misalignment and whirling of the object 11.

【0035】 測定対象物11の1回転にわたって変
位検出器31,32,33により、対象物表面とこの変
位検出器31,32,33の配置点とのへだたり量を測
定する(前述した(1)及び(2)を参照)。なお、こ
の測定は測定対象物11と一定の回転比で回転する図示
しないロータリエンコーダ等からのパルス信号を基準と
して測定対象物11の1回転あたり、例えば、256点
の等回転間隔で変位検出器31,32,33の測定値を
サンプリングすることによって実施することができる。
The displacement detectors 31, 32, and 33 measure the amount of sag between the surface of the object and the disposition points of the displacement detectors 31, 32, and 33 over one rotation of the measurement target 11 (described above ( See 1) and (2)). In this measurement, the displacement detector is rotated at a uniform rotation interval of, for example, 256 points per rotation of the measurement object 11 based on a pulse signal from a rotary encoder (not shown) that rotates at a constant rotation ratio with the measurement object 11. This can be done by sampling 31, 32, 33 measurements.

【0036】 各回転位置ごとに変位検出器31,3
2,33での測定値を荷重加算して合成測定値Y(θ,
X)を求める(前述した(3)参照)。
Displacement detectors 31, 3 for each rotational position
The measured values at 2 and 33 are weighted and the combined measured value Y (θ,
X) is obtained (see (3) described above).

【0037】 測定対象物11の1回転にわたって得
た合成測定値Y(θ,X)の信号列(例えば、256個
の合成測定値Y(θ,X)からなるデータ列)の交流成
分をフーリエ変換し、そのcos成分及びsin成分の係数F
j ,Gj を求めて前述した数式15から真円度形状g
(θ,X)を求める。
The AC component of the signal sequence of the synthetic measurement value Y (θ, X) (for example, the data sequence consisting of 256 synthetic measurement values Y (θ, X)) obtained over one rotation of the measurement object 11 is Fourier-transformed. After conversion, the coefficient F of its cos and sin components
j, circularity from equation 15 described above seeking G j of shape g
Find (θ, X).

【0038】(5)測定対象物の平均半径の変化量の測
定 前述した数式7からわかるように、合成測定値Y(θ,
X)中には測定対象物11の軸方向位置Xでの平均半径
R(X)に関する項(1+a+b)R(X)と変位検出
器31,32,33の設定条件によって定まる一定項
(aKa+Kb+bKc)と真円度形状に関する項{a
g(θ−α,X)+g(θ,X)+bg(θ+β,
X)}とが含まれている。
(5) Measurement of Change in Average Radius of Object to be Measured As can be seen from the equation (7), the combined measured value Y (θ,
In (X), a term (1 + a + b) R (X) relating to the average radius R (X) at the axial position X of the measuring object 11 and a constant term (aKa + Kb + bKc) determined by the setting conditions of the displacement detectors 31, 32, 33. And the term for roundness shape {a
g (θ-α, X) + g (θ, X) + bg (θ + β,
X)} and are included.

【0039】ここで、図3に示すように、真円度形状g
(θ,X)の定義から測定対象物11の全周にわたって
この真円度形状g(θ,X)の平均値は0となるから、
測定対象物11の1回転にわたって十分細かく(実際に
は64〜128電程度)サンプリングして得られた合成
測定値Y(θ,X)のデータ列の平均値は下記数式16
で与えられる。
Here, as shown in FIG. 3, the roundness shape g
From the definition of (θ, X), the average value of this circularity shape g (θ, X) is 0 over the entire circumference of the measurement object 11,
The average value of the data sequence of the combined measurement values Y (θ, X) obtained by sampling the measurement object 11 sufficiently finely (actually, about 64 to 128 electric currents) is given by
Given in.

【0040】[0040]

【数16】 [Equation 16]

【0041】従って、X=Xi の位置での合成測定値の
平均値とX=Xj の位置での合成測定値の平均値との差
を用いてXj の位置での平均半径R(Xj )とXi の位
置での平均半径R(Xi )との差ΔRは下記数式17で
与えられる。
[0041] Thus, X = X average value of the composite measurements at positions i and X = X average at the position of X j using the difference between the average value of the composite measurement at the position of j radius R ( difference ΔR between the mean radius R (X i) at the position of X j) and X i is given by the following equation 17.

【0042】[0042]

【数17】 [Equation 17]

【0043】即ち、下記の手順で測定対象物11の軸方
向位置Xi ,Xj における平均半径の差を求めることが
可能となり、しかも、これはガイドレール22の変形や
うねり、測定対象物11の軸心ずれ、振れ回りといった
機械系の不具合に起因する測定誤差に影響されない真の
平均半径の変化量である。
That is, it is possible to obtain the difference between the average radii at the axial positions X i and X j of the measuring object 11 by the following procedure, and this is due to the deformation of the guide rail 22 and the waviness, the measuring object 11 It is the amount of change in the true average radius that is not affected by measurement errors caused by mechanical system defects such as axial misalignment and whirling.

【0044】 前述した4項の及びと同一の手順
で合成測定値Y(θ,X)を求める。 測定対象物11の1回転にわたって得た合成測定値
Y(θ,X)の平均値を求める。 測定対象物11の種々の軸方向位置Xi ,Xj ,X
k ・・・での平均値が求まれば、軸方向位置Xi とXj
における平均半径の差ΔRijはXi とXk における平均
半径の差ΔRik等は前述した数式17から求められる。
The synthetic measurement value Y (θ, X) is obtained by the same procedure as in the above-mentioned item 4 and. The average value of the combined measurement values Y (θ, X) obtained over one revolution of the measurement object 11 is obtained. Various axial positions X i , X j , X of the measuring object 11
If the average value at k ... Is found, the axial positions X i and X j
The average radius difference ΔR ij in X i and X k is the average radius difference ΔR ik in X i and X k .

【0045】(6)測定対象物の軸心ずれ量の測定 測定対象物を1回転させるときの測定対象物11の中心
と回転中心とのずれ量即ち、軸心ずれ量を把握するため
のよく知られている方法(半径法)について説明する。
(6) Measurement of the amount of axial misalignment of the object to be measured When the object to be measured is rotated once, the amount of misalignment between the center of the object to be measured 11 and the center of rotation, that is, the amount of axial misalignment, is well known. A known method (radius method) will be described.

【0046】図4に示すように、軸方向位置Xにおける
測定対象物11の断面形状の中心O''から距離e、方向
φだけずれている場合、(e,φ)は軸心ずれ量と呼ば
れる。軸心ずれに起因する被測定点のずれを無視して考
えると、図4に示すΔlと図3に示すg(θ,X)とは
等しいから、g(θ,X)の定義からΣ|g(θ,X)
2 を最小にするような円、即ち、ΣΔl2 を最小にす
るような円が最も確からしい平均円(最小自乗中心円)
となる。従って、ΣΔl2 を最小とする(e,φ)が軸
心ずれ量となる。
As shown in FIG. 4, when the displacement is from the center O ″ of the cross-sectional shape of the object 11 to be measured at the axial position X by the distance e and the direction φ, (e, φ) is the amount of axial misalignment. be called. When the deviation of the measured point due to the axis deviation is ignored, Δl shown in FIG. 4 and g (θ, X) shown in FIG. 3 are equal, and therefore Σ | from the definition of g (θ, X). g (θ, X)
| Circle, such as 2 to the minimum, that is, circle, such as the ΣΔl 2 to a minimum is the most probable average circle (least-squares center circle)
Becomes Therefore, (e, φ) that minimizes ΣΔl 2 is the amount of axial misalignment.

【0047】下記の手順で(e,φ)を求めることがで
きる。一般にR(X)>>eであり、下記数式18が成
立する。
(E, φ) can be obtained by the following procedure. Generally, R (X) >> e, and the following formula 18 is established.

【0048】[0048]

【数18】 [Equation 18]

【0049】従って、ΣΔl2 は下記数式19によって
与えられ、このΣΔl2 を最小とするe,φの関係とし
て、∂ΣΔl2 /∂e=0,∂ΣΔl2 /∂φ=0の条
件から下記数式20,21が求まる。
Therefore, ΣΔl 2 is given by the following mathematical formula 19, and as a relation of e and φ that minimizes ΣΔl 2 , the following is obtained from the condition of ∂ΣΔl 2 / ∂e = 0 and ∂ΣΔl 2 / ∂φ = 0. Equations 20 and 21 are obtained.

【0050】[0050]

【数19】 [Formula 19]

【0051】[0051]

【数20】 [Equation 20]

【0052】[0052]

【数21】 [Equation 21]

【0053】従って、図4において、軸心ずれ量x,y
は、x=ecosφ,y=esinφで与えられ、離散系で表
現すると、変位検出器32での測定値rに対象物の回転
角θから得られるcosθ,sinθを乗じて下記数式22,
23で与えられる。
Therefore, in FIG. 4, the axial deviations x, y
Is given by x = ecosφ, y = esinφ, and when expressed in a discrete system, the measurement value r at the displacement detector 32 is multiplied by cos θ, sin θ obtained from the rotation angle θ of the object, and the following formula 22,
Given in 23.

【0054】[0054]

【数22】 [Equation 22]

【0055】[0055]

【数23】 [Equation 23]

【0056】ここにnは積算したデータのデータ数であ
る。即ち、下記の手順で測定する測定対象物11の軸方
向測定位置Xにおける軸心ずれ量(e,φ)、あるい
は、(x,y)が求まる。ここで、軸心ずれ量の評価に
あたっては回転中心O''の振れ回りに起因する測定誤差
が混入するが、測定対象物11の1回転にわたっての測
定値を加算する過程、即ち、前述した数式22,23に
示すように、測定値×cosθ、測定値×sinθの積算値を
求める過程でその影響は抑制される。
Here, n is the number of accumulated data. That is, the axial misalignment amount (e, φ) or (x, y) at the axial measurement position X of the measuring object 11 measured by the following procedure is obtained. Here, in the evaluation of the amount of axial misalignment, a measurement error due to whirling of the rotation center O ″ is mixed, but the process of adding the measurement values of the measurement object 11 over one rotation, that is, the above-mentioned mathematical expression 22 and 23, the influence is suppressed in the process of obtaining the integrated value of the measured value × cos θ and the measured value × sin θ.

【0057】 測定対象物11の1回転にわたって1
個の変位検出計32での測定値とその測定対象物11の
回転角θから定まるrcosθとrsinθとを積算する。 その積算値と積算データ数nとから前述した数式2
2,23によって軸心ずれ量を求める。
The measurement target 11 rotates once over one rotation.
The values measured by the displacement detectors 32 and rcosθ and rsinθ determined from the rotation angle θ of the measurement object 11 are integrated. Formula 2 described above from the integrated value and the integrated data number n
2, 23 is used to obtain the amount of axial deviation.

【0058】以上、(1)〜(6)に示したような方法
及び手順によって測定対象物11の軸方向位置Xにおけ
る真円度形状、軸心ずれ量を求めることができ、軸方向
位置Xi ,Xj での平均半径R(X)との差ΔRijを求
めることができる。
As described above, the circularity shape and the axial misalignment amount at the axial position X of the measuring object 11 can be obtained by the methods and procedures as shown in (1) to (6), and the axial position X can be obtained. The difference ΔR ij between the average radius R (X) at i and X j can be obtained.

【0059】次に、測定対象物11の複数の軸方向位置
i ,Xj ,Xk ・・・でのこれらの各種測定結果から
測定対象物11の円筒形状を求める手順を説明する。図
5に示すように、41は測定対象物11が1回転すると
きの平均的な回転中心軸を示す直線であり、51,5
2,53,54はそれぞれ軸方向位置Xi ,Xj
k,Xl での測定対象物11の真円度形状、平均半
径、軸心ずれ量を示したものである。なお、平均半径
は、X=Xi の位置での平均半径をR(未知のある値)
を基準としてそれからの差分ΔRij,ΔRik,ΔRil
示した。これらの値及び形状を3次元的に評価すること
により測定対象物11の円筒形状を求めることができ
る。
Next, a procedure for obtaining the cylindrical shape of the measuring object 11 from these various measurement results at a plurality of axial positions X i , X j , X k, ... Of the measuring object 11 will be described. As shown in FIG. 5, 41 is a straight line indicating an average rotation center axis when the measurement object 11 makes one rotation, and 51, 5
2, 53, 54 are axial positions X i , X j ,
The circularity shape, the average radius, and the amount of axial misalignment of the measurement object 11 at X k and X l are shown. In addition, the average radius is the average radius at the position of X = X i , which is R (unknown value).
Is shown as a reference, and the differences ΔR ij , ΔR ik , and ΔR il from the reference are shown. The cylindrical shape of the measuring object 11 can be obtained by three-dimensionally evaluating these values and shapes.

【0060】一般に、円筒形状の評価を行う場合には、
円筒の平均半径Rではなく、半径の変化量ΔRij,ΔR
ik,ΔRilが問題とされるため、本実施例の方法で円筒
形状の評価が可能であるが、どうしてもRに実際の値を
定める必要がある場合には、例えば、X=X0 の位置に
基準となる平均半径を定めておき、それからの差分とし
てΔR0i,ΔR0j,ΔR0k・・・等を求めればよいもの
である。
Generally, when evaluating a cylindrical shape,
Not the average radius R of the cylinder, but the change amounts ΔR ij and ΔR
Since ik and ΔR il are problematic, the cylindrical shape can be evaluated by the method of the present embodiment. However, when it is absolutely necessary to set an actual value for R, for example, the position of X = X 0 The average radius as a reference is set in advance , and ΔR 0i , ΔR 0j , ΔR 0k ...

【0061】[0061]

【発明の効果】以上、実施例を挙げて詳細に説明したよ
うに本発明の円筒形状の測定方法によれば、ほぼ円筒形
状をなす測定対象物の軸線方向に対してほぼ平行に往復
運動可能に設けられた取付台にその測定対象物の外周に
臨んでその表面凹凸を測定する3個の変位検出器を測定
対象物の軸直角断面上で且つその検出感度方向が互いに
所定の角度をなして測定対象物の中心軸近傍で交わるよ
うに配置し、取付台を測定対象物の軸線方向に移動させ
て所定距離移動した位置ごとに測定対象物の周方向全周
にわたっての測定対象物表面と変位検出器配置点とのへ
だたり量の変化を測定し、この測定値を変位検出器の配
置角によって定まる係数を用いて荷重加算することによ
って測定中のガイドレールの変形やうねり、あるいは測
定対象物の軸心ずれや振れ回り等の誤差を受けない測定
対象物の平均半径及び真円度形状を含んだ測定値を得
て、この測定値を演算処理することによって測定位置に
おける測定対象物の真円度形状と測定対象物軸線方向の
半径寸法の変化を求めることができ、更に、3個の変位
検出器中の1個の変位検出器によって測定対象物の軸心
ずれ量を含んだ測定値を得て、この測定値を演算処理す
ることによって測定時の測定対象物の振れ回り誤差の影
響が抑制された測定位置での測定対象物の軸心ずれ量を
求めることができ、取付台を測定対象物の軸線方向にお
ける複数の測定位置での真円度形状、平均半径、軸心ず
れ量を求めることにより、各種の機械系の不具合を含ん
だ比較的簡便な装置構成で測定対象物の円筒形状を高精
度に定めることができる。
As described above in detail with reference to the embodiments, according to the cylindrical measuring method of the present invention, it is possible to reciprocate substantially parallel to the axial direction of the measuring object having a substantially cylindrical shape. Three displacement detectors, which face the outer circumference of the object to be measured and measure the surface irregularities, are mounted on the mounting base on the cross section perpendicular to the axis of the object, and their detection sensitivity directions form a predetermined angle with each other. Are arranged so as to intersect with each other in the vicinity of the central axis of the measuring object, and the mounting table is moved in the axial direction of the measuring object for each position moved by a predetermined distance to the surface of the measuring object over the entire circumference in the circumferential direction. Deformation or waviness of the guide rail during measurement, or measurement is performed by measuring the change in the amount of sag with respect to the displacement detector arrangement point and adding the load using the coefficient determined by the displacement detector arrangement angle. The axis of the object And the roundness shape of the measurement object at the measurement position by obtaining the measurement value including the average radius and roundness shape of the measurement object that is not subject to errors such as whirling and The change in the radial dimension of the measuring object in the axial direction can be obtained, and further, one displacement detector among the three displacement detectors can be used to obtain a measurement value including the axial displacement of the measuring subject, By performing arithmetic processing on this measurement value, it is possible to obtain the amount of axial misalignment of the measurement target at the measurement position where the influence of whirling error of the measurement target at the time of measurement is suppressed. By obtaining the circularity shape, average radius, and amount of axial misalignment at multiple measurement positions in the axial direction, the cylindrical shape of the measurement object can be increased with a relatively simple device configuration that includes various mechanical system defects. The accuracy can be set.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る円筒形状の測定方法を
実施するための測定装置の要部断面図である。
FIG. 1 is a cross-sectional view of a main part of a measuring device for carrying out a cylindrical shape measuring method according to an embodiment of the present invention.

【図2】測定装置の概略正面図である。FIG. 2 is a schematic front view of a measuring device.

【図3】円筒形測定対象物の真円度測定及び平均半径測
定の原理を表す説明図である。
FIG. 3 is an explanatory diagram showing the principle of circularity measurement and average radius measurement of a cylindrical measurement object.

【図4】円筒形測定対象物の軸心ずれ測定の原理を表す
説明図である。
FIG. 4 is an explanatory diagram showing the principle of measuring the axial misalignment of a cylindrical measurement object.

【図5】円筒形状測定の原理を表す説明図である。FIG. 5 is an explanatory diagram showing the principle of cylindrical shape measurement.

【符号の説明】[Explanation of symbols]

11 測定対象物 21 測定装置 22 ガイドレール 23 変位検出器取付台 31,32,33 変位検出器 11 Measurement Target 21 Measuring Device 22 Guide Rail 23 Displacement Detector Mounting Base 31, 32, 33 Displacement Detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ほぼ円筒形状をなす測定対象物の軸線方
向に対してほぼ平行に往復運動可能に設けられた取付台
に前記測定対象物の外周に臨んでその表面凹凸を測定す
る3個の変位検出器を前記測定対象物の軸直角断面上で
且つその検出感度方向が互いに所定の角度をなして前記
測定対象物の中心軸近傍で交わるように配置し、前記取
付台を前記測定対象物の軸線方向に移動させてその所定
距離移動した位置ごとに前記測定対象物の周方向全周に
わたっての変化を測定し、この測定値から演算によって
その測定位置での測定対象物の真円度形状及び平均半
径、軸心ずれ量を求め、前記測定対象物の軸線方向の複
数の測定位置での前記真円度形状及び平均半径、軸心ず
れ量から前記測定対象物の円筒形状を求めることを特徴
とする円筒形状の測定方法。
1. A mounting base provided to be capable of reciprocating substantially parallel to the axial direction of an object to be measured having a substantially cylindrical shape and facing the outer periphery of the object to be measured to measure surface irregularities thereof. Displacement detectors are arranged on a cross section perpendicular to the axis of the object to be measured, and the detection sensitivity directions are arranged so as to intersect each other in the vicinity of the central axis of the object to be measured at a predetermined angle, and the mounting base is the object to be measured. Of the circularity shape of the measurement object at the measurement position by calculating the change from the measured value at each position moved in the axial direction of the measurement object for each position moved by the predetermined distance. And the average radius, the amount of axial misalignment is obtained, and the roundness shape and the average radius at a plurality of measurement positions in the axial direction of the object to be measured and the cylindrical shape of the object to be measured are obtained from the amount of axial misalignment. Characteristic cylindrical shape measurement Method.
JP4294757A 1992-11-04 1992-11-04 Measuring method of cylindrical shape Expired - Fee Related JP3004488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4294757A JP3004488B2 (en) 1992-11-04 1992-11-04 Measuring method of cylindrical shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4294757A JP3004488B2 (en) 1992-11-04 1992-11-04 Measuring method of cylindrical shape

Publications (2)

Publication Number Publication Date
JPH06147879A true JPH06147879A (en) 1994-05-27
JP3004488B2 JP3004488B2 (en) 2000-01-31

Family

ID=17811911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4294757A Expired - Fee Related JP3004488B2 (en) 1992-11-04 1992-11-04 Measuring method of cylindrical shape

Country Status (1)

Country Link
JP (1) JP3004488B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025603A1 (en) * 2004-09-01 2006-03-09 Canon Kabushiki Kaisha Method for measuring circular shape, and method and device for measuring cylindrical shape
KR100655053B1 (en) * 2004-12-08 2006-12-06 두산중공업 주식회사 Apparatus For Three-Dimension Pipe Displacements Measurement With Rotation
JP2007263940A (en) * 2005-09-02 2007-10-11 キヤノン株式会社 Cylindrical measurement method
US7328125B2 (en) 2004-09-01 2008-02-05 Canon Kabushiki Kaisha Measuring method of cylindrical body
EP1992909A1 (en) * 2006-02-28 2008-11-19 Canon Kabushiki Kaisha Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
CN106289027A (en) * 2015-06-24 2017-01-04 智泰科技股份有限公司 Roundness measuring device and roundness measuring method
WO2019216624A1 (en) * 2018-05-08 2019-11-14 한양대학교에리카산학협력단 Measuring apparatus and measuring method of surface of object
KR20190128566A (en) * 2018-05-08 2019-11-18 한양대학교 에리카산학협력단 Apparatus for measuring the surface of an object having a circular cross-sectional shape and Measuring Method Using Same
CN112105889A (en) * 2018-05-08 2020-12-18 汉阳大学校Erica产学协力团 Device and method for measuring surface of object
CN113566674A (en) * 2021-06-29 2021-10-29 中冶(上海)钢结构科技有限公司 Roundness measuring scale for round pipe

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025603A1 (en) * 2004-09-01 2006-03-09 Canon Kabushiki Kaisha Method for measuring circular shape, and method and device for measuring cylindrical shape
US7328125B2 (en) 2004-09-01 2008-02-05 Canon Kabushiki Kaisha Measuring method of cylindrical body
KR100655053B1 (en) * 2004-12-08 2006-12-06 두산중공업 주식회사 Apparatus For Three-Dimension Pipe Displacements Measurement With Rotation
JP2007263940A (en) * 2005-09-02 2007-10-11 キヤノン株式会社 Cylindrical measurement method
EP1992909A1 (en) * 2006-02-28 2008-11-19 Canon Kabushiki Kaisha Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
EP1992909A4 (en) * 2006-02-28 2012-08-01 Canon Kk Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
CN106289027A (en) * 2015-06-24 2017-01-04 智泰科技股份有限公司 Roundness measuring device and roundness measuring method
WO2019216624A1 (en) * 2018-05-08 2019-11-14 한양대학교에리카산학협력단 Measuring apparatus and measuring method of surface of object
KR20190128566A (en) * 2018-05-08 2019-11-18 한양대학교 에리카산학협력단 Apparatus for measuring the surface of an object having a circular cross-sectional shape and Measuring Method Using Same
CN112105889A (en) * 2018-05-08 2020-12-18 汉阳大学校Erica产学协力团 Device and method for measuring surface of object
CN113566674A (en) * 2021-06-29 2021-10-29 中冶(上海)钢结构科技有限公司 Roundness measuring scale for round pipe

Also Published As

Publication number Publication date
JP3004488B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
EP1992909B1 (en) Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
CN110470242B (en) Device and method for measuring roundness of inner hole of large part in situ
US7328125B2 (en) Measuring method of cylindrical body
JP4828072B2 (en) Apparatus and method for measuring deviations in dimensions and shapes of crank pins at a grinding location
US5574233A (en) Non-contact railway wheel test apparatus and method
JPS61209857A (en) Method and apparatus for test accuracy in movement of nc machine tool
US11754387B2 (en) Noncontact sensor calibration using single axis movement
JPH0642947A (en) Method and device for measuring run-out or contour
JPH06147879A (en) Measuring method of cylindrical profile
CN110470243A (en) Based on non-contact sensor and interior roundness measurement method and device that workpiece can bias
US20030101602A1 (en) Measurement of geometric parameters of internal and external screw thread and similar grooves
US20060074587A1 (en) Measuring method of circular shape, measuring method of cylindrical shape, and measuring apparatus of cylindrical shape
CN112665879A (en) Target surface deviation measuring and adjusting method and device of wheel pose measuring system
CN117260389A (en) Multi-sensor fusion-driven large-scale deep hole part shape error in-situ measurement system
JPH04148819A (en) Method and apparatus for measuring roll profile
GB2197477A (en) Diametral variation determination for workpieces
JP3722288B2 (en) Cylindrical shape measurement method
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JP4557940B2 (en) Method for measuring the shape of a cross-sectional circle perpendicular to the axis of the cylinder to be measured, and method for measuring the cylindrical shape of the cylinder to be measured
CN110426657B (en) Device and method for testing ultrathin air gap magnetic field of rotating motor
JP2754128B2 (en) Cylindricity measuring device and measuring method
CN112105889B (en) Device and method for measuring surface of object
JPH0712501A (en) Shape measuring device of tubular body
JP2667104B2 (en) Cylindrical accuracy inspection device
JPH04148818A (en) Method and apparatus for measuring abrasion loss of roll

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees