JPS594015A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS594015A
JPS594015A JP11314482A JP11314482A JPS594015A JP S594015 A JPS594015 A JP S594015A JP 11314482 A JP11314482 A JP 11314482A JP 11314482 A JP11314482 A JP 11314482A JP S594015 A JPS594015 A JP S594015A
Authority
JP
Japan
Prior art keywords
layer
electrode
silicon
forming
electrode window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11314482A
Other languages
Japanese (ja)
Inventor
Soichiro Nakai
中井 宗一郎
Kazunori Imaoka
今岡 和典
Takao Miura
隆雄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11314482A priority Critical patent/JPS594015A/en
Publication of JPS594015A publication Critical patent/JPS594015A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To eliminate the need for forming the sloping of a stepped shape of an electrode window, and to prepar the device easily by forming a semiconductor region to an Si substrate, coating the whole surface containing said region with an insulating layer, forming the electrode window, setting up Si obtained by changing polycrystalline Si into a single crystal into the window, and coating Si with a metallic electrode in Al, etc. CONSTITUTION:Two thick field oxide films 4 are formed onto the P type Si substrate 1, the semiconductor regions 6, 7 are each diffused and formed positioned between said oxide films, and a gate electrode 9 is formed onto the substrate 1 exposed between these regions through a gate oxide film 8, and surrouned by an oxide film 10. The whole surface is coated with a PSG film 11, the electrode windows 12, 13 are each bored made corresponding to the regions 6, 7, and the polycrystalline Si layer 15 is grown on the whole surface containing the electrode windows. Laser beams 16 are irradiated to melt the layer 15, the layer 15 is pured into the windows 12, 13 while the regions 6, 7 exposed into the windows 12, 13 are used as crystalline seeds, and the layer 15 is changed into single crystals 17. The layer 15 except the single crystals is removed, and the upper ends of the single crystals 17 are coated with Al wiring 18.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は半導体装置及びその製造方法にががり、特に金
属電極と半導体領域とのコンタクトの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to improvements in contact between a metal electrode and a semiconductor region.

(2)技術の背景 一般に半導体装置及びその製造方法においてシリコン基
板上に形成した半導体領域と金属電極(配線)間のコン
タクトは絶縁層に形成した電極窓に直接アルミニウム(
A1)等の金属配線を蒸着またはスパツクしている。
(2) Background of the technology In general, in semiconductor devices and their manufacturing methods, contacts between semiconductor regions formed on silicon substrates and metal electrodes (wirings) are made directly with aluminum (
Metal wiring such as A1) is vapor-deposited or spun.

いま、絶縁層としてPSGを用いて電極窓を構成し、そ
の電極窓内にAβを直接パターニングする場合に電極窓
の形状が滑らかでないと金属配線とのコンタクトが悪く
なるだけでなく、PSG中のPを基板に拡散させる必要
からメルト工程を設けて上記二つの問題を解決していた
Now, when forming an electrode window using PSG as an insulating layer and directly patterning Aβ into the electrode window, if the shape of the electrode window is not smooth, not only will the contact with the metal wiring be poor, but also the contact with the metal wiring will be poor. Because of the need to diffuse P into the substrate, a melt process was provided to solve the above two problems.

しかし、このような二つのファクタを1つのメルト工程
で同時にコントロールすることばPSGのP濃度等の問
題から難しくこれらを簡単にコントロールできるような
半導体装置及びその製造方法が要望されていた。
However, it is difficult to simultaneously control these two factors in one melt process due to problems such as the P concentration of PSG, and there has been a demand for a semiconductor device and a method for manufacturing the same that can easily control these two factors.

(3)従来技術と問題点 第1図(Δ)〜(1)は従来の半導体装置及び3その製
造方法を示すものである。
(3) Prior art and problems FIGS. 1 (Δ) to (1) show a conventional semiconductor device and its manufacturing method.

第1図(Δ)において、■は例えばP型のシリコン基板
で該基板上に初期の二酸化シリコン層(SiO2)2が
形成される。
In FIG. 1 (Δ), ■ indicates, for example, a P-type silicon substrate, on which an initial silicon dioxide layer (SiO2) 2 is formed.

次いで(B)に示すように窒化シリコン(SiN)層3
をCV D (Chemical VapourDep
osition)で形成し、マスク状のパターンに従っ
てフォトリソグラフィ技術で選択的にSiN層3を除去
し、(C)に示すようにフィルド酸化がなされてSiN
層3の除去された部分に厚い二酸化シリコン1i(Si
02)を約7000八属に形成される。
Next, as shown in (B), a silicon nitride (SiN) layer 3 is formed.
CV D (Chemical VaporDep)
The SiN layer 3 is selectively removed using photolithography according to a mask-like pattern, and as shown in (C), filled oxidation is performed to form the SiN layer 3.
A thick layer of silicon dioxide 1i (Si
02) is formed into about 7,000 eight genera.

次に(D>に示すように厚いSiO2層のみを残しゲー
ト酸化膜8を形成して例えばホウ素等のP型ドーパント
がイオン注入(I I)されてゲート酸化膜8上を通り
抜けてホウ素がシリコン基板に導入される。
Next, as shown in (D>), a gate oxide film 8 is formed leaving only the thick SiO2 layer, and a P-type dopant such as boron is ion-implanted (II) to pass through the top of the gate oxide film 8 and the boron is transferred to the silicon. introduced into the substrate.

次に(E)に示すようにソース、ドレインの半導体領域
6.7部分のゲート酸化膜8を除去してN型の不純物を
拡散させるために残ったゲート酸化膜8上に多結晶シリ
コン9を堆積させてパターン形成する。
Next, as shown in (E), the gate oxide film 8 in the source and drain semiconductor regions 6.7 is removed, and polycrystalline silicon 9 is deposited on the remaining gate oxide film 8 to diffuse N-type impurities. Deposit and pattern.

次に(F)のようにゲート酸化膜8上の多結晶シリコン
9を酸化させて二酸化シリコン屓1oを形成する。
Next, as shown in (F), polycrystalline silicon 9 on gate oxide film 8 is oxidized to form silicon dioxide layer 1o.

更に(G)に示すようにP S G11lを全面に堆積
させてソース、ドレインの半導体領域6.7の上部に電
極窓12.13を形成する。
Further, as shown in (G), P S G 11l is deposited on the entire surface to form electrode windows 12.13 above the source and drain semiconductor regions 6.7.

この部分の拡大側断面図を(H)に示すが電極窓12.
13は(′H)に示すようにPSG層表面から半導体領
域6,7までを急峻に形成すると次の工程(I)で形成
するアルミニウム(Al)14のスパッタ等で半導体領
域での接触が悪くなり、Alと金属配線のなじみを悪く
する。そこでメルト工程を付加して(H)の電極窓12
. 13に点線で示すようにPSG層IIを溶解させて
スロープを滑らかにすることが要求される。しかし、こ
のメルト工程はPSGiiを溶解させてスロープを滑ら
かにするときPSG中に含まれるPの濃度に大きく左右
され、Pの濃度を高くしないと滑らかなスロープが得に
くく、Pの濃度を高めるとΔρの配線14がPによって
腐食される。
An enlarged side sectional view of this part is shown in (H), and the electrode window 12.
13, as shown in ('H), if the area from the PSG layer surface to the semiconductor regions 6 and 7 is formed steeply, the contact in the semiconductor area will be poor due to the sputtering of aluminum (Al) 14 formed in the next step (I). This results in poor compatibility between Al and metal wiring. Therefore, we added a melting process to the electrode window 12 of (H).
.. It is required to melt the PSG layer II to smooth the slope as shown by the dotted line at 13. However, in this melting process, when dissolving PSGii to smooth the slope, it is greatly influenced by the concentration of P contained in PSG, and it is difficult to obtain a smooth slope unless the concentration of P is increased, and if the concentration of P is increased, The wiring 14 of Δρ is corroded by P.

さらに、メルト工程でPを拡散させる機能も合せ持つた
めにP濃度とメルト時間を上手にコントロールして拡散
層へのPの拡散量とメルトの形状を定めなければならず
pH度を厳密に規定しなりればならずメルト時間もP濃
度に応じた時間を定めなければならないのでこれらの規
定が難しい欠点を有していた。
Furthermore, in order to have the function of diffusing P in the melting process, it is necessary to skillfully control the P concentration and melting time to determine the amount of P diffused into the diffusion layer and the shape of the melt, and the pH level must be strictly regulated. Since the melting time must be determined in accordance with the P concentration, it is difficult to specify these requirements.

(4)発明の目的 本発明は上記従来の欠点に鑑み、電極窓のステップ形状
をスロープ状にすることなく、且つ拡散層のPの深さコ
ントロールを電極窓のステップ型状を考慮に入れずに条
件出しができるようにした半導体装置及びその製造方法
を提供することを目的とするものである。
(4) Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention provides a method for controlling the depth of P in the diffusion layer without making the step shape of the electrode window slope-like, and without taking into account the step shape of the electrode window. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same, which allow conditions to be set.

(5)発明の構成 そしてこの目的は本発明によれば、シリコン基板に半導
体領域を形成し、該半導体領域上に形成した絶縁層に電
極窓を設は該電極窓内に多結晶シリコンを単結晶化した
シリコンを設け、該単結晶シリコンを介してアルミニウ
ム等の金属電極を設けてなることを特徴とする半導体装
置を提供することによって達成される。
(5) Structure and object of the invention According to the present invention, a semiconductor region is formed on a silicon substrate, an electrode window is provided in an insulating layer formed on the semiconductor region, and polycrystalline silicon is formed in the electrode window. This is achieved by providing a semiconductor device characterized by providing crystallized silicon and providing a metal electrode such as aluminum through the single crystal silicon.

(6)発明の実施例 以下本発明の実施例を第1図の(A)〜(G)。(6) Examples of the invention Examples of the present invention are shown in FIGS. 1A to 1G below.

(h)、  (i)、  (j)について説明する。(h), (i), and (j) will be explained.

第1図の(A)〜(G)は従来の工程と同一であるので
重複説明を省略するも(G)に示すようにPSG層11
に形成した電極窓12.13上に〔第1図(h)に拡大
図を示す〕多結晶シリコン層15をCVD方等で(i)
 17)如< 4000−5000人厚ニへ属し、該多
結晶シリコン層15上よりレーザ(10〜15Wの連続
波アルゴンレーザ)を照射して多結晶シリコン層をメル
トさせることで電極窓12. 13内に多結晶シリコン
15が熔解して流れ込むと同時に基板1に接した面から
単結晶化が進んで第1図(j)に示すように電極窓12
. 13内に単結晶シリコン17゜17が形成される。
(A) to (G) in FIG. 1 are the same as the conventional process, so redundant explanation will be omitted.
A polycrystalline silicon layer 15 (an enlarged view is shown in FIG. 1(h)) is deposited on the electrode window 12.13 formed in (i) by CVD or the like.
17) The thickness of the polycrystalline silicon layer 15 is approximately 4000-5000 people, and the polycrystalline silicon layer 15 is irradiated with a laser (continuous wave argon laser of 10 to 15 W) to melt the polycrystalline silicon layer, thereby forming the electrode window 12. At the same time as the polycrystalline silicon 15 melts and flows into the electrode window 13, single crystallization progresses from the surface in contact with the substrate 1, forming the electrode window 12 as shown in FIG. 1(j).
.. Single crystal silicon 17° 17 is formed within 13 .

次に単結晶シリコン17. 17を介してA7!の金属
配線18をスパッタまたは蒸着等で形成することで単結
晶シリコン17. 17とAjl!の金属配線は合金化
されて良くコンタクトをとることができる。
Next, single crystal silicon 17. A7 through 17! Single crystal silicon 17. is formed by forming metal wiring 18 by sputtering or vapor deposition. 17 and Ajl! The metal wiring is alloyed and can make good contact.

また、上記実施例では多結晶シリコン15をノンドープ
で説明したがドープした結晶シリコンを用いれば抵抗を
小さく選択して置けば結晶化した単結晶シリコン17.
 17部分の抵抗も小さく選択出来て抵抗値を15〜1
7Ω程度に選ぶことも出来る。
In the above embodiment, the polycrystalline silicon 15 was explained as non-doped, but if doped crystalline silicon is used, the resistance can be selected to be low, and the single crystalline silicon 17 can be crystallized.
The resistance of the 17 part can be selected to be small, and the resistance value can be set to 15 to 1.
You can also choose around 7Ω.

更に、金属配線を施す工程の・前に従来技術のようなメ
ルト工程を入れれば拡散層へのPの深さのコントロール
のみを行うようにして電極窓のステップ形状を考慮に入
れる必要がなくなる。また、本発明は上記した実施例の
MO3型FETのみに限らず他の半導体装置に適用し得
ることは明らかである。
Furthermore, if a melting process as in the prior art is performed before the metal wiring process, only the depth of P into the diffusion layer is controlled, and there is no need to take the step shape of the electrode window into consideration. Further, it is clear that the present invention can be applied not only to the MO3 type FET of the above-described embodiment but also to other semiconductor devices.

(7)発明の効果 以上、詳細に説明したように本発明によれば、PSG等
の絶縁層に形成した電極窓に埋め込まれた単結晶シリコ
ンが直接An配線と接するために電極窓のステップ形状
をスロープとする必要がないのでメルト工程ではPの拡
散層の深さコントロールのみを行うようにすればよいの
で制御が極めて容易になる特徴を有する。
(7) Effects of the Invention As described above in detail, according to the present invention, the step shape of the electrode window is such that the single crystal silicon embedded in the electrode window formed in the insulating layer such as PSG is in direct contact with the An wiring. Since there is no need to set the slope to a slope, it is only necessary to control the depth of the P diffusion layer in the melting process, which makes the control extremely easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図の(A)乃至(I)は従来の半導体装置の製造工
程を示ず側断面図、第1図の(A)乃至(G)、及び(
h)〜(j)は本発明の半導体装置の製造工程を示す側
断面図である。 1・・・基板、 2・・・二酸化シリコン層、4・・・
フィルド酸化膜、 62.7・・・半導体領域、 8・
・・ゲート酸化膜、 11・・・PSG層、 12.1
3・・・電極窓、 15・・・多結晶シリコン層、 1
7・・・単結晶シリコン。 特許出願人  富士通株式会社 7 手続補正書(方式) 昭和57年lO月λg日 1、事件の表示 昭和57年 特 許 願 第11314,1号2、発明
の名称 半導体装置及びその製造方法 3、補正をする者 事件との関係   特許出願人 1フ7τ ン 11ハう り lI ブ ?” Ij住
所  神奈川県用崎市中原区上小田中1015番地名称
  i午菰株式会社 代表者 山本卓眞 4、代理人の211 m < o44> 777−11
11 <内線2630)住所  神奈川県用崎市中原区
上小田中1015番地昭和57年9月9日(発送日 昭
和57年9月28日)明   m    書 1、発明の名称 半導体装置及びその製造方法 2、特許請求の範囲 (1)シリコン基板に半導体領域を形成し該半導体領域
上に形成した絶縁層に電極窓を設け、該電極窓内に多結
晶シリコンを単結晶化したシリコンを設け、該単結晶シ
リコンを介してアルミニウム等の金属電極を設けてなる
ことを特徴とする半導体装置。 (2)シリコン基板上に半導体領域を形成する工程と、
該半導体領域上にPSG等の絶縁層を形成する工程と、
該絶縁層に電極窓を形成する工程と、該電極窓内に多結
晶シリコンを形成する工程と、該多結晶シリコンに熱線
を照射する工程と、該単結晶化したシリコン上に金属電
極を形成する工程を有することを特徴とする半導体装置
の製造方法。 3、発明の詳細な説明 (1)発明の技術分野 本発明は半導体装置及びその製造方法に係り、特に金属
電極と半導体領域上lコンタクトの改良に関する。 (2)技術の背景 一般に半導体装置及びその製造方法においてシリコン基
板上に形成した半導体領域と金属電極(配線)間のコン
タクトは絶縁層に形成した電極窓に直接アルミニウム(
A7!>等の金属配線を蒸着またはスパツクしている。 いま、絶縁層としてPSGを用いて電極窓を構成し、そ
の電極窓内にAlを直接パターニングする場合に電極窓
の形状が滑らかでないと金属配線とのコンタクトが悪く
なるだけでなく、PSG中のPを基板に拡散させる必要
からメルト工程を設けて上記二つの問題を解決していた
。 しかし、このような二つのファクタを1つのメ    
゛ルト工程で同時にコントロールすることはPSGのP
濃度等の問題から難しくこれらを簡単にコントロールで
きるような半導体装置及びその製造方法が要望されてい
た。 (3)従来技術と問題点 第1図(Δ)〜(1)は従来の半導体装置及びその製造
方法を示すものである。 第1図(八)において、■は例えばP型のシリコン基板
で該基板上に初期の二酸化シリコン層(SiO2)2が
形成される。 次いで(B)に示すように窒化シリコン(SiN)[3
をCV D (Chemical VapourDep
osition)で形成し、マスク状のパターンに従っ
てフォトリソグラフィ技術で選択的にSiN層3を除去
し、(C)に示すようにフィルド酸化がなされてSiN
層3の除去された部分に厚い二酸化シリコンJ*(Si
O2)を約7000八属に形成される。 次に(D)に示すように厚い5i02Nのみを残しゲー
ト酸化膜8を形成して例えばホウ素等のP型ドーパント
がイオン注入(I I)されてゲート酸化膜8上を通り
抜けてホウ素がシリコン基板に導入される。 次に(E)に、示すようにソース、ドレインの半導体領
域6.7部分のゲート酸化膜8を除去してN型の不純物
を拡散させるために残ったゲート酸化膜8上に多結晶シ
リコン9を堆積させてパターン形成する。 次に(F)のようにゲート酸化膜8上の多結晶シリコン
9を酸化させて二酸化シリコン層10を形成する。 さらに(G)に示すようにPSG屓11を全面に堆積さ
せてソース、ドレインの半導体領域6,7の上部に電極
窓12.13を形成する。 この部分の拡大側断面図を(H)に示すが電極窓12.
13は(H)に示すようにPSG層表面から半導体領域
6,7までを急峻に形成すると次の工程(1)で形成す
るアルミニウム(A4)14のスパッタ等で半導体領域
での接触が悪くなり、Aβと金属配線のなじみを悪くす
る。そこでメルト工程を付加して(H)の電極°窓12
. 13に点線で示すようにPSG層11を熔解させて
スロープを滑らかにすることが要求される。しかし、こ
のメルト工程はPSG屓を熔解させてスロープを滑らか
にするときPSG中に含まれるPの濃度に大きく左右さ
れ、Pの濃度を高くしないと滑らかなスロープが得にく
く、Pの濃度を高めると八βの配線14がPによって腐
食される。 さらに、メルト工程でPを拡散させる機能も合せ持つた
めにP1J1度とメルト時間を上手にコントロールして
拡散層へのPの拡散量とメルトの形状を定めなければな
らずP濃度を厳密に規定しなければならずメルト時間も
Pa度に応じた時間を定めなければならないのでこれら
の規定が難しい欠点を有しζいた。 (4)発明の目的 本発明は上記従来の欠点に鑑み、電極窓のステップ形状
をスロープ状にすることなく、且つ拡散層のPの深さコ
ントロールを電極窓のステップ型状を考慮に入れずに条
件出しができるようにした半導体装置及びその製造方法
を提供することを目的とするものである。 (5)発明の構成 そしてこの目的は本発明によれば、シリコン基板に半導
体領域を形成し、該半導体領域上に形成した絶縁層に電
極窓を設は該電極窓内に多結晶シリコンを単結晶化した
シリコンを設け、該単結晶シリコンを介してアルミニウ
ム等の金属電極を設けてなることを特徴とする半導体装
置を提供することによって達成される。 (6)発明の実施例 以下本発明の実施例を第1図の(Δ)〜(G)。 (J)、  (K)、  (L)について説明する。 第1図の(A)〜(G)は従来の工程と同一であるので
重複説明を省略するも(G)に示ずようにPSGJii
llに形成した電極窓12.13上に〔第1図(J)に
拡大図を示す〕多結晶シリコン層15をCVD方等で(
K)の如< 4000〜5000人厚に形成し、該へ属
晶シリコン層15上よりレーザ(10〜15Wの連続波
アルゴンレーザ)を照射して多結晶シリコン層をメルト
させることで電極窓12. 13内に多結晶シリコン1
5が溶解して流れ込むと同時に基板1に接した面から単
結晶化が進んで第1図(L)に示すように電極窓12.
 13内に単結晶シリコン17゜17が形成される。次
に単結晶シリコン17.17を介して八lの金属配線1
8をスパッタまたは蒸着等で形成することで単結晶シリ
コン17. 17とAj2の金属配線は合金化されて良
くコンタクトをとることができる。 また、上記実施例では多結晶シリコン15をノンドープ
で説明したがドープした結晶シリコンを用いれば抵抗を
小さく選択して置けば結晶化した単結晶シリコン17.
17部分の抵抗も小さく選択出来て抵抗値を15〜17
Ω程度に選ぶことも出来る。 更に、金属配線を施す工程の前に従来技術のようなメル
ト工程を入れれば拡散層へのPの深さのコントロールの
みを行うようにして電極窓のステップ形状を考慮に入れ
る必要がなくなる。また、本発明は上記した実施例のM
O3型FETのみに限らず他の半導体装置に適用し得る
ことは明らかである。 (7)発明の効果 以上、詳細に説明したように本発明によれば、PSG等
の絶縁層に形成した電極窓に埋め込まれた単結晶シリコ
ンが直接A1配線と接するために電極窓のステップ形状
をスロープとする必要がないのでメルト工程でばPの拡
散層の深さコンI・ロールのみを行うようにすればよい
ので制御が極めて容易になる特徴を有する。 4、図面の簡単な説明 第1図の(A)乃至(I)は従来の半導体装置の製造工
程を示す側断面図、第1図の(A)乃至(G)、及び(
J)〜(L)は本発明の半導体装置の製造工程を示す側
断面図である。 ■・・・基板、 2・・・二酸化シリコン層、4・・・
フィルド酸化膜、 6,7・・・半導体領域、 8・・
・ゲート酸化膜、 11・・・1) S G層、 12
.13・・・電極窓、 I5・・・多結晶シリコン層、
 17・・・単結晶シリコン。
(A) to (I) in FIG. 1 are side sectional views showing the manufacturing process of a conventional semiconductor device, (A) to (G) in FIG.
h) to (j) are side sectional views showing the manufacturing process of the semiconductor device of the present invention. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Silicon dioxide layer, 4...
Filled oxide film, 62.7... Semiconductor region, 8.
...Gate oxide film, 11...PSG layer, 12.1
3... Electrode window, 15... Polycrystalline silicon layer, 1
7...Single crystal silicon. Patent Applicant: Fujitsu Limited 7 Procedural Amendment (Method) 1981, 10/λg Day 1, Case Description 1988 Patent Application No. 11314, 1, 2, Title of Invention: Semiconductor Device and Method for Manufacturing the Same 3, Amendment Relationship with the case of the patent applicant ” Ij Address 1015 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture Name Igo Co., Ltd. Representative Takuma Yamamoto 4, Agent 211 m <o44> 777-11
11 <extension 2630) Address: 1015 Kamiodanaka, Nakahara-ku, Yozaki-shi, Kanagawa Prefecture September 9, 1980 (Delivery date: September 28, 1980) M Book 1 Name of the invention Semiconductor device and its manufacturing method 2 , Claims (1) A semiconductor region is formed on a silicon substrate, an electrode window is provided in an insulating layer formed on the semiconductor region, silicon obtained by monocrystalizing polycrystalline silicon is provided in the electrode window, and the single crystal silicon is provided in the electrode window. A semiconductor device characterized in that a metal electrode made of aluminum or the like is provided through crystalline silicon. (2) forming a semiconductor region on a silicon substrate;
forming an insulating layer such as PSG on the semiconductor region;
A step of forming an electrode window in the insulating layer, a step of forming polycrystalline silicon in the electrode window, a step of irradiating the polycrystalline silicon with heat rays, and a step of forming a metal electrode on the monocrystalline silicon. 1. A method for manufacturing a semiconductor device, comprising the step of: 3. Detailed Description of the Invention (1) Technical Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly relates to improvements in metal electrodes and contacts on semiconductor regions. (2) Background of the technology In general, in semiconductor devices and their manufacturing methods, contacts between semiconductor regions formed on silicon substrates and metal electrodes (wirings) are made directly with aluminum (
A7! > etc. are vapor-deposited or sputtered. Now, when forming an electrode window using PSG as an insulating layer and directly patterning Al in the electrode window, if the shape of the electrode window is not smooth, not only will the contact with the metal wiring be poor, but the contact with the metal wiring will be poor. Because of the need to diffuse P into the substrate, a melt process was provided to solve the above two problems. However, combining these two factors into one
Simultaneous control during the bolt process is PSG's P.
There has been a demand for a semiconductor device and a manufacturing method thereof that can easily control difficult problems such as concentration. (3) Prior art and problems FIGS. 1 (Δ) to (1) show a conventional semiconductor device and its manufacturing method. In FIG. 1(8), 2 indicates, for example, a P-type silicon substrate, on which an initial silicon dioxide layer (SiO2) 2 is formed. Next, as shown in (B), silicon nitride (SiN) [3
CV D (Chemical VaporDep)
The SiN layer 3 is selectively removed using photolithography according to a mask-like pattern, and as shown in (C), filled oxidation is performed to form the SiN layer 3.
A thick layer of silicon dioxide J* (Si
O2) is formed into about 7,000 eight genera. Next, as shown in (D), a gate oxide film 8 is formed leaving only the thick 5i02N, and a P-type dopant such as boron is ion-implanted (II) to pass through the gate oxide film 8 and the boron is transferred to the silicon substrate. will be introduced in Next, as shown in (E), the gate oxide film 8 in the source and drain semiconductor regions 6.7 is removed, and polycrystalline silicon 9 is placed on the remaining gate oxide film 8 to diffuse N-type impurities. is deposited to form a pattern. Next, as shown in (F), polycrystalline silicon 9 on gate oxide film 8 is oxidized to form silicon dioxide layer 10. Further, as shown in (G), a PSG layer 11 is deposited over the entire surface to form electrode windows 12 and 13 above the source and drain semiconductor regions 6 and 7. An enlarged side sectional view of this part is shown in (H), and the electrode window 12.
As shown in (H), if 13 is formed steeply from the PSG layer surface to the semiconductor regions 6 and 7, the contact in the semiconductor region will be poor due to sputtering of aluminum (A4) 14 formed in the next step (1). , impairs the compatibility between Aβ and metal wiring. Therefore, by adding a melting process, the electrode ° window 12 of (H) was added.
.. It is required to melt the PSG layer 11 and smooth the slope as shown by the dotted line at 13. However, this melting process is greatly influenced by the concentration of P contained in PSG when melting the PSG layer to create a smooth slope, and it is difficult to obtain a smooth slope unless the concentration of P is increased. The 8β wiring 14 is corroded by P. Furthermore, in order to have the function of diffusing P in the melting process, it is necessary to skillfully control the P1J1 degree and melt time to determine the amount of P diffused into the diffusion layer and the shape of the melt, and the P concentration must be strictly regulated. The melting time must be determined according to the degree of Pa, which has the disadvantage that it is difficult to specify these requirements. (4) Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention provides a method for controlling the depth of P in the diffusion layer without making the step shape of the electrode window slope-like, and without taking into account the step shape of the electrode window. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same, which allow conditions to be set. (5) Structure and object of the invention According to the present invention, a semiconductor region is formed on a silicon substrate, an electrode window is provided in an insulating layer formed on the semiconductor region, and polycrystalline silicon is formed in the electrode window. This is achieved by providing a semiconductor device characterized by providing crystallized silicon and providing a metal electrode such as aluminum through the single crystal silicon. (6) Embodiments of the Invention Examples of the invention are shown in (Δ) to (G) of FIG. 1 below. (J), (K), and (L) will be explained. (A) to (G) in Fig. 1 are the same as the conventional process, so redundant explanation will be omitted; however, as shown in (G), PSGJii
A polycrystalline silicon layer 15 (an enlarged view is shown in FIG. 1 (J)) is formed on the electrode window 12.
The electrode window 12 is formed by forming the polycrystalline silicon layer 15 to a thickness of 4,000 to 5,000 as described in K), and melting the polycrystalline silicon layer by irradiating a laser (10 to 15 W continuous wave argon laser) from above the polycrystalline silicon layer 15. .. Polycrystalline silicon 1 in 13
5 melts and flows into the electrode window 12. At the same time, single crystallization progresses from the surface in contact with the substrate 1, and as shown in FIG. 1(L), the electrode window 12.
Single crystal silicon 17° 17 is formed within 13 . Next, 8L metal wiring 1 is passed through single crystal silicon 17.17.
By forming 8 by sputtering or vapor deposition, single crystal silicon 17. The metal wirings 17 and Aj2 are alloyed and can make good contact. In the above embodiment, the polycrystalline silicon 15 was explained as non-doped, but if doped crystalline silicon is used, the resistance can be selected to be low, and the single crystalline silicon 17 can be crystallized.
The resistance of the 17 part can also be selected to be small, with a resistance value of 15 to 17.
You can also choose around Ω. Furthermore, if a melting process as in the prior art is performed before the metal wiring process, only the depth of P into the diffusion layer is controlled, and there is no need to take the step shape of the electrode window into consideration. Further, the present invention also relates to M of the above-mentioned embodiment.
It is clear that the present invention can be applied not only to O3 type FETs but also to other semiconductor devices. (7) Effects of the Invention As described above in detail, according to the present invention, the step shape of the electrode window is such that the single crystal silicon embedded in the electrode window formed in the insulating layer such as PSG is in direct contact with the A1 wiring. Since there is no need to set the slope to a slope, it is only necessary to control the depth of the P diffusion layer in the melting process, thereby making the control extremely easy. 4. Brief description of the drawings (A) to (I) in FIG. 1 are side sectional views showing the manufacturing process of a conventional semiconductor device, (A) to (G) in FIG.
J) to (L) are side sectional views showing the manufacturing process of the semiconductor device of the present invention. ■...Substrate, 2...Silicon dioxide layer, 4...
Filled oxide film, 6, 7... semiconductor region, 8...
・Gate oxide film, 11...1) SG layer, 12
.. 13... Electrode window, I5... Polycrystalline silicon layer,
17...Single crystal silicon.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板に半導体領域を形成し該半導体領域
上に形成した絶゛縁層に電極窓を設け、該電極窓内に多
結晶シリコンを単結晶化したシリコンを設け、該単結晶
シリコンを介してアルミニウム等の金属電極を設けてな
ることを特徴とする半導体装置。
(1) A semiconductor region is formed on a silicon substrate, an electrode window is provided in the insulating layer formed on the semiconductor region, silicon obtained by converting polycrystalline silicon into a single crystal is provided within the electrode window, and the single crystal silicon is A semiconductor device characterized by having a metal electrode made of aluminum or the like interposed therebetween.
(2)シリコン基板上に半導体領域を形成する工程と、
該半導体領域上にPSG等の絶縁層を形成する工程と、
該絶縁層に電極窓を形成する工程と、該電極窓内に多結
晶シリコンを形成する工程と、該多結晶シリコンに熱線
を照射する工程と、該単結晶化したシリコン上に金属電
極を形成する工程を有することを特徴とする半導体装置
の製造方法。
(2) forming a semiconductor region on a silicon substrate;
forming an insulating layer such as PSG on the semiconductor region;
A step of forming an electrode window in the insulating layer, a step of forming polycrystalline silicon in the electrode window, a step of irradiating the polycrystalline silicon with heat rays, and a step of forming a metal electrode on the monocrystalline silicon. 1. A method for manufacturing a semiconductor device, comprising the step of:
JP11314482A 1982-06-30 1982-06-30 Semiconductor device and its manufacture Pending JPS594015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11314482A JPS594015A (en) 1982-06-30 1982-06-30 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11314482A JPS594015A (en) 1982-06-30 1982-06-30 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS594015A true JPS594015A (en) 1984-01-10

Family

ID=14604681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11314482A Pending JPS594015A (en) 1982-06-30 1982-06-30 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS594015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189221A (en) * 1984-03-08 1985-09-26 Nippon Denso Co Ltd Manufacture of semiconductor device
JPS61248471A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Semiconductor device
US4868137A (en) * 1987-12-29 1989-09-19 Nec Corporation Method of making insulated-gate field effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189221A (en) * 1984-03-08 1985-09-26 Nippon Denso Co Ltd Manufacture of semiconductor device
JPH0574218B2 (en) * 1984-03-08 1993-10-18 Nippon Denso Co
JPS61248471A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Semiconductor device
US4868137A (en) * 1987-12-29 1989-09-19 Nec Corporation Method of making insulated-gate field effect transistor

Similar Documents

Publication Publication Date Title
JPH02177443A (en) Manufacture of thin film transistor
JPS594015A (en) Semiconductor device and its manufacture
JP2592844B2 (en) Method of forming high melting point metal film
JPH03194937A (en) Manufacture of thin film transistor
JPH09251996A (en) Manufacturing method for semiconductor device
JPS63177472A (en) Thin-film transistor
JPH0523056B2 (en)
JPH01173713A (en) Semiconductor device
JPS61174621A (en) Manufacture of semiconductor thin crystal
JPH0567782A (en) Thin film transistor and its manufacture
JPS60136379A (en) Manufacture of semiconductor device
JPH0682631B2 (en) Method for manufacturing semiconductor device
JPH06163706A (en) Formation of metal film
JPH02241032A (en) Wiring formation method
JP2515042B2 (en) E Top 2 PROM device
JPS62291146A (en) Manufacture of semiconductor device
JPH0242719A (en) Manufacture of semiconductor device
JPS6027177A (en) Thin film type semiconductor device and manufacture thereof
JPS6242560A (en) Electrode for semiconductor device
JPS6276518A (en) Manufacture of semiconductor device
JP3405971B2 (en) Method for manufacturing thin film transistor
JPH08181317A (en) Manufacture of semiconductor device
JPS60245256A (en) Semiconductor device
JPH03157925A (en) Manufacture of semiconductor device
JPH06244209A (en) Manufacture of semiconductor device