JPS5939747A - Manufacture of high-strength optical fiber - Google Patents

Manufacture of high-strength optical fiber

Info

Publication number
JPS5939747A
JPS5939747A JP57149900A JP14990082A JPS5939747A JP S5939747 A JPS5939747 A JP S5939747A JP 57149900 A JP57149900 A JP 57149900A JP 14990082 A JP14990082 A JP 14990082A JP S5939747 A JPS5939747 A JP S5939747A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
resin composition
layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57149900A
Other languages
Japanese (ja)
Other versions
JPH0218297B2 (en
Inventor
Kazunori Matsui
和則 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57149900A priority Critical patent/JPS5939747A/en
Publication of JPS5939747A publication Critical patent/JPS5939747A/en
Publication of JPH0218297B2 publication Critical patent/JPH0218297B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain an optical fiber having superior initial strength and long- term reliability, by dehydrating an optical fiber core coated with a resin composition and by forming a metallic or inorg. compound layer on the fiber core. CONSTITUTION:A base material for an optical fiber is drawn to form a glass fiber consisting of a core and a clad, and the surface of the fiber is coated with a resin composition before the fiber comes into contact with other solid matter. The fiber is dehydrated in vacuum, and while coiling the fiber as it is, a metallic or inorg. compound layer is formed. Thus, water contained in the resin composition layer and moisture in the air in the formation of the metallic or inorg. compound layer can be prevented from being absorbed in the metallic or inorg. compound layer, and the desired optical fiber is obtd.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は初期強度に優れ、かつ長期に亙る信頼性を有し
た光ファイノくの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a method for manufacturing an optical fiber having excellent initial strength and long-term reliability.

(ロ)背景技術 石英ガラス等のガラスよりなる光ファイノ々は、製造時
あるいはその後の取り扱いの過程で表面に微細な欠陥が
生じ易く、ここに外ブ]が加わったとき容易に破断した
り、またこの欠陥に水分が入り、一定荷重の下で欠陥が
成長してついて破断に至る静疲労等の問題が存在してい
る。
(B) Background Art Optical fins made of glass such as quartz glass tend to have minute defects on their surfaces during manufacturing or subsequent handling, and can easily break when exposed to an outer layer. Additionally, there are problems such as static fatigue, where moisture enters the defect and the defect grows under a constant load, leading to breakage.

これらの欠点を改善するために、光フアイバ線引直後で
かつ機械的な接触のない内に(1)樹脂組成物を被覆す
る、Q)州機化合物あるいは金属の層を形成する、等の
方法が採らノ9でいる。しかしながら■の方法に1籾量
強度向」二にはメリットがあるものの樹脂の透水性によ
り静疲労は避けられないし、■の方法では一般に静疲労
は抑制されるが初期強度が劣化する場合が多い、という
欠点が依然として残っている。
In order to improve these drawbacks, methods such as (1) coating with a resin composition, Q) forming a layer of a mechanical compound or metal immediately after drawing the optical fiber and without mechanical contact are available. I'm at No. 9. However, although method (2) has the advantage of improving grain weight strength, static fatigue cannot be avoided due to the water permeability of the resin, and method (2) generally suppresses static fatigue, but often results in a deterioration of initial strength. , the drawback still remains.

寸だこれら両者の組み合せとして、1層目が樹脂組成物
層、2層目が金属という構造も考えられているが、単に
金属を被覆しただけでは、静疲労の抑止効果は小さい。
As a combination of these two, a structure in which the first layer is a resin composition layer and the second layer is a metal has been considered, but simply coating with metal has little effect on suppressing static fatigue.

なぜ庁らば、樹脂組成物層に予め含まれている水分。The reason is that water is pre-contained in the resin composition layer.

金属被覆時の大気中の水分が、その−i才金巌被覆(&
内に取シ込捷九るからである。
Moisture in the atmosphere at the time of metal coating is absorbed by the metal coating (&
This is because the amount is absorbed within the body.

(ハ) 発明の開示 本発明は初期強度が優れ、かつ長期に互る信頼性を有し
た光ファイバの製造法を提供するもので、線引直後でか
つ他の固形物と機械的な接触のない内に樹脂組成物を被
覆した光フアイバ心線を、真空中で脱水した後、大気に
触れる前に、樹脂組成物被層層上に金属層もしくは無機
化合物層を形成することを特徴とする光ファイバの製造
方法に関するものである。
(C) Disclosure of the Invention The present invention provides a method for manufacturing an optical fiber that has excellent initial strength and long-term reliability, and is intended to provide a method for manufacturing an optical fiber that has excellent initial strength and long-term reliability. After the optical fiber core wire coated with the resin composition is dehydrated in vacuum and before it is exposed to the atmosphere, a metal layer or an inorganic compound layer is formed on the resin composition coating layer. The present invention relates to a method of manufacturing an optical fiber.

本発明方法を更に詳しく説明すると、1ず光伝送用ファ
イバ母材を抵抗炉等により線引して、コア、クラッドよ
りなるガラスファイバを形成し、このものが他の固形物
と未接触の内に表面に樹脂組成物を被覆する。ここで使
用される樹脂組成物としては、シリコーン樹脂、エポキ
シ樹脂、つ1/タン樹脂、ナイロン樹脂、ポリエチレン
樹脂等から一種あるいは複数種が選ばれ、複数の樹脂組
成物層を形成する場合には、一層目と二層目以下の被覆
つてもよい。
To explain the method of the present invention in more detail, first, a fiber base material for optical transmission is drawn using a resistance furnace or the like to form a glass fiber consisting of a core and a cladding. coat the surface with a resin composition. As the resin composition used here, one or more types are selected from silicone resin, epoxy resin, 1/tan resin, nylon resin, polyethylene resin, etc. When forming multiple resin composition layers, , the first layer and the second layer may be covered.

通常一層目の樹脂組成物は、ディッピング等により5〜
150μm の厚さに塗布され、赤外線炉、紫外線炉等
で焼付けられる。二層目の樹脂組成物には熱可塑性樹脂
が用いられることが多く、通常押出法により01〜0.
3mm の厚さに仕上げられている。
Usually, the first layer of the resin composition is prepared by dipping, etc.
It is coated to a thickness of 150 μm and baked in an infrared oven, ultraviolet oven, etc. Thermoplastic resin is often used for the second layer resin composition, and is usually made by extrusion in the range of 01 to 0.
Finished with a thickness of 3mm.

このように樹脂組成物で被覆された光ファイバは真空槽
中で脱水し、その′iま巻取りながら金属あるいは無機
化合物の層を形成する、真空槽中での脱水工程は高真空
はどよいが、数mmm1(程度でも時間をかければ脱水
は可能であり、また50〜200℃程度に加熱すると脱
水は促進される。金属としては、At、Cu 、Ni 
 、Pb 、Sn  、8b 、In  、At−Cu
、At−B1  。
The optical fiber coated with the resin composition is dehydrated in a vacuum chamber, and a layer of metal or inorganic compound is formed while winding it up. However, dehydration is possible if it takes a few mm1 (time), and dehydration is accelerated by heating to about 50 to 200°C.As metals, At, Cu, Ni
, Pb, Sn, 8b, In, At-Cu
, At-B1.

Pb−B1 、 Cu−8n 、 Pb−In %Pb
−8n 、 Sn−In等が好寸しく、真空蒸着、イオ
ンブレーティング、スパッタリング等で被覆層を形成す
る。また無機化合物としてはS土3N4.TiN、Tづ
、TiO2、BN 、 A@ 03.5bo2.5nC
)2等が用いられ、これらをCVD法あるいはスパッタ
リング等で被覆層として形成する。上記金属、無機化合
物層の膜厚Fi100 A〜10μ程度である。
Pb-B1, Cu-8n, Pb-In %Pb
-8n, Sn-In, etc. are suitable, and the coating layer is formed by vacuum evaporation, ion blasting, sputtering, etc. In addition, as an inorganic compound, S soil 3N4. TiN, Tzu, TiO2, BN, A@03.5bo2.5nC
)2, etc. are used, and these are formed as a coating layer by CVD method or sputtering. The film thickness of the metal or inorganic compound layer is approximately Fi100A to 10μ.

脱水工程と金属もしくは無機化合物層形成工程は同一の
真空槽中で行なうことが望才しいが、予め脱水をした後
、直ちに金属もしくは無機化合物層を形成する別の槽に
移し、該被覆層を形成することも可能である。
It is preferable to perform the dehydration step and the metal or inorganic compound layer forming step in the same vacuum tank, but after dehydrating in advance, immediately transfer to another tank in which to form the metal or inorganic compound layer, and then remove the coating layer. It is also possible to form

に)発明を実施するための最良の形態 実施例1 第1図に示す直径125μm の石英ガラス1を主成分
とし、シリコーン2、ナイロン3の二層被覆を有する光
フアイバ心線Aを、第2図のX−2槽4中17100℃
恒温で、10mmI(6の真空下(5は真空ポンプ〕で
1週間放置し、その後真空槽中で巻取機6−6−で巻取
りながら、At 蒸着槽7.7′によシAt を1μ程
度蒸着した。このものをBとする。別に比較例として上
記心線について脱水処理をしないでAt  を11tm
被覆したものをCとする。
B) Best Mode for Carrying Out the Invention Embodiment 1 An optical fiber core A having a main component of quartz glass 1 having a diameter of 125 μm and having a two-layer coating of silicone 2 and nylon 3 as shown in FIG. 17100℃ in X-2 tank 4 in the figure
At a constant temperature, it was left for one week under a vacuum of 10 mmI (6 is a vacuum pump), and then, while being wound up with a winder 6-6- in a vacuum chamber, At was transferred to At vapor deposition tank 7.7'. Approximately 1 μm of At was deposited. This is designated as B. Separately, as a comparative example, the above core wire was deposited with At of 11 tm without dehydration treatment.
The coated material is designated as C.

実施例2 実施例1で用いた心線を、150℃恒温で1 mmT(
g  の真空下で3日放俗し、その後直ちに8I¥3図
に示すCvD装置に移し、真空恒温室8(9は真空ポン
プ)で上記心線を巻取機1O−hI Q/で巻取りなが
ら、Tieムパブラ−12゜N2ボンベ13の連結され
たCVD反応炉11で1000XのTiN被覆を行なっ
た。このものをDとする。
Example 2 The core wire used in Example 1 was heated to 1 mmT (
G for 3 days under a vacuum, then immediately transferred to the CvD device shown in Figure 8I\3, and wound the above core wire with a winder 1O-hIQ/ in a constant-vacuum chamber 8 (9 is a vacuum pump). At the same time, 1000X TiN coating was performed in a CVD reactor 11 connected to a Tiemperr 12° N2 cylinder 13. Let this be D.

第4図に、第1図の光フアイバ心線A、実施例1のAt
 被覆心線B、比較ψ11のAt−被覆心線C1実施例
20TIN′$覆心線ゴ)の静疲労特性を示すが、本発
明方法で得られた被色心ζ  線の静疲労特性が太きく
改善されたことが判る。
FIG. 4 shows the optical fiber core A in FIG. 1 and At in Example 1.
The static fatigue characteristics of coated core wire B, Comparison ψ11 At-covered core wire C1 Example 20TIN' $ coated core wire Go) are shown. It is clear that the sound has been significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いた樹脂被覆光ファイバ心
線の横断面図であり、第2図および第3図は第1図の心
線にAt 被覆および’l’iN被覆を施す方法の概略
を示す図であり、第4図は本発明方法で得られる光ファ
イバの特性を比較例の特性と共に示したグラフである。 代理人  内 1)  明 代理人  萩 原 亮 −
FIG. 1 is a cross-sectional view of a resin-coated optical fiber used in an example of the present invention, and FIGS. 2 and 3 are cross-sectional views of the resin-coated optical fiber coated with At and 'l'iN coatings on the core of FIG. 1. FIG. 4 is a diagram showing an outline of the method, and FIG. 4 is a graph showing the characteristics of the optical fiber obtained by the method of the present invention together with the characteristics of a comparative example. Agents 1) Akira’s agent Ryo Hagiwara −

Claims (1)

【特許請求の範囲】[Claims] 線引直後でかつ他の固形物と機械的な接触のない内に樹
脂組成物を被覆した光ファイ、< 70線を、真空中で
脱水した後、大気に触れる前に、上記樹脂組成物被覆層
上に金属層もしくは無機化合物層を形成することを特徴
とする、光ファイバの製造方法。
An optical fiber <70 coated with a resin composition immediately after drawing and without mechanical contact with other solid materials is dehydrated in a vacuum and then coated with the resin composition before being exposed to the atmosphere. A method for manufacturing an optical fiber, comprising forming a metal layer or an inorganic compound layer on the layer.
JP57149900A 1982-08-31 1982-08-31 Manufacture of high-strength optical fiber Granted JPS5939747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57149900A JPS5939747A (en) 1982-08-31 1982-08-31 Manufacture of high-strength optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149900A JPS5939747A (en) 1982-08-31 1982-08-31 Manufacture of high-strength optical fiber

Publications (2)

Publication Number Publication Date
JPS5939747A true JPS5939747A (en) 1984-03-05
JPH0218297B2 JPH0218297B2 (en) 1990-04-25

Family

ID=15485057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149900A Granted JPS5939747A (en) 1982-08-31 1982-08-31 Manufacture of high-strength optical fiber

Country Status (1)

Country Link
JP (1) JPS5939747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6612134B1 (en) * 1996-04-04 2003-09-02 Sumitomo Electric Industries, Ltd. Method of curing coated optical fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6612134B1 (en) * 1996-04-04 2003-09-02 Sumitomo Electric Industries, Ltd. Method of curing coated optical fibers

Also Published As

Publication number Publication date
JPH0218297B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
US3053715A (en) High temperature pipe insulation and method of making same
JPS5939747A (en) Manufacture of high-strength optical fiber
US3091561A (en) Metalized flattened glass strand and method of manufacturing
US3190771A (en) Filament for vacuum deposition apparatus and method of making it
US3369926A (en) Method of applying glass-resin coupling compositions to galss strands
JPH06158197A (en) Production of composite material
KR20000076104A (en) Coating of a superconductor
JPS62143848A (en) Production of metal-coated optical fiber
JP2009193022A (en) Treatment method of plastic lens and method of manufacturing antireflection film
JP4920146B2 (en) DWR and FRP using the same
JPS6251905B2 (en)
JPS5893865A (en) Method for preventing surface from thermal shock
JPH0741198B2 (en) Method for producing metal oxide multilayer film
JPS61271382A (en) Photochromic optical material
JPS6016892Y2 (en) optical fiber core
JPH05127052A (en) Heat-resistant optical fiber
JPS6022101A (en) Antireflection film for plastic optical parts
JPH0555112U (en) Metal coated optical fiber
JPS58120543A (en) Production of metal coated fiber
DE2165520C3 (en) Process for increasing the voltage and insulation strength of Ferritemagnetec and application of this process for the production of a protective gas relay
JPS5837259B2 (en) Manufacturing method of glass fiber for optical communication
JPS5921546A (en) Manufacture of high-strength optical fiber with high weather resistance
GB1010111A (en) Vapour deposition of metallic films
JPH01201049A (en) Production of optical transmission line
JPS6065708A (en) Formation of coating film of metal oxide