JPS5939648B2 - Gas turbine combustion equipment - Google Patents

Gas turbine combustion equipment

Info

Publication number
JPS5939648B2
JPS5939648B2 JP51052530A JP5253076A JPS5939648B2 JP S5939648 B2 JPS5939648 B2 JP S5939648B2 JP 51052530 A JP51052530 A JP 51052530A JP 5253076 A JP5253076 A JP 5253076A JP S5939648 B2 JPS5939648 B2 JP S5939648B2
Authority
JP
Japan
Prior art keywords
air
combustion chamber
swirler
compressed air
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51052530A
Other languages
Japanese (ja)
Other versions
JPS52135907A (en
Inventor
真市 梶田
建二 森
潤一 北嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP51052530A priority Critical patent/JPS5939648B2/en
Priority to US05/739,863 priority patent/US4129985A/en
Publication of JPS52135907A publication Critical patent/JPS52135907A/en
Publication of JPS5939648B2 publication Critical patent/JPS5939648B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はガスタービンエンジンの燃焼装置に関するも
ので、スワーラから燃焼室への空気供給を正常に行なわ
せるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion device for a gas turbine engine, which normally supplies air from a swirler to a combustion chamber.

一般に、ガスタービンエンジンはコンプレッサ、燃焼装
置、タービン等から構成されているl)ζ通常、小形の
ガスタービンエンジンでは設計上の理由から逆流缶形と
呼ばれる燃焼装置の形式が用いられることが多い。
In general, a gas turbine engine consists of a compressor, a combustion device, a turbine, etc. l)ζ Normally, small gas turbine engines often use a type of combustion device called a reverse flow can type for design reasons.

この形式の燃焼装置には第9図および第10図に示すよ
うに、コンプレッサCの下流側で、コンプレッサCと同
軸P上に配設されたタービンTの外側部に突出して設け
られ、周壁部に2次空気流入孔1および希釈用空気流入
孔2をもつた燃焼室3、燃焼室3の外周力に形成された
空気供給通路4、燃焼室ヘッドに設けられた燃焼噴射ノ
ズル5、ノズル5の周囲から1次空気を燃焼室3へ供給
するスワーラ6、そして点火プラグ1などから構成され
、燃焼室3に供給すべき圧縮空気8は排ガス9の流出方
向と逆方向に空気供給通路4に流入する。この形式の燃
焼装置には、タービンスクロールSに対して突出した形
に配置されること、およびコンプレッサ・プレートの回
転のために、圧縮空気8がタービンスクロールSに対し
て接続方向O速度成分を持つていることにより、圧縮空
気8は燃焼室周力を矢印10のように旋回しながら環状
の空気供給通路4に流入する。この圧縮空気8の旋回速
度成分が強いと、スワーラ6に圧縮空気8が到達したと
きでも、旋回運動が残つたままであり、この旋回運動に
よつてスワーラ6の入口に自由渦が形成され、スワーラ
6の入口での静圧が低下する。自由渦が強い場合には、
スワーラ6の入口での静圧が燃焼室3内の静圧よ勺低く
なり1燃焼室3からスワーラ6の入ロへ向かう燃焼ガス
や火炎の逆流が起b1正常な燃焼ができないだけでなく
、スワーラ6の周辺部の焼損をも招く。この発明は空気
供給通路中に圧縮空気のもつ施回速度成分を減少させる
、つまD圧縮空気の速度ヘツドの一部を静圧ヘツドに変
換させるような羽根を設けることにより、スワーラ入口
での静圧の低下を防ぎ、スワーラから設定量の空気供給
を行わせることによつて、最適な燃焼が行える燃焼装置
を提供することを目的とする。以下この発明の実施例を
図面にもとづいて説明する。
As shown in FIGS. 9 and 10, this type of combustion device is provided with a turbine T disposed on the downstream side of the compressor C on the same axis P as the compressor C, protruding from the outer side of the turbine T, and a surrounding wall portion. A combustion chamber 3 having a secondary air inflow hole 1 and a dilution air inflow hole 2, an air supply passage 4 formed around the outer periphery of the combustion chamber 3, a combustion injection nozzle 5 provided in the combustion chamber head, and a nozzle 5. The compressed air 8 to be supplied to the combustion chamber 3 is supplied to the air supply passage 4 in the opposite direction to the outflow direction of the exhaust gas 9. Inflow. In this type of combustion device, due to the protruding arrangement relative to the turbine scroll S and the rotation of the compressor plate, the compressed air 8 has a velocity component in the direction O relative to the turbine scroll S. As a result, the compressed air 8 flows into the annular air supply passage 4 while rotating as shown by the arrow 10 due to the circumferential force of the combustion chamber. If the swirling speed component of the compressed air 8 is strong, even when the compressed air 8 reaches the swirler 6, the swirling motion remains, and this swirling motion forms a free vortex at the inlet of the swirler 6. The static pressure at the inlet of the swirler 6 decreases. When the free vortex is strong,
The static pressure at the inlet of the swirler 6 becomes much lower than the static pressure in the combustion chamber 3, causing a backflow of combustion gas and flame from the combustion chamber 3 to the input of the swirler 6, which not only prevents normal combustion, but also This also causes burnout of the surrounding area of the swirler 6. This invention improves the static pressure at the swirler inlet by providing a vane in the air supply passage that reduces the circulation velocity component of the compressed air, or converts a part of the velocity head of the compressed air into a static pressure head. It is an object of the present invention to provide a combustion device that can perform optimal combustion by preventing a drop in pressure and supplying a set amount of air from a swirler. Embodiments of the present invention will be described below based on the drawings.

第1図および第2図において、11は内筒12により形
成された燃焼室であ択燃焼室ヘツド、つま勺内筒12の
上端壁には燃料噴射ノズル13、その周囲から一次空気
を流入させるスワーラ14、そして点火フラグ15が設
けられ、また燃焼室周壁部には二次空気流入孔16、希
釈用空気流入孔11が設けられている。スワーラ14は
内輪18と外輪19との間に多数のブレード20を放射
状に配置したものである。また、内筒12は一重構造で
あつて、米国特許第3754393号明細書に記載され
ているような、二重構造としてその内部に燃焼ガスの循
環通路を設けたものではないので、上記スワーラ14か
らは上記1次空気のみが燃焼室11内へ供給される。2
1は内筒12と外筒22との間に形成された環状の空気
供給通路であり1燃焼室11の排気端側から燃焼室ヘツ
ドにわたつて形成されている。
In FIGS. 1 and 2, reference numeral 11 denotes a combustion chamber formed by an inner cylinder 12; a combustion chamber head; a fuel injection nozzle 13 on the upper end wall of the inner cylinder 12, into which primary air flows in from around it; A swirler 14 and an ignition flag 15 are provided, and a secondary air inflow hole 16 and a dilution air inflow hole 11 are provided in the peripheral wall of the combustion chamber. The swirler 14 has a large number of blades 20 arranged radially between an inner ring 18 and an outer ring 19. Further, since the inner cylinder 12 has a single layer structure and is not a double structure with a combustion gas circulation passage provided therein as described in U.S. Pat. No. 3,754,393, the swirler 14 From there, only the primary air is supplied into the combustion chamber 11. 2
Reference numeral 1 denotes an annular air supply passage formed between the inner cylinder 12 and the outer cylinder 22, and extends from the exhaust end side of the combustion chamber 11 to the combustion chamber head.

圧縮空気24は前述のように空気供給通路21に燃焼室
11の排気側周囲から接線方向速度成分を持つて排ガス
25の流出方向と逆方向に流入し、そのために空気供給
通路21を矢印26で示す様に旋回しながら流れる。2
3は旋回流26の旋回速度成分を減少させる羽根で、空
気供給通路、21内における二次空気流入孔16より下
流側(上方)に、燃焼室周力に配置されている。
As described above, the compressed air 24 flows into the air supply passage 21 from around the exhaust side of the combustion chamber 11 with a tangential velocity component in a direction opposite to the outflow direction of the exhaust gas 25. It flows while swirling as shown. 2
A vane 3 reduces the swirling velocity component of the swirling flow 26, and is disposed downstream (above) the secondary air inflow hole 16 in the air supply passage 21, around the circumferential force of the combustion chamber.

第4図は旋回抑制羽根23の形状を示すもので、羽根2
3の上流側(下方)23aは旋回流26の方向に傾き、
下流側(上方)23bは軸方向に向いており、羽根23
を通過することにより1旋回流26は軸方向流26aに
変換される。このように軸方向に向けられた流れがスワ
ーラ14の入口付近に達しても接線方向の速度成分はほ
とんどあるいは全く無く、したがつて、スワーラ14の
入口付近には自由渦は形成されない。その結果スワーラ
14の入口での静圧は羽根23が無い場合よりも上昇す
る。これを別の観点から見れば、空気の軸方向速度はス
ワーラ14から燃焼室11内への空気流入量により決ま
るもので、空気の圧縮性の影響を無視できる速度範囲で
は、旋回流26の速度Uの軸方向成分U1と軸方向流2
6aの速度Vとは等しいから、後者の速度Vは前者の速
度Uよりその旋回方向成分U2VC相当する分だけ減少
しており1したがつて、旋回流26の速度Uが有する速
度ヘツドのうち、その施回速度成分U2の有する速度ヘ
ツドが羽根23により静圧ヘツドに変換されたというこ
ともできる。このように、圧縮空気24(旋回流26)
の速度Uの旋回速度成分U2を減少させることは圧縮空
気24の速度Uを減少させることに等レへつまb1速度
Uを減少させるにはその旋回速度成分U2を減少させね
ばならず、旋回速度成分U2が減少すれば必然的に速度
Uが減少する。第1図および第2図に示した実施例では
、旋回抑制羽根23を内筒12の外周面に設けたが外筒
22の内周面に設けることもできる。なお、第1図では
旋回抑制羽根23を二次空気流入孔16より下流側に設
けたから、二次空気流入16の周囲では圧縮空気24は
旋回したままであり1したがつて、上記二次空気流入孔
16からは二次空気が旋回しながら燃焼室11内へ流入
するので、燃焼室11内での空気と燃料の混合・攪拌が
十分行なわれて燃焼状態が良くなるという利点がある。
これに対し、第3図に示すように、旋回抑制羽根23を
二次空気流入孔16よ勺下流側に設けると、旋回が抑制
された二次空気が二次空気流入孔16から燃焼室11内
へ流入するので、上記利点が損なわれてしまい、不都合
である。さらにまた、第4図では旋回抑制羽根23の下
方23aを旋回流26の方向に向けた力ζ旋回流26の
方向と反対方向に向けてもよい。これまでは圧縮空気2
4が空気供給通路21に接線方向速度成分を持つて流入
するために生ずる旋回運動について記述したが、−方、
前述したよう1゛、燃焼装置がタービンスクロールSか
ら突出して配置されるために、空気供給通路21入口で
の圧縮空気の通路周上での流速分布が非常に不均一にな
り1問題になることがある。このような場合には流速分
布の不均一をなくすために第5図に示すように、内筒1
2の下方周上に案内羽根28を設けることがある。これ
らの案内羽根28は内筒12の外周面あるいは外筒22
の内周面に取付けられ、圧縮空気24に旋回を与える。
空気供給通路21に不均一な流速分布を持つて流入した
圧縮空気24は案内羽根28を通過することによつて旋
回流26とな勺、流速分布の不均一が効果的に確消され
る。この場合にも、内筒12の上部に旋回抑制羽根23
を設ければ、旋回流26はこの旋回抑制羽根23を通過
することによつて軸方向の流れに変換される。したがつ
てスワーラ14上での静圧の低下は生じない。第6図お
よび第7図は、第5図で示した燃焼装置の変形例を示す
。この例では旋回抑制羽根23Aは内筒12上端壁上に
放射状に配置されており1旋回流26は羽根23Aによ
つて旋回を抑制される。圧縮空気24が最初から旋回し
ている場合には空気供給通路21入口の案内羽根28は
不要である。この変形例では旋回抑制羽根23Aは平面
羽根である八必要なら曲面羽根としてもよい。いずれの
場合でも羽根23Aによつて旋回は抑制され、スワーラ
14の入口における著しい静圧の底下は起こらず、燃焼
室11での最適な燃焼が行える。第8図はさらに他の変
形例であり、この例では旋回抑制羽根23Bは、内筒1
2の半径方向に対して一定角度だけ傾いた状態で内筒1
2の上端壁上に配置されている。この場合も羽根23B
は平面羽根である八必要なら曲面羽根としてもよい。こ
の発明は以上のように、圧縮空気が燃焼装置の空気供給
通路を旋回して流れても、この通路中に設けた羽根によ
り旋回が抑制きれてスワーラ入口の静圧の低下が防止さ
れるからスワーラからも燃焼室内へ正常に空気供給がで
き、最適な燃焼が行えるので燃焼装置の燃焼性能および
耐久性が向上する。また、旋回抑制羽根23は二次空気
流入孔16より下流側に位置しているから、二次空気粒
入孔16からは旋回成分を有する二次空気が燃焼室11
内へ流入するので、この燃焼室11内での空気と燃料の
混合・攪拌が十分行なわれて燃焼状態が良くなるという
利点がある。
FIG. 4 shows the shape of the rotation suppressing blade 23.
The upstream side (lower side) 23a of 3 is inclined in the direction of the swirling flow 26,
The downstream side (upper) 23b faces in the axial direction, and the blade 23
By passing through, one swirl flow 26 is converted into an axial flow 26a. Even when such an axially directed flow reaches the vicinity of the inlet of the swirler 14, there is little or no tangential velocity component, and therefore, no free vortices are formed near the inlet of the swirler 14. As a result, the static pressure at the inlet of the swirler 14 is higher than if the blades 23 were not provided. Looking at this from another perspective, the axial speed of air is determined by the amount of air flowing into the combustion chamber 11 from the swirler 14, and in the speed range where the influence of air compressibility can be ignored, the speed of the swirl flow 26 is determined by the amount of air flowing into the combustion chamber 11 from the swirler 14. Axial component U1 of U and axial flow 2
Since the velocity V of the swirling flow 26 is equal to the velocity V of the swirling flow 26, the latter velocity V is smaller than the former velocity U by an amount corresponding to its swirling direction component U2VC1.Therefore, among the velocity heads of the velocity U of the swirling flow 26, It can also be said that the velocity head of the rotation speed component U2 is converted into a static pressure head by the blade 23. In this way, compressed air 24 (swirling flow 26)
Reducing the rotation speed component U2 of the speed U of is equivalent to decreasing the speed U of the compressed air 24. b1 To decrease the speed U, the rotation speed component U2 must be decreased, and the rotation speed If the component U2 decreases, the speed U will inevitably decrease. In the embodiment shown in FIGS. 1 and 2, the rotation suppressing blades 23 are provided on the outer peripheral surface of the inner cylinder 12, but they may also be provided on the inner peripheral surface of the outer cylinder 22. In addition, in FIG. 1, since the swirl suppressing blade 23 is provided downstream of the secondary air inflow hole 16, the compressed air 24 remains swirling around the secondary air inflow 16, so that the secondary air Since the secondary air flows into the combustion chamber 11 from the inflow hole 16 while swirling, there is an advantage that the air and fuel are sufficiently mixed and agitated within the combustion chamber 11 and the combustion condition is improved.
On the other hand, as shown in FIG. 3, if the swirl suppressing blade 23 is provided on the downstream side of the secondary air inflow hole 16, the secondary air whose swirl is suppressed will flow from the secondary air inflow hole 16 to the combustion chamber 11. This is disadvantageous because the above advantages are lost. Furthermore, in FIG. 4, the lower part 23a of the swirl suppressing blade 23 may be directed in the opposite direction to the direction of the swirl flow 26. Until now, compressed air 2
4 flows into the air supply passage 21 with a tangential velocity component.
As mentioned above, 1. Because the combustion device is arranged to protrude from the turbine scroll S, the flow velocity distribution of the compressed air around the passage circumference at the entrance of the air supply passage 21 becomes extremely uneven, which becomes a problem. There is. In such a case, in order to eliminate unevenness in the flow velocity distribution, as shown in Fig. 5, the inner cylinder 1
A guide vane 28 may be provided on the lower circumference of 2. These guide vanes 28 are attached to the outer peripheral surface of the inner cylinder 12 or the outer cylinder 22.
The compressed air 24 is attached to the inner circumferential surface of the compressed air 24 and gives swirl to the compressed air 24.
The compressed air 24 flowing into the air supply passage 21 with a non-uniform flow velocity distribution passes through the guide vanes 28 to form a swirling flow 26, thereby effectively eliminating non-uniform flow velocity distribution. Also in this case, the rotation suppressing blade 23 is provided at the upper part of the inner cylinder 12.
If provided, the swirl flow 26 is converted into an axial flow by passing through the swirl suppression vanes 23. Therefore, no drop in static pressure occurs on the swirler 14. 6 and 7 show a modification of the combustion device shown in FIG. 5. In this example, the swirl suppression blades 23A are arranged radially on the upper end wall of the inner cylinder 12, and one swirling flow 26 is suppressed from swirling by the blades 23A. If the compressed air 24 is swirling from the beginning, the guide vane 28 at the entrance of the air supply passage 21 is unnecessary. In this modification, the rotation suppressing blade 23A is a flat blade, but may be a curved blade if necessary. In either case, swirling is suppressed by the vanes 23A, and a significant drop in static pressure at the inlet of the swirler 14 does not occur, allowing optimal combustion in the combustion chamber 11. FIG. 8 shows yet another modification, in which the rotation suppressing blade 23B is
Inner cylinder 1 is tilted at a certain angle with respect to the radial direction of 2.
2 is located on the upper end wall. In this case as well, the blade 23B
is a flat blade.If necessary, it may be a curved blade. As described above, even if the compressed air swirls and flows through the air supply passage of the combustion device, the swirl can be suppressed by the vanes provided in this passage, thereby preventing a drop in the static pressure at the swirler inlet. Since air can be normally supplied into the combustion chamber from the swirler and optimal combustion can be performed, the combustion performance and durability of the combustion device are improved. Further, since the swirl suppressing blade 23 is located downstream of the secondary air inlet hole 16, the secondary air having a swirl component flows from the secondary air particle inlet hole 16 into the combustion chamber 11.
Since the air and fuel flow into the combustion chamber 11, the air and fuel are sufficiently mixed and stirred, which has the advantage of improving the combustion state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す一部破断した正面図
、第2図は第1図のA−A線断面図、第3図はこの発明
に含まれない構成を示す一部破断した正面図、第4図は
第1図および第2図に示された旋回抑制羽根の形状とこ
の羽根を通る圧縮空気の速度を示す図、第5図は旋回抑
制羽根と案内羽根を並用した場合の実施例を示す一部破
肖した正面図、第6図は他の変形例を示す一部破断した
正面図、第7図は第6図のB−B線断面図、第8図はさ
らに他の変形例を示す一部破断した平面図、第9図は従
来の燃焼装置を有する小型ガスタービンの概略縦h面図
、第10図は従来の燃焼装置の斜視図である。 11・・・・・・燃焼室、12・・・・・・内筒、13
・・・・・・燃料噴射ノズル、14・・・・・・スワー
ラ、16・・・・・・二次空気流入化 17・・・・・
・希釈用空気流入{Lh2l・・・・・・空気供給通路
、22・・・・・・外筒、23,23A,23B・・・
・・・旋回抑制羽根、24・・・・・・圧縮空気6・・
・・・・排ガス、26・・・・・・旋回流、28・・・
・・・案内羽根、U・・・・・・圧縮空気の速度、U2
・・・・・・速度Uの旋回方向成分。
Fig. 1 is a partially cutaway front view showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, and Fig. 3 is a partially broken front view showing a configuration not included in the present invention. Figure 4 is a diagram showing the shape of the swirl suppression vane shown in Figures 1 and 2 and the speed of compressed air passing through this vane, and Figure 5 is a diagram showing the shape of the swirl suppression vane and guide vane used together. FIG. 6 is a partially broken front view showing another modified example, FIG. 7 is a sectional view taken along line B-B in FIG. 6, and FIG. FIG. 9 is a partially cutaway plan view showing still another modification, FIG. 9 is a schematic longitudinal view of a small gas turbine having a conventional combustion device, and FIG. 10 is a perspective view of the conventional combustion device. 11... Combustion chamber, 12... Inner cylinder, 13
...Fuel injection nozzle, 14...Swirler, 16...Secondary air inflow 17...
- Dilution air inflow {Lh2l...Air supply passage, 22...Outer cylinder, 23, 23A, 23B...
...Swirl suppression vane, 24...Compressed air 6...
...exhaust gas, 26...swirling flow, 28...
... Guide vane, U ... Speed of compressed air, U2
・・・・・・Turning direction component of speed U.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼室11を形成する内筒12と外筒22との間に
、燃焼室11に供給すべき圧縮空気24を燃焼室11の
排気側周囲から排ガス25の流出方向と逆方向へ流入さ
せる環清の空気供給通路21を形成し、上記内筒12の
上端壁に上記空気供給通路21を通過した圧縮空気24
の一部を一次空気として燃焼室11内へ流入させるスワ
ーラ14を、内筒12の周壁に上記圧縮空気24の他部
を二次空気として燃焼室11内へ流入させる2次空気流
入孔16をそれぞれ設け、上記スワーラ14からは上記
一次空気のみを燃焼室11内へ供給するようにしたガス
タービンの燃焼装置において、上記空気供給通路21内
における上記二次空気流入孔16より下流側に、上記圧
縮空気24の速度Uの旋回方向成分U_2を減少させて
スワーラ14の入口での静圧低下を防止するような旋回
抑制羽根23、23A、23Bを設けたことを特徴とす
るガスタービンの燃焼装置。
1 A ring is provided between the inner cylinder 12 and the outer cylinder 22 that form the combustion chamber 11, through which the compressed air 24 to be supplied to the combustion chamber 11 flows from around the exhaust side of the combustion chamber 11 in a direction opposite to the outflow direction of the exhaust gas 25. A fresh air supply passage 21 is formed in the upper end wall of the inner cylinder 12, and compressed air 24 that has passed through the air supply passage 21 is formed on the upper end wall of the inner cylinder 12.
A swirler 14 is provided in the peripheral wall of the inner cylinder 12 to allow a part of the compressed air 24 to flow into the combustion chamber 11 as primary air, and a secondary air inflow hole 16 is provided in the peripheral wall of the inner cylinder 12 to allow the other part of the compressed air 24 to flow into the combustion chamber 11 as secondary air. In a combustion apparatus for a gas turbine in which only the primary air is supplied from the swirler 14 into the combustion chamber 11, the air supply passage 21 is provided downstream of the secondary air inflow hole 16 in the air supply passage 21. A combustion device for a gas turbine, characterized in that swirl suppression vanes 23, 23A, and 23B are provided to reduce the swirl direction component U_2 of the speed U of compressed air 24 and prevent a drop in static pressure at the inlet of the swirler 14. .
JP51052530A 1975-11-17 1976-05-08 Gas turbine combustion equipment Expired JPS5939648B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51052530A JPS5939648B2 (en) 1976-05-08 1976-05-08 Gas turbine combustion equipment
US05/739,863 US4129985A (en) 1975-11-17 1976-11-09 Combustor device of gas turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51052530A JPS5939648B2 (en) 1976-05-08 1976-05-08 Gas turbine combustion equipment

Publications (2)

Publication Number Publication Date
JPS52135907A JPS52135907A (en) 1977-11-14
JPS5939648B2 true JPS5939648B2 (en) 1984-09-25

Family

ID=12917298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51052530A Expired JPS5939648B2 (en) 1975-11-17 1976-05-08 Gas turbine combustion equipment

Country Status (1)

Country Link
JP (1) JPS5939648B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726734B2 (en) * 1985-10-30 1995-03-29 株式会社東芝 Gas turbine combustor
JP3001224U (en) * 1994-02-18 1994-08-23 川崎重工業株式会社 Combustor for gas turbine
JPH08303781A (en) * 1996-05-31 1996-11-22 Toshiba Corp Gas turbine combustor
US9297532B2 (en) * 2011-12-21 2016-03-29 Siemens Aktiengesellschaft Can annular combustion arrangement with flow tripping device
JP7130545B2 (en) * 2018-12-20 2022-09-05 三菱重工業株式会社 Gas turbine combustor, gas turbine, and method for manufacturing gas turbine combustor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601000A (en) * 1947-05-23 1952-06-17 Gen Electric Combustor for thermal power plants having toroidal flow path in primary mixing zone
US3754393A (en) * 1970-12-05 1973-08-28 Nissan Motor Gas turbine engine combustor
JPS5037445U (en) * 1973-08-02 1975-04-18

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601000A (en) * 1947-05-23 1952-06-17 Gen Electric Combustor for thermal power plants having toroidal flow path in primary mixing zone
US3754393A (en) * 1970-12-05 1973-08-28 Nissan Motor Gas turbine engine combustor
JPS5037445U (en) * 1973-08-02 1975-04-18

Also Published As

Publication number Publication date
JPS52135907A (en) 1977-11-14

Similar Documents

Publication Publication Date Title
JP5485006B2 (en) Turbine airflow rectifier
JP4841587B2 (en) Burner
JP3944478B2 (en) Hybrid swirler
JP3703863B2 (en) Swirl mixer for combustor and method for burning fuel and air in combustor
US5941075A (en) Fuel injection system with improved air/fuel homogenization
US7121095B2 (en) Combustor dome assembly of a gas turbine engine having improved deflector plates
US4129985A (en) Combustor device of gas turbine engine
JP2010276334A (en) Method and device for injecting air and fuel in turbine
US5471840A (en) Bluffbody flameholders for low emission gas turbine combustors
JP2013231582A (en) Fuel/air premixing system for turbine engine
GB1597817A (en) Combustor dome assembly
US5628193A (en) Combustor-to-turbine transition assembly
US4955201A (en) Fuel injectors for turbine engines
JP2020118391A (en) Gas turbine combustor and gas turbine
US5001895A (en) Fuel injector for turbine engines
JPS5939648B2 (en) Gas turbine combustion equipment
JPS5951652B2 (en) Rectification structure downstream of wastegate valve of turbocharger
WO1990011439A1 (en) Compact gas turbine engine
US20180156450A1 (en) Fuel nozzle of a gas turbine with a swirl generator
US5085039A (en) Coanda phenomena combustor for a turbine engine
KR102587366B1 (en) Floating primary vane swirler
EP0380632A4 (en) Assuring reliable starting of turbine engines
US11209163B2 (en) Gas turbine combustor, manufacturing method for gas turbine and gas turbine combustor
US5577380A (en) Compact gas turbine engine
JPS5913829A (en) Combustor of gas turbine