JPS5939348A - Apparatus for heating specimen in vacuum - Google Patents

Apparatus for heating specimen in vacuum

Info

Publication number
JPS5939348A
JPS5939348A JP14877382A JP14877382A JPS5939348A JP S5939348 A JPS5939348 A JP S5939348A JP 14877382 A JP14877382 A JP 14877382A JP 14877382 A JP14877382 A JP 14877382A JP S5939348 A JPS5939348 A JP S5939348A
Authority
JP
Japan
Prior art keywords
thin film
heater
film heater
vacuum
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14877382A
Other languages
Japanese (ja)
Other versions
JPS6159180B2 (en
Inventor
Yuichi Mikata
見方 裕一
Masaharu Watanabe
正晴 渡辺
Tomoyasu Inoue
井上 知泰
Shoichi Takahashi
高橋 捷一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP14877382A priority Critical patent/JPS5939348A/en
Publication of JPS5939348A publication Critical patent/JPS5939348A/en
Publication of JPS6159180B2 publication Critical patent/JPS6159180B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Surface Heating Bodies (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

PURPOSE:To make it possible to uniformly heat a specimen, by a method wherein a heat transfer plate is formed of a sapphire plate and a thin film heater comprising tungsten or the like is formed on the rear surface of the sapphire plate. CONSTITUTION:A thin film heater 2 is deposited and formed on the whole rear surface of a heat transfer member 1 comprising a monocrystalline sapphire plate with a thickness of about 1mm.. The thin film heater 2 is formed, for example, by vapor depositing tungsten under high vacuum of 10<-5>Torr or less. A pair of rod shaped electrodes 3a, 3b are parallelly arranged to the periphery of the rear surface part of the thin film heater 2 to be attached to said thin film heater 2. By applying a voltage between the electrodes 3a, 3b, a current is supplied to the thin film heater 2 to heat the same.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、単結晶サファイア板を使用した真/ 空白試料加熱装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention is a true/ Regarding a blank sample heating device.

〔発明の゛技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、真空技術の発達と共に10  [Torr]以下
の超高真空が子軸に得られるようになりた。
In recent years, with the development of vacuum technology, it has become possible to obtain an ultra-high vacuum of 10 Torr or less for the child shaft.

そして、超高真空中で分子線エピタキシーや各種高感度
の分析が行われている。その際、試料には真空中で様々
の処理が施されるが、特に加熱は試料の希浄化や結晶成
長等に用いられる重要な処理方法である。
Molecular beam epitaxy and various high-sensitivity analyzes are performed in ultra-high vacuum. At this time, the sample is subjected to various treatments in a vacuum, and heating is an important treatment method used for dilution purification of the sample, crystal growth, etc.

現在・、試料を加熱する方法としては、抵抗加熱、レー
ザ加熱、電子ビーム加熱、高周波加熱および直接過賞、
加熱等があるが、これらのいずれにあっても大きな試料
を均一に加熱することは難しい。特に、シリコン半導体
基板の表面清浄化の際には、基板を1000C℃)以上
に均一に加熱しなけれはならない。このため、ヒータや
伝熱部材等の構造および材料の選択が重要な問題となる
。すなわち、利料としては高温で試料と反応を起こさず
構造的に強度の大きいもので、さらに超高真空中での使
用を考慮すると高温で蒸気圧の低いものでなけれはなら
ない、しかしながら、上記の要求を全て満足する物質は
未だ011発されておらず、これがために従来のJ’(
、壁用試料加熱装置は何らかの特性を犠牲にしているの
が実情であった。
Currently, methods for heating samples include resistance heating, laser heating, electron beam heating, high frequency heating, direct heating,
There are heating methods, etc., but it is difficult to uniformly heat a large sample in any of these methods. In particular, when cleaning the surface of a silicon semiconductor substrate, it is necessary to uniformly heat the substrate to a temperature of 1000° C. or higher. Therefore, the structure and material selection of heaters, heat transfer members, etc. become important issues. In other words, the material must be structurally strong and do not react with the sample at high temperatures, and furthermore, considering its use in an ultra-high vacuum, it must have low vapor pressure at high temperatures.However, as mentioned above, A substance that satisfies all the requirements has not yet been released in 011, which is why the conventional J'(
The reality is that wall sample heating devices sacrifice some characteristics.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、真空中にあっても試料を均一に加熱す
ることができ、かつガス放出も極めて少なく、強度も十
分大きな真空用試料加熱装置を提供することにある。
An object of the present invention is to provide a vacuum sample heating device that can uniformly heat a sample even in a vacuum, emits extremely little gas, and has sufficient strength.

〔発明の概要〕[Summary of the invention]

木発明の骨子は、伝熱部利を介してヒータによ)試料を
加熱する装置において、上記伝熱部利なサファイア板で
形成すると共に、とのサファイア板の下面にタングステ
ン等からなる薄膜ヒータを形成するよりにしたことにあ
る。サファイア単結晶の特徴としてれ次の(1)〜(9
)が挙げられる。
The gist of the invention is that, in an apparatus for heating a sample (via a heater via a heat transfer section), the heat transfer section is formed of a sapphire plate, and a thin film heater made of tungsten or the like is attached to the bottom surface of the sapphire plate. Rather than forming a The characteristics of sapphire single crystal are as follows (1) to (9)
).

(リ 硬度が高く機械的強度が大きい。(High hardness and mechanical strength.

(2)遠紫外から赤外までの広い領域に亘シ光透過性が
良い。
(2) Good light transmittance over a wide range from far ultraviolet to infrared.

(3)熱伝導性−/)<高く耐熱性、削低温性VL←L
れている。
(3) Thermal conductivity -/) <High heat resistance, low cutting resistance VL←L
It is.

(4)化学的に安定で耐蝕性に例れている。(4) Chemically stable and corrosion resistant.

・(5)電気絶縁性が高く糾雷、体特性に俟れている。・(5) It has high electrical insulation properties and excellent physical properties.

(6)経時変化のない高精度の表面加工ができる。(6) High-precision surface processing that does not change over time is possible.

(7)摩擦係数が小さく4胛・耗性に働れている。(7) It has a small coefficient of friction and is resistant to wear and tear.

(s)  i1放射線特性が例れている。(s) i1 radiation characteristics are exemplified.

(9)高純度のものが得られる。(9) High purity can be obtained.

また、サファイア単結晶の蒸気圧は第1図に示す如く、
2083(K)で10−’[: To r r )と十
分低い。さらに、単結晶であるので加熱した隙にガス放
出が少ない等の特徴を有する。したがって、サファイア
は、真空中での絶縁性耐熱材料として非常に優れてシシ
、これを伝熱部利として用いることによシ信頼性の高い
加熱!4!置が実現されると考えられる。
In addition, the vapor pressure of sapphire single crystal is as shown in Figure 1.
2083(K) and is sufficiently low as 10-'[: Tor r r ). Furthermore, since it is a single crystal, it has characteristics such as less gas being released into the heated gap. Therefore, sapphire is an excellent insulating and heat-resistant material in a vacuum, and by using it as a heat transfer element, you can achieve highly reliable heating! 4! It is believed that this will be realized.

ところが、サファイアはその線膨張率が10””(/1
:: )であ如、結晶の方位によ如若干異なる。このた
め、サファイアの温度差が大きい場合には、熱歪によシ
割れてしまうと言う間−がある。第2図はサファイアの
温度勾配と割れ発生との関係を示す特性図である。この
図からも明らかなように、温度勾配が100〔℃/lY
n〕より大きいとサファイアの割れる確率が極端に高く
な石。従って、サファイアを使用する場合、その温度勾
配が小さい状態、例えば100[℃/z〕よシ小さい状
態に保持しなければならない。そして、この条件は前述
した如くサファイア板の下面に薄膜ピークな被着し、こ
れらを一体形成することによって達成できるのである。
However, the coefficient of linear expansion of sapphire is 10"" (/1
:: ), which differs slightly depending on the orientation of the crystal. For this reason, if there is a large temperature difference in sapphire, it may crack due to thermal strain. FIG. 2 is a characteristic diagram showing the relationship between the temperature gradient of sapphire and the occurrence of cracks. As is clear from this figure, the temperature gradient is 100 [℃/lY
If the stone is larger than n], the probability of the sapphire breaking is extremely high. Therefore, when using sapphire, the temperature gradient must be kept small, for example, as small as 100 [° C./z]. This condition can be achieved by depositing a thin film on the lower surface of the sapphire plate and forming them integrally, as described above.

本発明はこのような点に着目し、ヒータおよび平面状の
伝熱部材からなる真空用紙料加熱装置において、伝熱部
材を単結晶サファイア板で形成すると共に、その面内の
温度勾配がtoo[℃/m)以下となるよう上記サファ
イア板の下面に薄p、+’:4ヒータを被着形成するよ
うにしたものである。
The present invention focuses on such points, and in a vacuum paper stock heating device consisting of a heater and a planar heat transfer member, the heat transfer member is formed of a single crystal sapphire plate, and the in-plane temperature gradient is too [ ℃/m) or less, a thin p, +':4 heater is formed on the lower surface of the sapphire plate.

〔発明の効果〕〔Effect of the invention〕

本発明により、は、平面状の伝熱部利としてツファイア
板を使用しているので、試料の均一加熱を行い得るのれ
勿論、真空中てのガス放出を極めて少なくすることがで
き、さらに強度も十分大きくすることができる。しかも
、ヒータとして面状の穎脱ヒータを用い、これをサファ
イア基板の下面全面に接触させているので、サファイア
板の温度勾配を100〔℃/cm〕以下に保持すること
ができ、これによシ割れの発生を確実に防止することが
できる。
According to the present invention, since a tsphire plate is used as a planar heat transfer member, not only can the sample be heated uniformly, but gas emission in vacuum can be extremely reduced, and furthermore, the specimen can be strengthened. can also be made large enough. In addition, since a planar heat removal heater is used as the heater and is brought into contact with the entire bottom surface of the sapphire substrate, the temperature gradient of the sapphire plate can be maintained at 100 [°C/cm] or less. The occurrence of cracks can be reliably prevented.

〔発明の実施例〕[Embodiments of the invention]

第31Elld:木発明の一害施例を示す概略構成図で
ある。図中1は伝熱部利として作用する平面状、厚さ1
〔門〕の岸結晶サファイア板であシ、このサファイア板
1の下面全面には薄膜ヒータ2が被着形成されている。
31st Elld: It is a schematic configuration diagram showing a harmful example of the tree invention. In the figure, 1 is a planar shape that acts as a heat transfer member, and the thickness is 1.
[Gate] is a crystalline sapphire plate, and a thin film heater 2 is formed on the entire lower surface of this sapphire plate 1.

尚トヒータ2は、例えばタングステンを10−5[To
rr 〕以下の真空中で蒸着することによって形成され
たもので、ぞのシート抵わしは2XH1”−2[Ω/口
〕稈度に保持されるものとなっている。N It、−3
ヒータ2の下面周辺部には、一対の棒状箱枠、? a 
、 3bが平行耐層″されてA膜ヒータ2に取着されて
いる。そして、これらの霜、極3a、3b間に電圧を印
加することによシ、得膜ヒータ2が通電加熱されるもの
と疫っている。
The heater 2 is made of tungsten, for example, at 10-5 [To
It is formed by vapor deposition in a vacuum below [rr], and each sheet resistor is maintained at a culmness of 2XH1''-2 [Ω/hole].N It, -3
A pair of rod-shaped box frames are located around the bottom of the heater 2. a
, 3b are attached to the A-film heater 2 with a parallel anti-layer.By applying a voltage between these frost and poles 3a and 3b, the obtained film heater 2 is electrically heated. It's infested with things.

このような構成であれば、サファイア板1がRij 1
174ヒータ2によシ均一に加熱されるだめ、サファイ
ア10而内における温度勾配を極めて小さく(勿論10
(1℃/cm以−「)することができる。
With such a configuration, the sapphire plate 1 is Rij 1
In order to uniformly heat the sapphire 174 by the heater 2, the temperature gradient inside the sapphire 10 should be extremely small (of course, the temperature gradient inside the sapphire 10 should be kept very small).
(1°C/cm or more).

したがって、助膜ヒータ2の通知、加熱によってサファ
イア板1が破損することの、ない。
Therefore, the sapphire plate 1 will not be damaged by the notification and heating of the auxiliary film heater 2.

7j’、 4図は上記実施例装置を用いて半導体基板(
試料)4を加熱している状態を示しておシ、基板4は一
すファイア板1からの熱伝坪1.によって加熱されてい
る。なお、図中5はヒータ加熱用の直流電源を示してい
る。そしてこの場合、基板4がサファイア板1に而で接
触するので、基板4は均一に加熱されることになる。
7j', 4 shows a semiconductor substrate (
The figure shows a state in which a sample) 4 is being heated. is heated by. Note that 5 in the figure indicates a DC power source for heating the heater. In this case, since the substrate 4 comes into contact with the sapphire plate 1, the substrate 4 is heated uniformly.

かくして本実施例により1.ば、伝熱部444としてサ
ファイア板1が黙止によって破扛iすることを防止でき
、1000〔℃〕以上もの高温で使用することが可能と
なった。さらに、p、浄、な温度の列淵にも十勺削える
ことができだ。壕だ、通常のセラミ1.り机を使用り、
た」J♂1台に比[7てガスの放出が極めて少なく、1
0−9[Torr 〕以゛Fの超高真空中での使用も可
能とkった。さらに、ツファイア板1が薄膜ヒー!f′
2によシ均一に力Iす、)等されるため、ノ5(町4を
より均一性良く加熱するととが可能である。また、タン
グステンからなる殆′厄ヒータ2とサファイア板1との
反応もなく、50回以上の4湖にも十分面1え得ること
が確mlされた。
Thus, according to this embodiment, 1. For example, it is possible to prevent the sapphire plate 1 from breaking due to silence as the heat transfer portion 444, and it has become possible to use it at a high temperature of 1000 [° C.] or higher. In addition, it is possible to reduce the depth of the p-pure temperature range. It's a trench, regular ceramic 1. using a desk,
Compared to a single J♂ unit [7
It is also possible to use it in an ultra-high vacuum of 0-9 Torr or more. Furthermore, the tsphire plate 1 is thin film heat! f′
2, it is possible to heat the town 4 more uniformly. Also, since the heat is applied evenly to the heater 2 made of tungsten and the sapphire plate 1. There was no reaction, and it was confirmed that it would be enough to win over 4 lakes over 50 times.

なお、本発明は上述・した実施例に駆足されるものでは
ない。fllえげ、前記薄膜ヒータとしではタングステ
ンに限るものではなく、モリブデン、その信置空中で好
適に使用でき、高温でもサファイア板と反応しない部利
であオLばよい。
Note that the present invention is not limited to the embodiments described above. However, the thin film heater is not limited to tungsten, but may be made of molybdenum, which can be suitably used in the atmosphere and does not react with the sapphire plate even at high temperatures.

さらに、動用さヒータの形成は蒸着に限るものでtJ、
なく、スバ、り法やCVD法等を用いることもn、l能
である。また、半導体基板の加熱に限らず、他の金Pり
、P!縁物の加〃(等に適用することも可能でtJる。
Furthermore, the formation of the active heater is limited to vapor deposition; tJ,
Instead, it is also possible to use a chemical vapor deposition method, a CVD method, or the like. In addition to heating semiconductor substrates, it can also be used to heat other gold, P! It can also be applied to the addition of fringe items, etc.

その他、本発明の数計を逸脱しない範囲で、種々変形し
てシ工絢することができる。
In addition, various modifications and improvements can be made without departing from the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の4it要を説明
す乙ためのもので第1図れザファイア単結晶の温バ(と
7気圧との圀、1係を示す傷性図、第2図はサファイア
片、結晶のt)「A FE’U−勾配と割れJ+5生と
の関係をフ1:、す特性し1、第3し1及び氾4図はそ
iI−それ本発明の一5I′LIA仰1を1゛11明す
るためのもので第31ij−11,l−軒略構JJLi
し1、第4〔1超、使用状態を示す図である。 1・・・、QS結晶ザファイア体(伝熱部利)、2・・
・薄膜ヒータ、3a 、、? b・・・%p<s 4・
・・半導体基板(試第1)、5・・・電源。 出K)1人代別人  弁理士 鈴 江 武 彦第1WA 第3図 第4aI
Figures 1 and 2 are for explaining the essential points of the present invention. is a sapphire piece, crystal t) ``A FE'U - The relationship between slope and crack J + 5 characteristics is 1, 3, 1 and 4 are ii - 5I of the present invention. This is to clarify the LIA 1.11.
1 and 4 [exceeding 1] are diagrams showing usage conditions. 1..., QS crystal zaphire body (heat transfer part), 2...
・Thin film heater, 3a,,? b...%p<s 4.
...Semiconductor substrate (first trial), 5...Power supply. Exit K) 1 person representative Patent attorney Suzue Takehiko 1st WA Figure 3 Figure 4aI

Claims (2)

【特許請求の範囲】[Claims] (1)通電加熱されるヒータと、とのヒータに取着され
て該ヒータからの熱を伝える平面状の伝熱部材とを具備
し、真空中で上記伝熱部材上に載置される試料を加熱す
る真空用試料加熱装置において、前記伝熱部材として単
結晶サファイア板を使用すると共に、前記ヒータとして
上記サファイア板の下面に被着形成した薄膜ヒータを用
いてなることを特徴とする真空内試料加熱装置。
(1) A sample that is equipped with a heater that is electrically heated and a planar heat transfer member that is attached to the heater and transmits the heat from the heater, and that is placed on the heat transfer member in a vacuum. A vacuum sample heating device for heating a sample in a vacuum, characterized in that a single crystal sapphire plate is used as the heat transfer member, and a thin film heater formed on the lower surface of the sapphire plate is used as the heater. Sample heating device.
(2)前記薄膜ヒータは、タ、ングステン若しくはモリ
ブデンを前記サファイア基板の下面に蒸着、或いFi、
CVD法によシ堆積してなるものであることを特徴とす
る特許請求の範囲第1項記載の真空内試料加熱装置。
(2) The thin film heater is formed by depositing Ta, ungsten or molybdenum on the lower surface of the sapphire substrate, or depositing Fi,
An in-vacuum sample heating device according to claim 1, characterized in that the in-vacuum sample heating device is formed by depositing by CVD method.
JP14877382A 1982-08-27 1982-08-27 Apparatus for heating specimen in vacuum Granted JPS5939348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14877382A JPS5939348A (en) 1982-08-27 1982-08-27 Apparatus for heating specimen in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14877382A JPS5939348A (en) 1982-08-27 1982-08-27 Apparatus for heating specimen in vacuum

Publications (2)

Publication Number Publication Date
JPS5939348A true JPS5939348A (en) 1984-03-03
JPS6159180B2 JPS6159180B2 (en) 1986-12-15

Family

ID=15460334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14877382A Granted JPS5939348A (en) 1982-08-27 1982-08-27 Apparatus for heating specimen in vacuum

Country Status (1)

Country Link
JP (1) JPS5939348A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200483A (en) * 1987-01-23 1988-08-18 ペース インコーポレーテッド Heater and physically required value setting circuit
JPH01110245A (en) * 1987-10-23 1989-04-26 Iwatani Internatl Corp Cryogenic temperature tester
CN104233215A (en) * 2014-09-01 2014-12-24 蓝思科技股份有限公司 Method for reinforcing heat transfer film and PVD film on sapphire lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200483A (en) * 1987-01-23 1988-08-18 ペース インコーポレーテッド Heater and physically required value setting circuit
JPH01110245A (en) * 1987-10-23 1989-04-26 Iwatani Internatl Corp Cryogenic temperature tester
JPH0515979B2 (en) * 1987-10-23 1993-03-03 Iwatani Sangyo Kk
CN104233215A (en) * 2014-09-01 2014-12-24 蓝思科技股份有限公司 Method for reinforcing heat transfer film and PVD film on sapphire lens

Also Published As

Publication number Publication date
JPS6159180B2 (en) 1986-12-15

Similar Documents

Publication Publication Date Title
He et al. Beaklike SnO2 nanorods with strong photoluminescent and field‐emission properties
JP3299657B2 (en) Gallium oxide thin film
JP2939500B2 (en) Selective cvd method and cvd device
Fan et al. High density, non-porous anatase titania thin films for device applications
JPS58123771A (en) Semiconductor element
Brousseau et al. Electrical properties and topography of SnO2 thin films prepared by reactive sputtering
JPS5939348A (en) Apparatus for heating specimen in vacuum
WO2005091377A1 (en) Substrate with organic thin film, transistor using same, and methods for producing those
García-Gutiérrez et al. Luminescence and structure of ZnO grown by physical vapor deposition
US20210327707A1 (en) Method of making graphene and graphene devices
Vedawyas et al. Textured polycrystalline diamond films on Cu metal substrates by hot filament chemical vapor deposition
Thomas et al. Structural, electrical and optical properties of sol–gel processed lead titanate thin films
JPH07183231A (en) Semiconductor substrate and its manufacture
JPS638548A (en) Gas sensor and its manufacture
JPS5893222A (en) Preparation of semiconductor single crystal film
JP4768967B2 (en) Stencil mask for ion implantation and manufacturing method thereof
JPS61216331A (en) Thermal oxidization of polycide substrate in dry oxygen atmosphere and semiconductor circuit manufactured thereby
JPH01313974A (en) Method of manufacturing polycrystalline silicon semiconductor resistance layer on silicon substrate and silicon pressure sensor manufactured by the method
Mejía-García et al. Influence of the hydrothermal method growth parameters on the zinc oxide nanowires deposited on several substrates
JPS58123772A (en) Semiconductor element
Nguyen et al. Growth of silicon nanowires by sputtering and evaporation methods
JPH04139005A (en) Production of inorganic thin film
Blades et al. Initial studies of the preparation and properties of vanadium thin films
JP2646246B2 (en) Method for producing gas-sensitive membrane element
JPH0529608A (en) Manufacture of diamond fet with mis structure