JPS5939186B2 - Method for removing powdered ion exchange resin deposited on granular ion exchange resin layer - Google Patents

Method for removing powdered ion exchange resin deposited on granular ion exchange resin layer

Info

Publication number
JPS5939186B2
JPS5939186B2 JP56086919A JP8691981A JPS5939186B2 JP S5939186 B2 JPS5939186 B2 JP S5939186B2 JP 56086919 A JP56086919 A JP 56086919A JP 8691981 A JP8691981 A JP 8691981A JP S5939186 B2 JPS5939186 B2 JP S5939186B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
backwashing
powdered
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56086919A
Other languages
Japanese (ja)
Other versions
JPS57201537A (en
Inventor
真策 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP56086919A priority Critical patent/JPS5939186B2/en
Publication of JPS57201537A publication Critical patent/JPS57201537A/en
Publication of JPS5939186B2 publication Critical patent/JPS5939186B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明はプレコート剤として粉末イオン交換樹脂を用い
た復水脱塩装置の脱塩塔内の粒状イオン交換樹脂層に堆
積した粉末イオン交換樹脂を効率的に除去する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for efficiently removing powdered ion exchange resin deposited on a granular ion exchange resin layer in a demineralization tower of a condensate desalination apparatus using a powdered ion exchange resin as a precoating agent. Regarding.

原子力発電所の運転を円滑に行うためには、原子炉の冷
却水の浄化が必要であり、そのため(1)復水脱塩装置
及び(2)原子炉クリーンアップ装置が使用されている
が、処理水量低減の点から(1)の復水脱塩装置による
方法が主体となっている。
In order to operate a nuclear power plant smoothly, it is necessary to purify the reactor cooling water, and for this purpose, (1) condensate desalination equipment and (2) reactor cleanup equipment are used. From the viewpoint of reducing the amount of water to be treated, method (1) using a condensate desalination device is the main method.

復水脱塩装置の主要部は陰、陽イオン交換樹脂よりなる
混床式の脱塩塔で、これに復水を通すことにより復水中
のイオン成分及びクラッド分(主として不溶解性鉄化合
物)をイオン交換樹脂層でイオン交換及び濾過して復水
を浄化する。
The main part of the condensate desalination equipment is a mixed-bed type desalination tower made of anion and cation exchange resins, and by passing condensate through this, ionic components and crud components (mainly insoluble iron compounds) in the condensate are removed. The condensate is purified by ion exchange and filtration with an ion exchange resin layer.

イオン交換樹脂層に補そくされたイオン成分及びクラッ
ド分は、復水脱塩装置の再生塔で酸及びアルカリによる
イオン交換樹脂の化学的再正及び逆洗によるイオン交換
樹脂の物理的再生操作により、イオン交換樹脂から離脱
して系外に排出される。
The ion components and crud components that have been supplemented in the ion exchange resin layer are removed by chemical regeneration of the ion exchange resin with acid and alkali and physical regeneration of the ion exchange resin through backwashing in the regeneration tower of the condensate desalination equipment. , separated from the ion exchange resin and discharged from the system.

したがって、再生操作、特に逆洗操作が不完全な場合に
は、クラッド分が系内に蓄積されて放射能レベルが犬と
なり、運転上大きな問題となる。
Therefore, if the regeneration operation, especially the backwashing operation, is incomplete, the crud content will accumulate in the system and the radioactivity level will increase, causing a serious problem in operation.

ところで、復水中にはイオン成分及びクラッド分のよう
な懸濁物質が不純物として含まれ、この粒子径が比較的
大きい場合には上記イオン交換樹脂により復水中の溶存
物質除去過程においである程度除去されるが、極く微細
な懸濁物質は除去されずこれによりイオン交換樹脂層が
目詰まりすると共にイオン交換樹脂と液体の接触が悪く
なり、イオン交換樹脂のイオン交換能力を劣化させる。
By the way, condensate water contains suspended substances such as ionic components and crud components as impurities, and if these particle sizes are relatively large, they can be removed to some extent by the ion exchange resin in the process of removing dissolved substances from condensate water. However, extremely fine suspended substances are not removed, which causes clogging of the ion exchange resin layer and poor contact between the ion exchange resin and the liquid, deteriorating the ion exchange ability of the ion exchange resin.

な忘、鉄を例にとると、復水中の全鉄約30ppbのう
ち2〜3 ppb等が溶解している鉄で残りは懸濁状の
鉄であることがわかっている。
For example, taking iron as an example, it is known that 2 to 3 ppb of the total iron in condensate, about 30 ppb, is dissolved iron and the rest is suspended iron.

このため、通常、イオン交換処理を行う前に、プレコー
ト濾過等の前処理により懸濁物質を除去する方法がとら
れている。
For this reason, a method is usually used to remove suspended substances by pretreatment such as precoat filtration before performing ion exchange treatment.

プレコート濾過は、濾過スクリーン上にあらかじめプレ
コート剤の薄層をつくり、特に清澄度の高い炉逼を行う
方式であり、これを用いた復水脱塩装置においては、あ
らかじめ炉材上にプレコート剤の薄い層を形成した濾過
器を上流に配置し、粒状イオン交換樹脂を用いた脱塩塔
を下流に配置した構成がとられる。
Pre-coat filtration is a method in which a thin layer of pre-coat agent is created in advance on the filter screen to achieve particularly high clarity in the furnace. A configuration is adopted in which a filter forming a thin layer is placed upstream, and a desalination tower using a granular ion exchange resin is placed downstream.

又、該プレコート剤としては、ケイソウ土、繊維粉末、
炭素粉末、石綿、砂、アンヌクサイト、粉末イオン交換
体等が用いられているが、復水処理の場合、プレコート
剤として粉末イオン交換樹脂を用いて濾過と共に脱塩を
行う濾過脱塩器を使用してイオン成分、クラッド分及び
懸濁物質を除去する方式が開発されている。
In addition, as the pre-coat agent, diatomaceous earth, fiber powder,
Carbon powder, asbestos, sand, annucite, powdered ion exchanger, etc. are used, but in the case of condensate treatment, a filtration desalter is used that uses powdered ion exchange resin as a pre-coating agent to perform filtration and desalination. Methods have been developed to remove ionic components, crud fractions, and suspended solids using

しかし、この方式においては、上流の濾過脱塩器からリ
ーク(漏出)した粉末イオン交換樹脂が下流の脱塩塔内
り粒状イオン交換樹脂層に補そくされて層状に堆積して
運転の効率に支障をきたす。
However, in this method, the powdered ion exchange resin that leaks from the upstream filtration demineralizer is supplemented with the granular ion exchange resin layer in the downstream demineralizer and accumulates in layers, reducing the efficiency of operation. cause trouble.

従来、不純物除去のための逆洗は、逆洗前の気体(空気
又は窒素)スクラビング空塔速度約1100N”7m”
時で行われていたが、本発明者は、上記不純物が粉末イ
オン交換樹脂である場合、より低い流量すなわち空塔速
度でヌクラッピングを行った方がその除去効率が向上す
ることを見出して本発明に到達したものである。
Conventionally, backwashing for removing impurities involves gas (air or nitrogen) scrubbing at a superficial velocity of approximately 1100N (7 m) before backwashing.
However, the present inventor found that when the above impurity is a powdered ion exchange resin, the removal efficiency is improved by performing nuclear lapping at a lower flow rate, that is, superficial velocity. This invention has been achieved.

すなわち、本発明の目的は、プレコート剤として粉末イ
オン交換樹脂を用いた復水脱塩装置の脱塩塔内の粒状イ
オン交換樹脂層に堆積した粉末イオン交換樹脂を効率的
に除去する方法を提供することである。
That is, an object of the present invention is to provide a method for efficiently removing powdered ion exchange resin deposited on a granular ion exchange resin layer in a demineralization tower of a condensate desalination apparatus using a powdered ion exchange resin as a precoating agent. It is to be.

本発明は、上記の目的を達成するため次の構成をとるも
のである。
The present invention has the following configuration to achieve the above object.

すなわち、本発明の粒状イオン交換樹脂層に堆積した粉
末イオン交換樹脂の除去方法は、粉末イオン交換樹脂を
プレコート剤とした濾過脱塩器を上流に配置し粒状イオ
ン交換樹脂を脱塩剤とした脱塩塔を下流に配置した装置
により処理水中の懸濁物質、イオン成分及びクラッド分
を除去するに当り、該濾過脱塩器から漏出した粉末イオ
ン交換樹脂が堆積した粒状イオン交換樹脂を、塔内逆洗
を行う前に空塔速度30〜8ONm37m2時でヌクラ
ビングした後、逆洗することを特徴とするものである。
That is, the method for removing the powdered ion exchange resin deposited on the granular ion exchange resin layer of the present invention involves placing a filtration demineralizer using the powdered ion exchange resin as a precoating agent upstream, and using the granular ion exchange resin as the desalting agent. When removing suspended solids, ionic components, and crud from the treated water using a device located downstream of the desalination tower, the granular ion exchange resin on which the powdered ion exchange resin leaked from the filtration demineralizer is deposited is removed from the tower. It is characterized in that, before internal backwashing, backwashing is carried out after scrubbing at a superficial velocity of 30 to 8ONm37m2 hours.

本発明者は、粒状イオン交換樹脂層に堆積した粉末イオ
ン交換樹脂の除去につき種々検討を重ねた結果、逆洗前
の気体(空気窒素等)のヌクラビング空塔速度を約30
〜80 N 771”/ 771”時、望ましくは30
〜5ONrrl/m時と低くすることにより、短時間の
スクラビングを行い逆洗によって効率的に目的を達成で
きることを実験により確認した。
As a result of various studies regarding the removal of powdered ion exchange resin deposited on the granular ion exchange resin layer, the present inventor determined that the superficial velocity of the gas (air nitrogen, etc.) before backwashing should be approximately 30
~80 N 771"/771" hours, preferably 30
It was confirmed through experiments that by setting the scrubbing temperature as low as ~5ONrrl/m hours, the objective could be efficiently achieved by backwashing with short-time scrubbing.

このスクラビングにおいて、該空塔速度が3ON tr
i: / m時未満では、イオン交換樹脂層に堆積した
粉末イオン交換樹脂は層状に堆積するので十分にほぐさ
れず、堆積層に割れが生じ大きな塊状になって沈降して
しまう。
In this scrubbing, the superficial velocity is 3ON tr
At less than i: / m hours, the powdered ion exchange resin deposited on the ion exchange resin layer is deposited in layers and is not sufficiently loosened, causing cracks in the deposited layer and forming large lumps and settling.

一方、8ONrri”7m2時を越えると、同じ粉末イ
オン交換樹脂除去効率を得るためにかなり多くのスクラ
ビング時間が必要となる。
On the other hand, beyond 8ONrri''7m2 hours, considerably more scrubbing time is required to obtain the same powder ion exchange resin removal efficiency.

最適なヌクラビング空塔速度は30〜5ONm3/rr
t時であり、最低15分のスクラビングとし、引続き水
逆洗を行い、スクラビングと水逆洗の組合せを2〜3回
行うことにより90重量%以上の粉末イオン交換樹脂の
除去が可能であり、且つ気体の流量が低いので必要とす
る気体量が減少し、スクラビング時間も短縮できる。
Optimal Nuclub superficial velocity is 30-5ONm3/rr
t time, scrubbing for at least 15 minutes, followed by water backwashing, and by performing a combination of scrubbing and water backwashing 2 to 3 times, it is possible to remove 90% by weight or more of the powdered ion exchange resin, In addition, since the gas flow rate is low, the amount of gas required is reduced, and the scrubbing time can also be shortened.

なお、粉末イオン交換樹脂の除去効率に与える水逆洗の
影響はほとんどなく、逆洗水の8〜15Nm/lri’
時の範囲内の空塔速度(但し、あまり増すと粒状イオン
交換樹脂も出てしまう)及び10〜20分程度の逆洗時
間により悪影響は出ない。
Note that water backwashing has almost no effect on the removal efficiency of powdered ion exchange resin, and the backwashing water is 8 to 15 Nm/lri'
No adverse effects will occur if the superficial velocity is within the range of 10 to 20 minutes (however, if it increases too much, particulate ion exchange resin will also come out) and the backwashing time is about 10 to 20 minutes.

本発明者は、上記スクラビングの空塔速度を変化させ、
粒状イオン交換樹脂層に堆積した粉末イオン交換樹脂の
除去効果を調べたので、その実験を図面を参照して下記
し、得られた結果を示す。
The present inventor changes the superficial velocity of the scrubbing,
The effect of removing the powdered ion exchange resin deposited on the granular ion exchange resin layer was investigated.The experiment will be described below with reference to the drawings, and the obtained results will be shown.

第1図は本実験に使用した脱塩装置の模式図であり、符
号1は原水タンク、2は逆洗水はポンプ元弁、3は逆洗
水ポンプ、4は逆洗水ポンプ出口弁、5は逆洗水入口弁
、6は粒状イオン交換樹脂を充てんした円筒型脱塩塔(
以下脱塩塔という)、1はベント弁、8は逆洗水出口弁
、9は逆洗水受はタンク、10は窒素ガス流量計、11
は窒素ガスボンベ、12は窒素ガス人口弁、13は窒素
ガス流量調整弁、14は圧力計、15はブロー弁、16
は濾過脱塩器、1γは粉末イオン交換樹脂供給元弁、1
8は粉末イオン交換樹脂供給定量ポンプ、19は粉末イ
オン交換樹脂タンク、20は撹拌機、21は給水弁、2
2は給水戻り弁を示す。
Figure 1 is a schematic diagram of the desalination equipment used in this experiment, where 1 is the raw water tank, 2 is the backwash water pump main valve, 3 is the backwash water pump, 4 is the backwash water pump outlet valve, 5 is a backwash water inlet valve, and 6 is a cylindrical desalination tower filled with granular ion exchange resin (
(hereinafter referred to as a desalination tower), 1 is a vent valve, 8 is a backwash water outlet valve, 9 is a tank for backwash water receiver, 10 is a nitrogen gas flow meter, 11
is a nitrogen gas cylinder, 12 is a nitrogen gas population valve, 13 is a nitrogen gas flow rate adjustment valve, 14 is a pressure gauge, 15 is a blow valve, 16
is a filtration demineralizer, 1γ is a powder ion exchange resin supply source valve, 1
8 is a powder ion exchange resin supply metering pump, 19 is a powder ion exchange resin tank, 20 is a stirrer, 21 is a water supply valve, 2
2 indicates the water supply return valve.

試験に当り、脱塩塔6内の粒状イオン交換樹脂に濾過脱
塩器16から漏出した粉末イオン交換樹脂を堆積させる
In the test, powdered ion exchange resin leaked from the filtration demineralizer 16 is deposited on the granular ion exchange resin in the demineralizer 6.

この試験に先立ち、粉末イオン交換樹脂タンク19に粉
末イオン交換樹脂及び塩化ナトリウムを仕込み、一方、
純水を原水タンク1→濾過脱塩器16→脱塩塔6→原水
タンク1のように循環させる。
Prior to this test, the powdered ion exchange resin tank 19 was charged with powdered ion exchange resin and sodium chloride, and on the other hand,
Pure water is circulated as follows: raw water tank 1 → filtration demineralizer 16 → desalination tower 6 → raw water tank 1.

このときの水の流量は、脱塩塔6における空塔速度12
2m/m時とする(流量計は図示しへいが濾過脱塩器1
6のすぐ下流に設置する)。
The flow rate of water at this time is superficial velocity 12 in the demineralization tower 6.
2 m/m hour (The flow meter is not shown in the figure, but the filter demineralizer 1
6).

このようにして、粉末イオン交換樹脂及び塩化ナトリウ
ムを粉末イオン交換樹脂供給定量ポンプ18により移送
するが、この際、あらかじめ粉末イオン交換樹脂1(乾
燥基準)の仕込みで脱塩塔6の出口型導度が0.1μ5
Zcrn付近になるよう調整しておく(電導度計は図示
しないが脱塩塔6のすぐ下流に配置する)。
In this way, the powdered ion exchange resin and sodium chloride are transferred by the powdered ion exchange resin supply metering pump 18, but at this time, the powdered ion exchange resin 1 (dry basis) is charged in advance to the outlet type guide of the demineralization tower 6. degree is 0.1μ5
Adjust so that it is near Zcrn (the conductivity meter is not shown but is placed immediately downstream of the demineralization tower 6).

本試験においては、濾過脱塩器16は中途に配置され、
これからの粉末イオン交換樹脂を利用すると長大な時間
がかかる。
In this test, the filtration demineralizer 16 was placed halfway,
Using powdered ion exchange resins from now on will take a long time.

又、本試験に用いた粉末イオン交換樹脂は、漏れの対象
にならない60μmを越える粒径のものはカットしであ
る。
In addition, the powdered ion exchange resin used in this test had a particle size of more than 60 μm and was not subject to leakage.

粉末イオン交換樹脂を脱塩塔6内の粒状イオン交換樹脂
層に堆積させた後、ベント弁γ及びブ泊−弁15を開い
て、液面が粒状イオン交換樹脂層の上方5crI′Lに
なるよう調整し、その後ブロー弁15を閉じる。
After the powdered ion exchange resin is deposited on the granular ion exchange resin layer in the demineralization tower 6, the vent valve γ and the vent valve 15 are opened to bring the liquid level to 5crI′L above the granular ion exchange resin layer. After that, close the blow valve 15.

ベント弁1は開いたままとし、逆洗水山口弁8、窒素ガ
ス流量調整弁13及び窒素ガス人口弁12を開き、窒素
ガス流量調整弁73により窒素ガスの流量を調整し、所
定時間スクラビングを行う。
The vent valve 1 is left open, the backwash water Yamaguchi valve 8, the nitrogen gas flow rate adjustment valve 13, and the nitrogen gas population valve 12 are opened, the nitrogen gas flow rate is adjusted by the nitrogen gas flow rate adjustment valve 73, and scrubbing is performed for a predetermined period of time. conduct.

そしてこの際、流量をN rr?/ 771”時に換算
のため、圧力計14の読み及び温度を記録しておく。
And at this time, the flow rate is N rr? / Record the reading of the pressure gauge 14 and the temperature in order to convert it to 771" hours.

その後窒素ガス流量調整弁13及び窒素ガス人口弁12
を閉じる。
After that, the nitrogen gas flow rate adjustment valve 13 and the nitrogen gas population valve 12
Close.

次いで、ベント弁γ及び逆洗水出口弁8は開いたままと
し、逆洗水ポンプ元弁2、逆洗水ポンプ出口弁4及び逆
洗水入口弁5を開いて逆洗水ポンプ3を起動し、所定時
間逆洗する。
Next, the vent valve γ and the backwash water outlet valve 8 are kept open, and the backwash water pump main valve 2, the backwash water pump outlet valve 4, and the backwash water inlet valve 5 are opened to start the backwash water pump 3. and backwash for a specified period of time.

この流量は逆洗水入口弁5により調整する。This flow rate is adjusted by the backwash water inlet valve 5.

その後、逆洗水受はタンク9内にたまった粉末イオン交
換樹脂の重量を測定する。
Thereafter, the backwash water receiver measures the weight of the powdered ion exchange resin accumulated in the tank 9.

上記の実験装置を使用し、ヌクラビング時間を15分と
し、気体スクラビングの空塔速度を変化させて粉末イオ
ン交換樹脂の除去割合を測定した。
Using the above experimental apparatus, the removal rate of the powdered ion exchange resin was measured by setting the scrubbing time to 15 minutes and varying the superficial velocity of gas scrubbing.

なお、水逆洗の流量はストップウォッチと逆洗水受はタ
ンク9の水位上昇により測定した。
Note that the flow rate of water backwashing was measured using a stopwatch and a backwash water receiver as the water level in tank 9 rose.

得られた結果を第2図に示す。The results obtained are shown in FIG.

すなわち、第2図は、総堆積粉末イオン交換樹脂重量に
対する粉末イオン交換樹脂累積除去率(重量%)(縦軸
)と逆洗回数(横軸)との関係を示したグラフであり、
Aは空塔速度が30〜5ONm’/m時の場合、Bは同
じ(6ONm/m時の場合、Cは同じ<8ONm3/m
′時の場合、Dは同じ(120Nm’/rr1時の場合
を示す。
That is, FIG. 2 is a graph showing the relationship between the powder ion exchange resin cumulative removal rate (weight %) (vertical axis) and the number of backwashes (horizontal axis) with respect to the total accumulated powder ion exchange resin weight,
A is the same when the superficial velocity is 30 to 5 ONm'/m, B is the same (when the superficial velocity is 6ONm/m, C is the same <8ONm3/m
In the case of ', D is the same (120Nm'/rr shows the case of 1).

又、同じく上記の実験装置を使用し、ヌクラビング時間
を15分とし、気体ヌクラビングの空塔速度を変化させ
て除去された粉末イオン交換樹脂の重量%を調べた。
Furthermore, using the same experimental apparatus as described above, the nubbing time was set to 15 minutes, and the superficial velocity of gas nubbing was varied to examine the weight percent of the powdered ion exchange resin removed.

得られた結果を第3図に示す。すなわち、第3図は、各
逆洗回の直前における粒状イオン交換樹脂層に堆積され
た粉末イオン交換樹脂に対する逆洗により除去された粉
末イオン交換樹脂の重量%(縦軸)と逆洗回数(横軸)
との関係を示したグラフであり、A、B、C及びDは第
2図におけると同じ意味を有する。
The results obtained are shown in FIG. That is, FIG. 3 shows the weight percent (vertical axis) of the powdered ion exchange resin removed by backwashing with respect to the powdered ion exchange resin deposited on the granular ion exchange resin layer immediately before each backwash cycle and the number of backwashes ( Horizontal axis)
2. A, B, C, and D have the same meanings as in FIG. 2.

なお、一般にn回目までの逆洗で除去された累積百分率
をαn(第2図の縦軸)、n + 1回目の逆洗で除去
された総捕そく粉末イオン交換樹脂重量に対する除去量
の百分率をβn+、とすると、n十1回目の逆洗時にお
いては除去率γn+1は次式1式% すなわち、逆洗を繰返していくと当然粒状イオン交換樹
脂層中の粉末イオン交換樹脂の絶対量は減少する。
In general, the cumulative percentage removed by backwashing up to the nth time is αn (vertical axis in Figure 2), and the percentage of the amount removed relative to the total weight of the trapped powder ion exchange resin removed by the n + 1st backwashing is Let βn+ be the removal rate γn+1 at the time of the n11th backwashing.In other words, as the backwashing is repeated, the absolute amount of powdered ion exchange resin in the granular ion exchange resin layer naturally becomes Decrease.

17たがって、逆洗の効果をはかる目安としてαnの他
に、逆洗しようとする直前の時点における全粉末イオン
交換樹脂量に対する除去割合で示しておくと、各回数に
おける逆洗効果を知る上で有効である。
17 Therefore, as a guideline for measuring the backwashing effect, in addition to αn, it is useful to indicate the removal rate relative to the total amount of powdered ion exchange resin at the time immediately before backwashing, in order to understand the backwashing effect at each number of times. is valid.

ちなみに、上式の分母は0回逆洗後に残存している粉末
イオン交換樹脂量の総捕そく粉末イオン交換樹脂重量に
対する百分率である。
Incidentally, the denominator in the above equation is the percentage of the amount of powdered ion exchange resin remaining after zero backwashing to the total weight of the powdered ion exchange resin trapped.

第2図及び第3図のグラフから明らかなように、スクラ
ビングの空塔速度を30〜5ONm/lri’時にする
とスクラビング時間を最小15分まで短縮しても3回以
下のスクラビングと逆洗の組合せで90重量%以上の粉
末イオン交換樹脂の除去効果が得られ、且つ低流量なの
で必要とする気体量が減少し、スクラビング時間も短縮
できる。
As is clear from the graphs in Figures 2 and 3, when the superficial scrubbing velocity is 30 to 5 ONm/lri', even if the scrubbing time is reduced to a minimum of 15 minutes, the combination of scrubbing and backwashing is performed less than 3 times. The removal effect of 90% by weight or more of the powdered ion exchange resin can be obtained, and since the flow rate is low, the amount of gas required can be reduced, and the scrubbing time can also be shortened.

なお、空塔速度が3ON77+″/、1時を下廻ると粉
末イオン交換樹脂は塊状となって沈降して効果が低下す
る。
Note that when the superficial velocity is less than 3ON77+''/1 hour, the powdered ion exchange resin becomes lumpy and settles, reducing its effectiveness.

又、逆洗時間を25分にすると、空塔速度が5ON m
’/ m”時を越え8ONm1m”時程度でも同程度の
効果がみられたが、100Nrri”/rrr’時以上
特に120 N m’/ m’時以上では25分の逆洗
でも効果は認められず、粉末イオン交換樹脂の除去効率
に及ぼす水逆洗の空塔速度及び時間の影響は顕著でなく
、むしろ無視できるほどであった。
Also, if the backwashing time is set to 25 minutes, the superficial velocity will be 5ON m.
A similar effect was seen even when the time exceeded 100 Nrr/m'/m' and 8ONm/m', but no effect was observed even after 25 minutes of backwashing at 120 N m'/m' or more, especially at 120 Nm'/m' or more. First, the effects of the superficial velocity and time of water backwashing on the removal efficiency of the powdered ion exchange resin were not significant and were negligible.

次に、本発明を実施例により説明するが、本発明はこれ
によりなんら限定されるものではない。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto in any way.

実施例 内径108m1Oカラム(円筒型脱塩塔)に、粒状アニ
オン交換樹脂(三菱化成社製、5AIOB)及び粒状カ
チオン交換樹脂(三菱化成社製、5KIB)をそれぞれ
41入れ、その層上に粉末イオン交換樹脂〔アニオン交
換樹脂エピコール社製、エピコール粉末樹脂PD−1)
:カチオン交換樹脂(エピコール社製、エピコール粉末
樹脂PD−3)=1:3(乾燥重量比)〕5gを堆積さ
せた。
Example 4 units each of a granular anion exchange resin (manufactured by Mitsubishi Kasei Corporation, 5AIOB) and a granular cation exchange resin (manufactured by Mitsubishi Kasei Corporation, 5KIB) were placed in a 108 m1O column (cylindrical demineralization tower) with an inner diameter of 108 m, and powdered ions were placed on the layer. Exchange resin [anion exchange resin manufactured by Epicor Co., Ltd., Epicol powder resin PD-1]
: Cation exchange resin (manufactured by Epicor, Epicol powder resin PD-3) = 1:3 (dry weight ratio)] 5 g was deposited.

次に逆洗前のスクラビング時間を15分として窒素ガス
を導入し、スクラビング時間値を45Nm’/、1時に
選定することにより、3回の逆洗で97%の粉末イオン
交換樹脂除去効率が得られた。
Next, by setting the scrubbing time before backwashing to 15 minutes, introducing nitrogen gas, and selecting the scrubbing time value of 45Nm'/1 o'clock, a powder ion exchange resin removal efficiency of 97% can be achieved with three backwashings. It was done.

以上説明したように、本発明によれば、逆洗前の気体ヌ
クラビングを30〜8ONm37m2時特に30〜5O
Nm1m時とすることにより、短時間且つ、少11い逆
洗回数により、脱塩塔内の粒状イオン交換樹脂層上に堆
積した粉末イオン交換樹脂を効率的に除去することがで
きる。
As explained above, according to the present invention, the gas nubbing before backwashing is carried out at 30 to 8 ON m37 m2, especially at 30 to 5 O
By setting the amount of Nm to 1 m hours, the powdered ion exchange resin deposited on the granular ion exchange resin layer in the demineralization tower can be efficiently removed in a short time and with a small number of backwashing operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における実験に使用した脱塩装置の模式
図、第2図は総堆積粉末イオン交換樹脂重量に対する粉
末イオン交換樹脂累積除去率と逆洗回数との関係を示し
たグラフ、第3図は各逆洗回数の直前における粒状イオ
ン交換樹脂層に堆積された粉末イオン交換樹脂に対する
逆洗により除去された粉末イオン交換樹脂の重量%と逆
洗回数との関係を示したグラフである。 1・・・・・・原水タンク、2・・・・・・逆洗水ポン
プ元弁、3・・・・・・逆洗水ポンプ、4・・・・・・
逆洗水ポンプ出口弁、5・・・・・・逆洗水入口弁、6
・・・・・・脱塩塔、γ・・・・・・ベント弁、8・・
・・・・逆洗水出口弁、9・・・・・・逆洗水受はタン
ク、10・・・・・・窒素ガス流量計、11・・・・・
・窒素ガスボンベ、12・・・・・・窒素ガス入口弁、
13・・・・・・窒素ガス流量調整弁、14・・・・・
・圧力計、15・・・・・・ブロー弁、16・・・・・
・炉堝脱塩器、11・・・・・粉末イオン交換樹脂供給
元弁、18・・・・・・粉末イオン交換樹脂供給定量ポ
ンプ、19・・・・・・粉末イオン交換樹脂タンク、2
0・・・・・撹拌機、21・・・・・・給水弁、22・
・・・・・給水戻り弁。
Figure 1 is a schematic diagram of the desalination equipment used in the experiments of the present invention, Figure 2 is a graph showing the relationship between the cumulative removal rate of powder ion exchange resin and the number of backwashing with respect to the total weight of powder ion exchange resin deposited. Figure 3 is a graph showing the relationship between the weight percent of the powdered ion exchange resin deposited on the granular ion exchange resin layer removed by backwashing and the number of backwashings immediately before each backwashing cycle. . 1... Raw water tank, 2... Backwash water pump main valve, 3... Backwash water pump, 4...
Backwash water pump outlet valve, 5...Backwash water inlet valve, 6
... Desalination tower, γ ... Vent valve, 8 ...
... Backwash water outlet valve, 9 ... Backwash water receiver is tank, 10 ... Nitrogen gas flow meter, 11 ...
・Nitrogen gas cylinder, 12...Nitrogen gas inlet valve,
13... Nitrogen gas flow rate adjustment valve, 14...
・Pressure gauge, 15...Blow valve, 16...
・Furnace desalter, 11... Powder ion exchange resin supply source valve, 18... Powder ion exchange resin supply metering pump, 19... Powder ion exchange resin tank, 2
0... Stirrer, 21... Water supply valve, 22.
...Water supply return valve.

Claims (1)

【特許請求の範囲】 1 粉末イオン交換樹脂をプレコート剤とした濾過脱塩
器を上流に配置し粒状イオン交換樹脂を脱塩剤とした脱
塩塔を下流に配置した装置により処理水中の懸濁物質、
イオン成分及びクラッド分を除去するに当り、該濾過脱
塩器から漏出した粉末イオン交換樹脂が堆積した粒状イ
オン交換樹脂層を、塔内逆洗を行う前に空塔速度30〜
8ONm1m”時でヌクラビングした後、逆洗すること
を特徴とする、粒状イオン交換樹脂層に堆積した粉末イ
オン交換樹脂の除去方法。 2 塔内逆洗を行う前に空塔速度30〜50 N 77
1”/m:時でスクラビングする特許請求の範囲第1項
記載の粒状イオン交換樹脂層に堆積した粉末イオン交換
樹脂の除去方法。
[Scope of Claims] 1. Suspension in treated water is carried out by a device in which a filtration demineralizer using a powdered ion exchange resin as a precoating agent is placed upstream and a demineralization tower using a granular ion exchange resin as a desalting agent is placed downstream. material,
When removing ionic components and crud components, the granular ion exchange resin layer on which the powdered ion exchange resin leaked from the filtration demineralizer was deposited was washed at a superficial velocity of 30 to 30 before backwashing the column.
A method for removing powdered ion exchange resin deposited on a granular ion exchange resin layer, which comprises backwashing after scrubbing at 8ONm1m" hour. 2. A superficial velocity of 30 to 50 N before backwashing the column. 77
1"/m: A method for removing powdered ion exchange resin deposited on a granular ion exchange resin layer according to claim 1, wherein scrubbing is performed at a time of 1"/m.
JP56086919A 1981-06-08 1981-06-08 Method for removing powdered ion exchange resin deposited on granular ion exchange resin layer Expired JPS5939186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56086919A JPS5939186B2 (en) 1981-06-08 1981-06-08 Method for removing powdered ion exchange resin deposited on granular ion exchange resin layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56086919A JPS5939186B2 (en) 1981-06-08 1981-06-08 Method for removing powdered ion exchange resin deposited on granular ion exchange resin layer

Publications (2)

Publication Number Publication Date
JPS57201537A JPS57201537A (en) 1982-12-10
JPS5939186B2 true JPS5939186B2 (en) 1984-09-21

Family

ID=13900258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56086919A Expired JPS5939186B2 (en) 1981-06-08 1981-06-08 Method for removing powdered ion exchange resin deposited on granular ion exchange resin layer

Country Status (1)

Country Link
JP (1) JPS5939186B2 (en)

Also Published As

Publication number Publication date
JPS57201537A (en) 1982-12-10

Similar Documents

Publication Publication Date Title
JPH0736039B2 (en) Method for removing suspended impurities from condensate by mixed bed condensate desalination system
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP2000046992A (en) Condensate demineralization device
JP3319053B2 (en) Treatment method for fluoride-containing water
US5387348A (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JPS5939186B2 (en) Method for removing powdered ion exchange resin deposited on granular ion exchange resin layer
JP6800379B1 (en) A method for identifying the unit that causes a raw water leak in a condenser condenser
Richardson et al. Feature. Ion exchange traps chromates for reuse
JPS5815016B2 (en) How to clean ion exchange resin
US4163717A (en) Removal of silica from mixed bed demineralizer
EP0484984B1 (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JP2015040826A (en) Radioactive waste liquid disposal method, and radioactive waste liquid disposal device
RU2040475C1 (en) Method of water purification from metal oxides or suspended impurities
JPS6061089A (en) Purifying method of condensate
JPS61265600A (en) Radioactive waste treating facility
JP2543767B2 (en) Condensate desalination method
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
JPH09184899A (en) Method for reducing eluation of impurity from conodensate desalting apparatus of bwr nuclear power plant
JPH0447280B2 (en)
JP2012037270A (en) Radioactive waste liquid processor
JPS59183397A (en) Reproduction device for resin of condensate desalt system
JPS59174794A (en) Condensate purification system
JPS58129294A (en) Method of cleaning reactor coolant
Sharygin et al. Development of a technology for removing europium from spent-fuel holding-pond water at the Beloyarsk nuclear power plant
JPS63258687A (en) Method and apparatus for purifying condensed water