JPS5938866B2 - Continuous casting mold - Google Patents

Continuous casting mold

Info

Publication number
JPS5938866B2
JPS5938866B2 JP11515680A JP11515680A JPS5938866B2 JP S5938866 B2 JPS5938866 B2 JP S5938866B2 JP 11515680 A JP11515680 A JP 11515680A JP 11515680 A JP11515680 A JP 11515680A JP S5938866 B2 JPS5938866 B2 JP S5938866B2
Authority
JP
Japan
Prior art keywords
mold
casting
ingot
temperature
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11515680A
Other languages
Japanese (ja)
Other versions
JPS5739063A (en
Inventor
耕作 中野
明 山崎
秀明 工藤
泰進 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11515680A priority Critical patent/JPS5938866B2/en
Publication of JPS5739063A publication Critical patent/JPS5739063A/en
Publication of JPS5938866B2 publication Critical patent/JPS5938866B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は連続鋳造用鋳型の改良、詳しくは連続鋳造用鋳
型の底内の厚さを鋳型材質、鋳型径及び鋳造材にて規定
することにより鋳造中の径方向の寸法変化をなくして鋳
塊の欠陥の発生を防ぐことを目的とした連続鋳造用鋳型
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention improves continuous casting molds, and more specifically, the thickness of the bottom of the continuous casting mold is defined by the mold material, mold diameter, and casting material, thereby improving the radial direction during casting. This invention relates to a continuous casting mold that aims to eliminate dimensional changes and prevent defects in the ingot.

外周に溝を備えた回転輪とこの回転輪に相対するエンド
レス金属ベルトで構成される鋳型内に溶湯を注入して鋳
塊を連続して製造するベルトアンドホイール鋳造方式に
おいては、鋳造された鋳塊の長手方向に周期的な温度変
動が発生し、同時にこの温度変動に伴った欠陥発生が認
められる。
In the belt-and-wheel casting method, in which ingots are continuously produced by injecting molten metal into a mold consisting of a rotating ring with grooves on the outer periphery and an endless metal belt facing the rotating ring, the cast Periodic temperature fluctuations occur in the longitudinal direction of the lump, and at the same time, defects occur along with these temperature fluctuations.

そこでこの周期的な鋳塊温度変動及び欠陥発生について
本発明者らがその原因を調査した結果、これは回転輪の
鋳塊と接する面がその基準面から変動することによるも
のであることが認められた。
The inventors investigated the causes of this periodic ingot temperature fluctuation and defect occurrence, and found that this was caused by the surface of the rotating wheel in contact with the ingot changing from its reference surface. It was done.

第1図は2000mmの直径の鋳型を用い、回転速度2
0邑ろecでアルミニウムを鋳造したときの回転輪の1
回転中における鋳塊と接する回転輪溝底部の基準位置か
らの変位と、鋳塊温度及び探傷計で測定した欠陥量との
関係を示したものである。
Figure 1 uses a mold with a diameter of 2000 mm and a rotation speed of 2.
1 of the rotating wheel when aluminum is cast using EC
This figure shows the relationship between the displacement from the reference position of the bottom of the rotating ring groove in contact with the ingot during rotation, the ingot temperature, and the amount of defects measured by a flaw detector.

尚欠陥数は同一条件で1時間鋳造を続けたときの欠陥数
である。
Note that the number of defects is the number of defects when casting was continued for one hour under the same conditions.

この図から明らかなように回転輪溝底部が基準面より低
くなっている個所、即ち鋳塊吉回転輪の接触のよくない
個所では鋳塊から冷却系への熱移動が劣化するため鋳塊
温度は高くなりかつこの部分に欠陥の発生することが認
められた。
As is clear from this figure, in locations where the bottom of the rotating ring groove is lower than the reference surface, that is, locations where there is poor contact between the rotating wheels and the ingot, the ingot temperature decreases because heat transfer from the ingot to the cooling system deteriorates. It was observed that the surface area became high and defects occurred in this area.

この結果からベルトアンドホイール鋳造において鋳塊品
質の向上を図るには回転輪溝底部の変動防ぐことが最も
重要であることが判る。
These results show that in order to improve the quality of ingots in belt-and-wheel casting, it is most important to prevent fluctuations in the bottom of the rotating ring groove.

一方従来ベルトアンドホイール鋳造方式においては第2
図a、b、cの如き断面形状の回転輪が用いられており
、鋳型1はサイドプレートと称される鋳型の抑え用板2
によって拘束され、サイドプレートは回転軸に結合する
マウンティングプレートと称される嵌合せ板3にボルト
4及びナツト5にて固定されている。
On the other hand, in the conventional belt and wheel casting method, the second
A rotating ring with a cross-sectional shape as shown in Figures a, b, and c is used, and the mold 1 has mold holding plates 2 called side plates.
The side plate is fixed by bolts 4 and nuts 5 to a fitting plate 3 called a mounting plate which is connected to the rotating shaft.

このような従来の鋳型において、例えば純銅系の鋳型を
用いている場合鋳型1をサイドプレート2等で固定する
位置は次の関係にある。
In such conventional molds, for example, when a pure copper mold is used, the positions at which the mold 1 is fixed with the side plates 2 etc. have the following relationship.

第2図aの鋳型では 0.5t≦h≦1.5t 20mm≦h≦80run 同図すの鋳型では t≦h≦2t 40mn<h≦100闘 同図Cの鋳型では 。In the mold of Fig. 2 a 0.5t≦h≦1.5t 20mm≦h≦80run In the same mold, t≦h≦2t 40mn<h≦100 fights In the mold of C in the same figure .

≦h≦tO≦h≦501m 但しt:鋳塊の厚さ h:鋳型溝底からクランプ位置までの距離研削上りにお
ける鋳型の中心から溝底までの半径長さの寸法精度は±
0.1 mm以内であるが、これを鋳造機に装着後、鋳
造中においてはこの寸法精度は±0.8mm程度まで低
下する。
≦h≦tO≦h≦501m However, t: Thickness of the ingot h: Distance from the bottom of the mold groove to the clamp position The dimensional accuracy of the radius length from the center of the mold to the bottom of the groove after grinding is ±
Although it is within 0.1 mm, after it is installed in a casting machine and during casting, this dimensional accuracy decreases to about ±0.8 mm.

ところで第1図に示したように鋳型半径方向の寸法精度
が±〇、 3 mvt以上であると、鋳塊温度変動及び
鋳塊欠陥が発生し易くなるため、上記の寸法精度は鋳型
を鋳造機に装着した後で±0.2 mm以内に抑える必
要がある。
By the way, as shown in Figure 1, if the dimensional accuracy of the mold in the radial direction is ±3 mvt or more, ingot temperature fluctuations and ingot defects are likely to occur. It is necessary to keep the deviation within ±0.2 mm after mounting on the device.

同様のことが鋳型の巾方向の寸法精度についても言える
ので、鋳型を鋳造機に装着した段階で径方向及び巾方向
について精度を0.4 run以内とする作業が必要で
ある。
The same thing can be said about the dimensional accuracy of the mold in the width direction, so it is necessary to maintain the accuracy within 0.4 runs in the radial and width directions when the mold is installed in the casting machine.

そこで従来においても鋳型の巾方向の精度向上のために
は鋳型さサイドプレートとの間にスペーサー6を装入し
、又径方向の精度向上のためには鋳型を固定するマウン
ティングプレート上部7にスペーサー6を設置している
Therefore, in the past, in order to improve the precision in the width direction of the mold, a spacer 6 was inserted between the mold and the side plate, and in order to improve the precision in the radial direction, a spacer was inserted in the upper part 7 of the mounting plate that fixed the mold. 6 is installed.

しかしこのように鋳型をマウンティングプレートに固定
しかつ鋳型の径及び巾方向の精度を向上させる方法では
ベルトアンドホイール鋳造方式特有の鋳型温度のヒート
サイクル即ち注湯後、鋳型温度が急上昇しその後冷却さ
れる現象により鋳型は膨張、収縮を繰返すため鋳造中に
上記のスペーサーが最初設置した個所から移動したり或
いは又精度が著しく劣化するという問題がある。
However, with this method of fixing the mold to the mounting plate and improving accuracy in the diameter and width directions of the mold, the mold temperature heat cycle unique to the belt-and-wheel casting method involves a rapid rise in mold temperature after pouring, followed by cooling. Due to this phenomenon, the mold repeatedly expands and contracts, so there is a problem that the above-mentioned spacer may move from its initially installed position during casting, or the accuracy may deteriorate significantly.

そのため鋳造開始から1〜2時間以内に回転輪の径及び
巾方向の精度が劣化し第1図に示したような周期的鋳塊
欠陥が発生し高品質鋳塊を長時間安定して製造すること
に困難であった。
As a result, within 1 to 2 hours after the start of casting, the precision in the diameter and width directions of the rotating ring deteriorates, causing periodic ingot defects as shown in Figure 1, making it difficult to stably produce high-quality ingots over a long period of time. It was particularly difficult.

か5る点に鑑み、本発明者らは鋳造中における回転輪の
寸法精度の劣化を防ぐ方法について調査検討を進め、次
の如き知見を得た。
In view of these points, the present inventors conducted research and study on a method for preventing deterioration of the dimensional accuracy of the rotating ring during casting, and obtained the following knowledge.

第3図は回転輪の直径が1500mm、2000龍、お
よび2500mmの第2図すのタイプの銅鋳型を用いて
アルミニウムの鋳造を行ったとき、サイドプレートにて
鋳型をクランプする位置を種々変化させ、クランプ部の
鋳造中における温度変動中とそのときの径方向における
鋳型寸法精度の鋳造前からの劣化中吉の関係を示したも
のである。
Figure 3 shows aluminum casting using copper molds of the type shown in Figure 2 with rotating wheel diameters of 1,500 mm, 2,000 mm, and 2,500 mm, and various changes in the position of clamping the mold with the side plate. , which shows the relationship between the deterioration of the mold dimensional accuracy in the radial direction during temperature fluctuation during casting of the clamp part and the deterioration from before casting.

これより明らかなように鋳型をクランプする個所の鋳造
中における温度変動中が増加するに従って鋳型の鋳造中
における寸法精度が劣化し鋳塊品質の劣化することが判
る。
As is clear from this, as the temperature fluctuation during casting at the point where the mold is clamped increases, the dimensional accuracy during casting of the mold deteriorates and the quality of the ingot deteriorates.

又この寸法精度の劣化は回転輪の直径の影響も受け、回
転輪の直径をR(mm)、クランプ部の温度変動中を△
T(℃)、鋳型寸法精度の劣化長さを△h (mm)と
すると、それらの関係は次式で表わすことができる。
In addition, this deterioration in dimensional accuracy is also affected by the diameter of the rotating ring.
When T (°C) and the length of deterioration in mold dimensional accuracy are Δh (mm), their relationship can be expressed by the following equation.

△h=1.3X10−’ ・R・△T ・・・・・・
・・・・・・(1)又前述のように高品質鋳塊を製造す
るためには△hは0.4mm以内でなければならないか
ら、(1)式より鋳型クランプ部の温度変動中は次式を
満足しなければならないことになる。
△h=1.3X10-' ・R・△T ・・・・・・
...... (1) Also, as mentioned above, in order to produce a high-quality ingot, △h must be within 0.4 mm, so from equation (1), during temperature fluctuations at the mold clamp part, The following formula must be satisfied.

△T l<3.I X 10’/R・・・・・・・・・
・・・・・・・・・(2)次に種々の材質の鋳型を用い
て鋳型溝底からの距離とその個所の鋳造中における温度
変動中との関係を調べるためアルミニウム溶湯(注湯温
度700℃)と鋳造回転輪径1500mmの鋳型を用い
て実験を行い、第4図に示すこれらの鋳型を用いたとき
の鋳型溝底からの距離と温度変動中との関係が得られた
ΔT l<3. I X 10'/R・・・・・・・・・
・・・・・・・・・(2) Next, using molds made of various materials, we investigated the relationship between the distance from the mold groove bottom and the temperature fluctuation at that point during casting. Experiments were conducted using molds with a diameter of 700° C. and a casting wheel diameter of 1500 mm, and the relationship between the distance from the mold groove bottom and the temperature fluctuation when these molds were used as shown in FIG. 4 was obtained.

商用いた鋳型の材質とその鋳型の温度伝導度αを第1表
に示す。
Table 1 shows the materials of commercially available molds and the temperature conductivity α of the molds.

第4図の結果から次のことが認められる。The following is recognized from the results shown in Figure 4.

1)鋳型溝底部における温度変動中△To、は鋳型材質
の種類に関係なくアルミ溶湯を用いた場合路70℃であ
る。
1) Temperature fluctuation ΔTo at the bottom of the mold groove is 70°C when molten aluminum is used, regardless of the type of mold material.

11)温度変動中は鋳型溝底部から離れるに従って小さ
くなる。
11) During temperature fluctuations, the temperature decreases as the distance from the mold groove bottom increases.

111)鋳型溝底からの距離をl(mm)、温度変動中
を△Tl(’C)としたとき両者の関係は鋳型材質によ
って変化する温度伝導度αの影響を受は次式で示される
111) When the distance from the mold groove bottom is l (mm) and the temperature during temperature fluctuation is △Tl ('C), the relationship between the two is affected by the temperature conductivity α, which changes depending on the mold material, and is shown by the following equation. .

1n6T、g−−d−exp(−2,08α−2,69
)+ ln△T、 ・・・・・・・・・・・・・・・
・・・・・・(3)尚exp(−2−08α−2,69
)は e−2,08α−2,69を表わす。
1n6T, g--d-exp(-2,08α-2,69
) + ln△T, ・・・・・・・・・・・・・・・
......(3) exp(-2-08α-2,69
) represents e-2,08α-2,69.

又鋳造金属の(3)式に及ぼす影響について実験を進め
た結果、鋳造金属の融点が高くなるに従って鋳型溝底部
での温度変動中△To、は増加し次式で表わされる。
Further, as a result of conducting experiments on the influence of cast metal on equation (3), as the melting point of the cast metal becomes higher, ΔTo increases during temperature fluctuation at the bottom of the mold groove, and is expressed by the following equation.

△T−0,106・CT ・・・・・・・・・・・・
・・・・・・(4)− 但しCTは鋳造材の融点(’C)を示す。
△T-0,106・CT ・・・・・・・・・・・・
...(4)- However, CT indicates the melting point ('C) of the cast material.

上記の(2) 、 (3) 、 (4)式よりベルトア
ンドホイール鋳造方式において高品質鋳塊を安定して製
造するために必要な鋳型の底厚lは次式で表わされる。
From the above equations (2), (3), and (4), the bottom thickness l of the mold required to stably produce high-quality ingots in the belt-and-wheel casting method is expressed by the following equation.

* 本発明は上記の式(5)を満足するように鋳型溝底
部から鋳型を固定する位置までの長さlを規定すること
により鋳塊温度変動の最小化を図り鋳塊欠陥の発生を防
いで品質の向上を期したものである。
*The present invention minimizes ingot temperature fluctuations and prevents ingot defects by defining the length l from the bottom of the mold groove to the position where the mold is fixed so as to satisfy the above formula (5). The aim is to improve quality.

以下に本発明をその実施例によって説明する。The present invention will be explained below by way of examples thereof.

第5図はアルミニウム及び銅合金用に製作した連続鋳造
用回転鋳造の断面形状を示すが、鋳型1はその底部両側
に7字形の溝を有しており、その部分で7字形の突起を
有するマウンティングプレート3とサイドプレート2に
よってクランプされかつ鋳型とマウンティングプレート
とはボルト4及びナツト5にて固定されている。
Figure 5 shows the cross-sectional shape of a rotary casting machine for continuous casting manufactured for aluminum and copper alloys. Mold 1 has a figure-7 groove on both sides of its bottom, and a figure-7 protrusion at that part. The mold is clamped by a mounting plate 3 and a side plate 2, and the mold and the mounting plate are fixed with bolts 4 and nuts 5.

本回転輪の直径は2000mmであり、温度伝導度αが
0.90の銅鋳型を用いた場合5式から鋳型溝底からク
ランプ部までの必要な距離lはアルミ鋳造の場合133
mm、鋼鋳造の場合180mvt以上必要となる。
The diameter of this rotating ring is 2000 mm, and when a copper mold with a temperature conductivity α of 0.90 is used, the required distance l from the mold groove bottom to the clamp part is 133 mm in the case of aluminum casting according to formula 5.
mm, and in the case of steel casting, 180mvt or more is required.

本実施例ではアルミ及び鋼鋳造用により精度をあげるた
め鋳型溝底からクランプまでの距離を160mm及び2
00關とした。
In this example, in order to improve accuracy for aluminum and steel casting, the distance from the mold groove bottom to the clamp was set to 160 mm and 2.
It was set to 00.

第2表に本実施例の鋳型及び従来鋳型を夫々用いて鋳造
した場合の鋳造中のクランプ部の温度変動中、鋳型溝底
部の寸法精度の変化中並びに得られた鋳塊品質の性状を
示した。
Table 2 shows the characteristics of the temperature fluctuation of the clamp part during casting, the change of dimensional accuracy of the mold groove bottom, and the obtained ingot quality when casting was performed using the mold of this example and the conventional mold, respectively. Ta.

第2表から明らかなように本発明の鋳型を用いることに
より鋳型寸法精度の劣化を防ぎ、かつ長時間安定して欠
陥のない鋳塊を製造することが可能となった。
As is clear from Table 2, by using the mold of the present invention, it became possible to prevent deterioration of mold dimensional accuracy and to produce defect-free ingots stably for a long period of time.

以上本発明によれば(5)式で規定された長さの底厚も
しくは溝底から固定個所までの長さを有する回転鋳型を
用いることにより、長時間欠陥のない鋳塊を鋳造するこ
とが可能となり、工業的利益犬であることが認められた
As described above, according to the present invention, it is possible to cast an ingot without defects for a long time by using a rotary mold having a bottom thickness as defined by formula (5) or a length from the groove bottom to the fixed point. This allowed the dog to be recognized as an industrial profit dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋳造中における鋳型溝底部の径方向における寸
法変化と鋳塊温度及び鋳塊の欠陥量との関係を示す。 第2図a、b、cはベルトアンドホイール鋳造方式に用
いられる鋳型形状を示す。 第3図は回転鋳造固定部の温度変化中と鋳型溝底部の径
方向における寸法変化との関係を示す。 第4図は回転鋳型の溝底からの距離と温度変動中との関
係を示す。 第5図は本発明の実施例に使用した鋳型の形状を示す断
面図である。 1・・・・・・鋳型、2・・・・・・サイドプレート、
3・・・・・・マウンティングプレート、4・・・・・
・ボルト、5・・・・・・ナツト、6・・・・・・スペ
ーサー。
FIG. 1 shows the relationship between the dimensional change in the radial direction of the mold groove bottom, the ingot temperature, and the amount of defects in the ingot during casting. Figures 2a, b and c show mold shapes used in the belt and wheel casting method. FIG. 3 shows the relationship between the temperature change of the rotary casting fixing part and the dimensional change in the radial direction of the mold groove bottom. FIG. 4 shows the relationship between the distance from the groove bottom of the rotary mold and the temperature fluctuation. FIG. 5 is a sectional view showing the shape of a mold used in an example of the present invention. 1...Mold, 2...Side plate,
3...Mounting plate, 4...
・Bolt, 5...Nut, 6...Spacer.

Claims (1)

【特許請求の範囲】 1 外周に溝を備えた回転輪とこの回転輪の周面に接触
する無端ベルトにより連続して鋳型を形成し、該鋳型内
に連続して溶湯を注入して鋳塊を製造するベルトアンド
ホイール鋳造方式に用いられる鋳造用鋳型において、鋳
型溝底部から鋳型を固定する位置までの長さlが次式 を満足するものであることを特徴とする連続鋳造用鋳型
[Claims] 1. A mold is continuously formed by a rotating ring with grooves on the outer periphery and an endless belt in contact with the circumferential surface of the rotating ring, and molten metal is continuously poured into the mold to form an ingot. A continuous casting mold used in a belt-and-wheel casting method for producing a continuous casting mold, characterized in that a length l from the bottom of the mold groove to a position where the mold is fixed satisfies the following formula.
JP11515680A 1980-08-21 1980-08-21 Continuous casting mold Expired JPS5938866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11515680A JPS5938866B2 (en) 1980-08-21 1980-08-21 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11515680A JPS5938866B2 (en) 1980-08-21 1980-08-21 Continuous casting mold

Publications (2)

Publication Number Publication Date
JPS5739063A JPS5739063A (en) 1982-03-04
JPS5938866B2 true JPS5938866B2 (en) 1984-09-19

Family

ID=14655705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11515680A Expired JPS5938866B2 (en) 1980-08-21 1980-08-21 Continuous casting mold

Country Status (1)

Country Link
JP (1) JPS5938866B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489976U (en) * 1990-10-16 1992-08-05

Also Published As

Publication number Publication date
JPS5739063A (en) 1982-03-04

Similar Documents

Publication Publication Date Title
JPH0647501A (en) Method and device for continuous casting of metal
JPS5938062B2 (en) Continuous metal casting method
WO1991010521A1 (en) Continuously cast thin piece and method of casting thereof
US3794106A (en) Plant for producing a metal band from a melt
JPH0620614B2 (en) Cooling roll for the production of quenched metal ribbon
JPS5938866B2 (en) Continuous casting mold
US3478810A (en) Continuous copper wire-making process
JP2544411B2 (en) Drum type continuous casting equipment
JPH026037A (en) Method for continuously casting steel
US4235278A (en) Ring for a casting machine wheel
JPH0130578B2 (en)
US4287934A (en) Continuous casting mold
JPS5847255B2 (en) Steel ingot making method
JPS6483343A (en) Method for continuously casting cast thin slab
SU604619A1 (en) Continuous metal-casting method
JPH0220645A (en) Mold for continuously casting steel
JPH03133543A (en) Continuous casting method
RU2002841C1 (en) Method for manufacturing charge for melting aluminum alloys and device for embodying it
JPH0252152A (en) Cooling drum for strip continuous casting device
SU1107955A1 (en) Mould for continuous casting of metals
SU899238A1 (en) Hollow ingot production method
JP2574471B2 (en) Cooling drum for continuous casting of thin cast slabs
SU1473901A1 (en) Method of centrifugal casting ,particularly, of thick-wall hollow articles
RU2022692C1 (en) Method of continuous casting of steel slabs
JPS6127148B2 (en)