JPS5938597A - Heat transmitting tube for boiling medium - Google Patents
Heat transmitting tube for boiling mediumInfo
- Publication number
- JPS5938597A JPS5938597A JP14801482A JP14801482A JPS5938597A JP S5938597 A JPS5938597 A JP S5938597A JP 14801482 A JP14801482 A JP 14801482A JP 14801482 A JP14801482 A JP 14801482A JP S5938597 A JPS5938597 A JP S5938597A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- grooves
- recesses
- shape
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
- F28F13/187—Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は空気調和機の蒸発器などのように流体の沸騰、
蒸発を伴う熱交換器に使用する伝熱管に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to boiling of fluids, such as evaporators of air conditioners.
This invention relates to heat exchanger tubes used in heat exchangers that involve evaporation.
従来例の構成とその問題点
従来、空気調和機および冷凍機の蒸発器において、冷媒
側の伝熱は熱伝達の良好な沸騰熱伝達であるため、この
熱抵抗をあまり考慮する必要はなかった。しかしながら
、最近たとえば高性能フィンの開発によって、空気側の
熱伝達が著しく改善されたことなどによって、蒸発伝熱
管内の冷媒の熱抵抗も考慮する必要が生じ、蒸発器の小
形高性能化をはかるためには、管外の伝熱促進とともに
、管内の冷媒側の伝熱促進を行う必要が生じてきた。Conventional configuration and its problems Conventionally, in the evaporators of air conditioners and refrigerators, the heat transfer on the refrigerant side is boiling heat transfer, which has good heat transfer, so there was no need to take this thermal resistance into account too much. . However, recently, for example, with the development of high-performance fins, heat transfer on the air side has been significantly improved, and it has become necessary to consider the thermal resistance of the refrigerant in the evaporative heat transfer tube. In order to achieve this, it has become necessary to promote heat transfer outside the tube as well as heat transfer on the refrigerant side inside the tube.
以下図面を参照しながら、従来の伝熱管について説明を
行なう。A conventional heat exchanger tube will be explained below with reference to the drawings.
第1図は従来の伝熱管の断面を示すものであり、スムー
ス管1の内壁面にV字形の螺旋溝2を複数本設けたもの
である。これにより、流体3は管壁に沿って旋回力を受
けながら流動するため、ある程度の伝熱促進効果が得ら
れるが、隣接する溝の間隔が、非常に小さいものでも、
0.1M程度であるため、フロン系冷媒のように、表面
張力の小さい流体を用いる場合には、溝の中に液体が侵
入してしまうため、これらの溝は沸騰熱伝達に有効な気
泡核とはなり得ないという欠点を有していた。FIG. 1 shows a cross section of a conventional heat transfer tube, in which a plurality of V-shaped spiral grooves 2 are provided on the inner wall surface of a smooth tube 1. As a result, the fluid 3 flows along the pipe wall while being subjected to a swirling force, so that a certain degree of heat transfer promotion effect can be obtained, but even if the interval between adjacent grooves is very small,
Since it is approximately 0.1M, when using a fluid with low surface tension such as a fluorocarbon-based refrigerant, the liquid will enter the grooves, so these grooves are bubble nuclei that are effective for boiling heat transfer. It had the disadvantage that it could not be.
発明の目的
本発明は上記欠点を解消するものであり、フロン系冷媒
のような表面張力の小さい流体を用いる場合にも、沸騰
熱伝達に有効な気泡核を安定化し、伝熱性能の優れた沸
騰用伝熱管を提供することを目的とするものである。Purpose of the Invention The present invention solves the above-mentioned drawbacks, and even when using a fluid with low surface tension such as a fluorocarbon-based refrigerant, it stabilizes the bubble nuclei that are effective in boiling heat transfer, and provides excellent heat transfer performance. The purpose of this invention is to provide a heat exchanger tube for boiling.
発明の構成
本発明は伝熱管の内壁面に、7字形あるいはU字形をし
た複数の細い溝を形成し、前記溝の側面および底面に、
開口半径が0.1〜100μmの末広がりなくぼみを多
数形成したものである。Structure of the Invention The present invention forms a plurality of thin grooves in the shape of a 7 or U shape on the inner wall surface of a heat exchanger tube, and on the side and bottom surfaces of the grooves,
A large number of concavities with an opening radius of 0.1 to 100 μm are formed.
実施例の説明
以下本発明の一実施例について、図面の第2図〜第6図
を参照しながら説明する。DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 to 6 of the drawings.
一般に、流体の飽和温度より伝熱面温度が高いと、それ
に接する液流体は伝熱面近傍で過熱され、ここに気泡を
発生する可能性を生ずる。い1伝熱面近傍の液流体内に
熱力学的平衡を保って存在し得る気泡の半径r。は次式
で与えられる。Generally, when the temperature of the heat transfer surface is higher than the saturation temperature of the fluid, the liquid fluid in contact with the heat transfer surface is overheated near the heat transfer surface, giving rise to the possibility of generating bubbles there. (1) The radius r of a bubble that can exist in a liquid fluid near the heat transfer surface while maintaining thermodynamic equilibrium. is given by the following equation.
ここで、ρ7は蒸気の密度、ρLは液流体の密度りは蒸
発潜熱、σは表面張力、Tsは飽和温度、■は熱の仕事
当量である。上式を用いて、飽和温度がO′CのR−2
2の場合の平衡気泡半径を求めた結果を第2図に示す。Here, ρ7 is the density of vapor, ρL is the density of the liquid fluid and the latent heat of vaporization, σ is the surface tension, Ts is the saturation temperature, and ■ is the work equivalent of heat. Using the above formula, R-2 whose saturation temperature is O'C
The results of determining the equilibrium bubble radius in case 2 are shown in FIG.
壕だ、沸騰熱伝達に有効な気泡核の大きさは、この平衡
気泡半径を最小限界とし、表面張力により液流体が侵入
しない程度に大きなものと々る。すなわち、通常の熱交
換器において、伝熱面の最大過熱度を10°C程度とす
ると、第2図より、有効な気泡核の最小半径は、R−2
2の場合で約0.1μmとなり、最大半径は、実験的に
100μm程度である。The size of the bubble nucleus that is effective for boiling heat transfer is set to the minimum radius of this equilibrium bubble, and is large enough to prevent liquid fluid from penetrating due to surface tension. That is, in a normal heat exchanger, if the maximum degree of superheating of the heat transfer surface is about 10°C, then from Fig. 2, the minimum radius of the effective bubble nucleus is R-2.
In the case of 2, it is about 0.1 μm, and the maximum radius is experimentally about 100 μm.
まだ、末広がりなくぼみは、壁温か降下しても常に気泡
核を保有し、液流体で満されることがなく、安定した伝
熱促進効果が得られるものである。However, even if the wall temperature decreases, the concavity that widens toward the end always retains a bubble nucleus and is never filled with liquid fluid, so that a stable heat transfer promoting effect can be obtained.
第3図は本発明の第1実施例の沸騰用伝熱管の断面図で
あり、第4図は第3図のA−A線に沿って切断した断面
図である。第3図および第4図に示すように、スムース
管4の内壁iKこ7字形の螺旋溝5を形成し、この溝5
の側面に、開口半径が0.1〜100μmの末広がりな
くぼみ6を多数形成したものである。なお、7は管壁に
沿って回転力を受けながら流れる流体であり、8は、気
泡核となった末広がりなくぼみ6から成長して離脱した
気泡である。FIG. 3 is a sectional view of the boiling heat exchanger tube according to the first embodiment of the present invention, and FIG. 4 is a sectional view taken along line A--A in FIG. 3. As shown in FIGS. 3 and 4, a seven-shaped helical groove 5 is formed on the inner wall of the smooth tube 4.
A large number of recesses 6 with an opening radius of 0.1 to 100 μm are formed on the side surface of the recess. Note that 7 is a fluid that flows along the tube wall while being subjected to rotational force, and 8 is a bubble that has grown and separated from the concave 6 that expanded toward the end and became a bubble nucleus.
第6図は従来のスムース管および第1図に示しだ溝イ」
伝熱管と、本発明の沸騰用伝熱管について、飽和温度o
’cのR−22を、重量流速+ 701<、/lm2s
ecで循環させた場合の、壁面過熱度ΔTs (’C)
と熱流束q(1cal/ m2h )の関係を求めた実
験結果である。この図より明らかなように本発明の沸騰
用伝熱管は、スムース管に比べて、約2〜6倍、第1図
の溝付伝熱管に比べても約1.5〜3倍の熱流束(単位
時間、単位面積当り伝達される熱量)の増大がある。特
に壁面過熱度ΔTsが小さい場合の熱流束qの増大が大
きく、小さな温度差で大きな熱量を伝えることができ、
エネルギー有効利用の点からもきわめて優れたものであ
ることがわかる。Figure 6 shows the conventional smooth pipe and the groove shown in Figure 1.
Regarding the heat exchanger tube and the boiling heat exchanger tube of the present invention, the saturation temperature o
R-22 of 'c, weight flow rate + 701<,/lm2s
Wall surface superheat degree ΔTs ('C) when circulating with EC
These are the experimental results for determining the relationship between the temperature and the heat flux q (1 cal/m2h). As is clear from this figure, the boiling heat exchanger tube of the present invention has a heat flux approximately 2 to 6 times that of a smooth tube, and approximately 1.5 to 3 times that of the grooved heat exchanger tube shown in FIG. (The amount of heat transferred per unit time and unit area) increases. In particular, when the degree of wall superheating ΔTs is small, the increase in heat flux q is large, and a large amount of heat can be transmitted with a small temperature difference.
It can be seen that it is extremely superior in terms of effective energy use.
これは、第3図および第4図に示したように、溝6の側
面に形成された開口半径が0.1〜100μmの末広が
りなくぼみ6が気泡核として有効に作用し、小さな過熱
度でも十分な沸騰現象を生じさせているためである。This is because, as shown in FIGS. 3 and 4, the concavity 6 that widens toward the end and has an opening radius of 0.1 to 100 μm formed on the side surface of the groove 6 effectively acts as a bubble nucleus, even at a small degree of superheating. This is because a sufficient boiling phenomenon is caused.
壕だ、螺旋状の溝6を形成しているため、流体は管壁に
沿って、旋回力を受けながら、しかも細溝による毛細管
現象によって伝熱管の内壁を完全に覆うように薄い液膜
を形成しながら流れるため、溝6の側面に形成されたく
ぼみ6の付近も濡らされ気泡核として有効に作用させる
ことができる。Since the trenches form spiral grooves 6, the fluid flows along the tube wall while receiving swirling force, and due to the capillary action caused by the narrow grooves, a thin liquid film is formed to completely cover the inner wall of the heat transfer tube. Since it flows while being formed, the vicinity of the depression 6 formed on the side surface of the groove 6 is also wetted and can effectively act as a bubble nucleus.
第6図は本発明の第2実施例の沸騰用伝熱管の部分断面
図であり、スムース管9の内壁面にU字形の螺旋溝10
を形成し、この溝10の側面および底面に開口半径が0
.1〜100μmの末広がりなくぼみ11を多数形成し
たものである。FIG. 6 is a partial sectional view of a boiling heat exchanger tube according to a second embodiment of the present invention, in which a U-shaped spiral groove 10 is formed on the inner wall surface of a smooth tube 9.
is formed, and the opening radius is 0 on the side and bottom surfaces of this groove 10.
.. A large number of depressions 11 with a diameter of 1 to 100 μm are formed.
このようなU字形溝の場合も、前述の7字形溝と同様の
効果があることは明らかである。It is clear that such a U-shaped groove also has the same effect as the aforementioned 7-shaped groove.
また、本発明においては、塑性加工により、螺旋溝を形
成したのち、食刻により末広がりなくぼみを加工しただ
め、不規則なくぼみとなったが、これは、他の加工方法
でくぼみを形成した場合でも、開口半径が0.1〜10
0μmであれは、本発明と同様の効果が得られることは
明らかである。In addition, in the present invention, after forming a spiral groove by plastic working, a concavity that widens toward the end is processed by etching, resulting in an irregular concavity. Even if the aperture radius is 0.1 to 10
It is clear that the same effect as the present invention can be obtained if the thickness is 0 μm.
発明の効果
以上のように本発明によれば、伝熱管の内壁面に、7字
形あるいはU字形をした複数の細い溝を形成し、前記溝
の側面および底面に、開口半径がo、1〜100μmの
末広がりなくぼみを多数形成することにより、フロン系
冷媒のような表面狽力の小さい流体を用いる場合にも、
沸騰熱伝達に有効な気泡核を安定化し、優れた伝熱性能
が得られるものである。特に壁面過熱度の小さい場合に
、極めて良好な伝熱性能を示すため、小さな温度差で大
きな熱量を伝えることができ、エネルギー有効利用の点
からも、優れた効果を奏するものである。Effects of the Invention As described above, according to the present invention, a plurality of thin grooves in the shape of 7 or U are formed on the inner wall surface of the heat exchanger tube, and the opening radius is o, 1 to 1 on the side and bottom surfaces of the grooves. By forming a large number of 100 μm widening concavities, it can be used even when using fluids with low surface agitation such as fluorocarbon-based refrigerants.
It stabilizes bubble nuclei, which are effective in boiling heat transfer, and provides excellent heat transfer performance. In particular, when the degree of wall superheating is low, it exhibits extremely good heat transfer performance, so a large amount of heat can be transferred with a small temperature difference, and it is also excellent in terms of effective energy use.
第1図は従来の沸騰用伝熱管の断面図、第2図は過熱度
と平衡気泡半径の関係を示した特性図、第3図は本発明
の第1実施例の沸騰用伝熱管の断面図、第4図は第3図
のA−A線に沿って切断した断面図、第6図は本発明の
沸騰用伝熱管の性能実験の結果を示した特性図、第6図
は本発明の第2実施例の沸騰用伝熱管の部分断面図であ
る。
1.4.9・・・・・・スムース管、2 、6・・・・
・・7字形の螺旋溝、6,11・・・・・・末広がりな
くぼみ、3゜7・・・・・・流体。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
遁然屋乙T(’cン
第 3 図
ハ
第4図Figure 1 is a cross-sectional view of a conventional boiling heat exchanger tube, Figure 2 is a characteristic diagram showing the relationship between the degree of superheating and the equilibrium bubble radius, and Figure 3 is a cross-section of a boiling heat exchanger tube according to the first embodiment of the present invention. Figure 4 is a cross-sectional view taken along the line A-A in Figure 3, Figure 6 is a characteristic diagram showing the results of a performance experiment of the boiling heat exchanger tube of the present invention, Figure 6 is a cross-sectional view taken along line A-A in Figure 3, Figure 6 is a characteristic diagram showing the results of a performance experiment of the boiling heat exchanger tube of the present invention, It is a partial sectional view of the heat exchanger tube for boiling of 2nd Example. 1.4.9...Smooth pipe, 2,6...
・・7-shaped spiral groove, 6, 11 ・・・・・ concavity that widens at the end, 3° 7 ・・・fluid. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Tonzenya Otsu T ('cn Figure 3 Ha Figure 4
Claims (1)
細い溝を形成し、前記溝の側面および底面に、開口半径
が0.1〜100μmの末広がりなくぼみを多数形成し
た沸騰用伝熱管。A boiling heat exchanger tube in which a plurality of 7-shaped or U-shaped thin grooves are formed on the inner wall surface of the heat exchanger tube, and a large number of recesses with an opening radius of 0.1 to 100 μm that widen toward the end are formed on the side and bottom surfaces of the grooves. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14801482A JPS5938597A (en) | 1982-08-25 | 1982-08-25 | Heat transmitting tube for boiling medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14801482A JPS5938597A (en) | 1982-08-25 | 1982-08-25 | Heat transmitting tube for boiling medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5938597A true JPS5938597A (en) | 1984-03-02 |
Family
ID=15443173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14801482A Pending JPS5938597A (en) | 1982-08-25 | 1982-08-25 | Heat transmitting tube for boiling medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5938597A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144360A (en) * | 1974-10-14 | 1976-04-15 | Hitachi Ltd | DENNET SUHEKI |
JPS54111158A (en) * | 1978-02-20 | 1979-08-31 | Hitachi Ltd | Heat conducting tube |
JPS5644357A (en) * | 1979-09-14 | 1981-04-23 | Matsushita Electric Works Ltd | Emergency lighting device |
JPS57131992A (en) * | 1981-12-24 | 1982-08-16 | Furukawa Electric Co Ltd:The | Nucleate boiling type heat transfer pipe |
-
1982
- 1982-08-25 JP JP14801482A patent/JPS5938597A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144360A (en) * | 1974-10-14 | 1976-04-15 | Hitachi Ltd | DENNET SUHEKI |
JPS54111158A (en) * | 1978-02-20 | 1979-08-31 | Hitachi Ltd | Heat conducting tube |
JPS5644357A (en) * | 1979-09-14 | 1981-04-23 | Matsushita Electric Works Ltd | Emergency lighting device |
JPS57131992A (en) * | 1981-12-24 | 1982-08-16 | Furukawa Electric Co Ltd:The | Nucleate boiling type heat transfer pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10619939B2 (en) | Intermittent thermosyphon | |
JP4395378B2 (en) | HEAT TRANSFER TUBE, INCLUDING METHOD OF MANUFACTURING AND USING HEAT TRANSFER TUBE | |
JPS60238698A (en) | Heat exchange wall | |
JP2686145B2 (en) | Heat transfer tube for evaporator | |
JPS5938597A (en) | Heat transmitting tube for boiling medium | |
JP2663775B2 (en) | Liquid-filled evaporator | |
CN208398693U (en) | Micro-channel array auxiliary driving loop heat pipe | |
JP2000304485A (en) | Heating tube for down-flow liquid film type heat exchanger | |
JPS59142384A (en) | Heat pipe container | |
JPH0444192B2 (en) | ||
JP3266886B2 (en) | Heat transfer tube | |
JPH0949698A (en) | Heat exchanger | |
JPH02143094A (en) | Heat exchanger equipped with heat transfer tube | |
JP2505069B2 (en) | Heat transfer tube for absorption refrigerator regenerator | |
JP2002350079A (en) | Falling film heat exchanger tube | |
JPH07109354B2 (en) | Heat exchanger | |
JPS61228292A (en) | Heat transfer tube with heat pipe built-in fins | |
JPS61173085A (en) | Latent heat storage device | |
JPH01102295A (en) | Heat transmission pipe externally exchanging heat | |
JPH05322461A (en) | Heat transfer pipe for cooling unit | |
JPH0289997A (en) | Heat transfer tube for evaporation and condensation | |
JPS5812054Y2 (en) | long heat pipe | |
JPH01273972A (en) | Evaporator | |
JPS59115983A (en) | Heat exchanger | |
JPS6332265A (en) | Absorber |