JPS5937866Y2 - semiconductor IC memory - Google Patents

semiconductor IC memory

Info

Publication number
JPS5937866Y2
JPS5937866Y2 JP1980023240U JP2324080U JPS5937866Y2 JP S5937866 Y2 JPS5937866 Y2 JP S5937866Y2 JP 1980023240 U JP1980023240 U JP 1980023240U JP 2324080 U JP2324080 U JP 2324080U JP S5937866 Y2 JPS5937866 Y2 JP S5937866Y2
Authority
JP
Japan
Prior art keywords
chip
memory cell
memory
power supply
peripheral circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980023240U
Other languages
Japanese (ja)
Other versions
JPS56127526U (en
Inventor
隆彦 山内
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP1980023240U priority Critical patent/JPS5937866Y2/en
Publication of JPS56127526U publication Critical patent/JPS56127526U/ja
Application granted granted Critical
Publication of JPS5937866Y2 publication Critical patent/JPS5937866Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Power Sources (AREA)
  • Static Random-Access Memory (AREA)
  • Non-Volatile Memory (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Description

【考案の詳細な説明】 本考案は、メモリ電源系統の異常をメモリ製造工程のな
るべく初期の段階で発見できるようにした半導体ICメ
モリに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor IC memory in which an abnormality in a memory power supply system can be discovered as early as possible in the memory manufacturing process.

lチップにメモリセル部と、デコーダ、アドレスバッフ
ァ等の周辺回路部を形成し、該チップをパッケージに収
容してなるICメモリの電源電流試験には常温試験と高
温試験とがある。
The power supply current test for an IC memory in which a memory cell section and peripheral circuit sections such as a decoder and an address buffer are formed on a chip and the chip is housed in a package includes a room temperature test and a high temperature test.

メモリ製造工程の初期の段階ではチップは筐だスクライ
ブされず、ウェー・に多数区画形成された状態にあるが
、このウェハ状態では高温試験は困難なので電源系統の
試験などはもっばら常温において電源端子に電圧を印加
し、流れる電流を測定するという様な方法で行なわれる
At the early stage of the memory manufacturing process, the chips are not scribed into the casing and are formed into multiple sections on the wafer. However, high-temperature tests are difficult in this wafer state, so power supply system tests are usually conducted at room temperature with power supply terminals. This is done by applying a voltage to the circuit and measuring the current flowing through it.

そしてウェー・は各チップにスクライブされ、常温試験
で良品と判別された各チップはパッケージに収容されて
ICメモリとなり、この状態で高温試験を行なう。
The wafer is then scribed onto each chip, and each chip determined to be non-defective in the room temperature test is housed in a package to become an IC memory, and a high temperature test is performed in this state.

この様に常温及び高温試験を経て最終的に良品と判別さ
れるICメモリについて、その歩留りを上げるためには
常温試験において、より厳重なチェックを行なって、高
温試験で不良品となる様なチップをパッケージに収容す
るといった無駄な工程を省く必要がある。
In this way, in order to increase the yield of IC memories that are ultimately determined to be non-defective products after going through room temperature and high temperature tests, more stringent checks must be carried out during the room temperature tests, and chips that would be defective in the high temperature tests must be checked. It is necessary to eliminate wasteful steps such as putting the product into a package.

ところが常温試験では良と判断されても実際には不良で
あったり、その信実用上不都合なことがある。
However, even if a product is determined to be good in a room temperature test, it may actually be defective, or may be inconvenient in terms of reliability.

具体的な例を次の表に示す。なお括弧内は左側がチップ
の周辺回路部電流、右側が同メモリセル都電流である。
Specific examples are shown in the table below. In parentheses, the left side is the chip's peripheral circuit current, and the right side is the memory cell current.

上記の具体例について良品すと不良品Cとを比べると、
両者は常温試験においては、標準通りである良品aに対
して許容値(10mA)以内の70mAであるため供に
良品と判別されるが、高温試験において、良品すは70
mA不良品Cは80mAであるためこの段階で初めて不
良品Cは不良と判別される。
Comparing the above specific example between a good product and a defective product C,
In the normal temperature test, both products were judged to be good because they were 70mA, which is within the allowable value (10mA) for the standard non-defective product a, but in the high temperature test, the non-defective product was 70mA.
Since the mA of the defective product C is 80mA, the defective product C is determined to be defective for the first time at this stage.

これらより判るように、試験で実用上不都合なことが起
こるのは、全電源電流に占める周辺回路部電流とメモリ
セル部電流の割合が著しいアンバランス状態にあること
が一因である。
As can be seen from the above, one reason why practical inconveniences occur during testing is that there is a significant imbalance between the proportions of the peripheral circuit section current and the memory cell section current in the total power supply current.

つ渣り良品aについて60mAの電源電流といってもメ
モリセル部の電流は僅か1mA程度であるに過きず、残
りの59mAは周辺回路部の電流である。
Even though the power supply current is 60 mA for the remaining good product A, the current in the memory cell portion is only about 1 mA, and the remaining 59 mA is the current in the peripheral circuit portion.

そこで許容値を10mAとして、電源電流を測定した所
良品すと不良品Cとが70mAであるため当然そのチッ
プは良品となるが、不良品Cの様にその標準値60mA
からの超過分10mAがすべてメモリセル部のものとす
れば該メモリセル部は標準状態の10倍以上の電流を消
費している訳であり、明らかに異常である。
Therefore, by setting the allowable value to 10 mA, and measuring the power supply current, it is found that the chip is good and the defective product C is 70mA, so of course the chip is good, but like the defective product C, its standard value is 60mA.
If all of the excess 10 mA from the memory cell section is assumed to be from the memory cell section, the memory cell section is consuming more than 10 times the current of the standard state, which is clearly abnormal.

若しメモリセル部の電源電流値と周辺回路部の電源電流
値を別々に知ることができればこの種の異常は容易に発
見でき、メモリ製造工程の可及的初期の段階で不良チッ
プを知り、然るべき対策をたて渣た損害を最小限に食い
とめることができる。
If the power supply current value of the memory cell section and the power supply current value of the peripheral circuit section could be known separately, this type of abnormality could be easily discovered, and defective chips could be detected at the earliest possible stage of the memory manufacturing process. By taking appropriate measures, residual damage can be minimized.

しかしながら従来のICメモリではパッケージの外部電
源端子(ピン)とワイヤ等で接続されるチップ内の電源
端子(ポンディングパッド)がメモリセル部と周辺回路
部に共通に1つしか設けられていないため、メモリセル
部に流れる電流または波辺回路部に流れる電流だけを測
定することは不可能であり、勿論その割合いを推定して
し捷うことはできない。
However, in conventional IC memory, only one power supply terminal (ponding pad) inside the chip, which is connected to the external power supply terminal (pin) of the package by wire etc., is provided in both the memory cell part and the peripheral circuit part. However, it is impossible to measure only the current flowing in the memory cell section or the current flowing in the waveside circuit section, and of course it is not possible to estimate the proportion thereof.

本考案はこの点を改善しようとするもので、複数のスタ
ティック型メモリセルをマトリクス状に配してなるメモ
リセル部と周辺回路部とを半導体チップに形成し、該チ
ップをパッケージに収容してなる半導体ICメモリにお
いて、該チップにメモリセル部へ電力を供給するメモリ
セル用電源パッドと該周辺回路部へ電力を供給する周辺
回路用電源パッドとを独立させて設けて、該メモリセル
部に於ける消費電流と該周辺回路部に於ける消費電流と
を該チップを該パッケージに収容する前ぺ測定可能な構
造とし、そして前記パッケージに取付けられた複数の端
子ピンのうちの1つの電源端子ピンと2つの前記パッド
との間に、ピンからパッドへの電力供給を可能にする回
路を接続してなることを特徴とするものであるが、以下
図面を参照しながらこれを詳細に説明する。
The present invention attempts to improve this point by forming a memory cell section in which a plurality of static memory cells are arranged in a matrix and a peripheral circuit section on a semiconductor chip, and housing the chip in a package. In a semiconductor IC memory, a memory cell power supply pad that supplies power to the memory cell portion of the chip and a peripheral circuit power supply pad that supplies power to the peripheral circuit portion are independently provided in the chip, and the memory cell portion The current consumption in the chip and the current consumption in the peripheral circuit section can be measured before the chip is housed in the package, and one power supply terminal of a plurality of terminal pins attached to the package is provided. This device is characterized in that a circuit that enables power supply from the pin to the pads is connected between the pin and the two pads, and this will be explained in detail below with reference to the drawings.

第1図は本考案の一実施例を示すICメモリの概略平面
図、第2図はその要部等価回路幽である。
FIG. 1 is a schematic plan view of an IC memory showing an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of its essential parts.

第1図において2は多数のスタティック型メモリセルを
マトリクス状に配してなるメモリセル部、4は該メモリ
セル部の特定セルを選択するデコーダ、アドレスバッフ
ァ等の周辺回路、8.10はパッドで、これらは半導体
チップSCに設けられる。
In FIG. 1, 2 is a memory cell section consisting of a large number of static memory cells arranged in a matrix, 4 is a decoder for selecting a specific cell in the memory cell section, peripheral circuits such as an address buffer, and 8.10 is a pad. These are provided on the semiconductor chip SC.

6はパッケージPGに設けられる外部電源端子(ピン)
である。
6 is an external power supply terminal (pin) provided on the package PG
It is.

チップSCとパッケージPGとは第5図に示す如くなっ
ており、パッケージPGの基台部に四部が形成され、チ
ップSCはこの凹部に収容、固定される。
The chip SC and the package PG are as shown in FIG. 5, and four parts are formed in the base part of the package PG, and the chip SC is accommodated and fixed in the recessed part.

端子ピン6(マパッケージPGの両縁に所定数配設され
、そして図示しないが基台部に蓋が被せられ、チップS
Cを密閉する。
A predetermined number of terminal pins 6 (a predetermined number are arranged on both edges of the package PG, and a lid is placed on the base part (not shown), and the chip S
Seal C.

かかるICメモリのチップに本考案では2つの独立した
電源端子(ポンディングパッド)を設ける。
In the present invention, such an IC memory chip is provided with two independent power supply terminals (ponding pads).

8,10がそれである。一方のパッド8はメモリセル部
用であり、メモリセル部2との間がアルミニウム等の配
線12で接続される。
8 and 10 are those. One pad 8 is for the memory cell section, and is connected to the memory cell section 2 by a wiring 12 made of aluminum or the like.

他方のパッド10(マ周辺回路部用であり、周辺回路部
4との間が配線14で接続される。
The other pad 10 (used for the peripheral circuit section) is connected to the peripheral circuit section 4 by a wiring 14.

この配線12゜14&まメモリセル部及び又は周辺回路
部の配線形成と同時にチップ上に形成される。
These wiring lines 12, 14, and 14 are formed on the chip at the same time as the wiring of the memory cell portion and/or the peripheral circuit portion.

パッド8,10と端子ピン6との接続は、第5図に示し
たようにパッケージ上にチップを取付けたのち、ワイヤ
ポンディングにより行なう。
The pads 8, 10 and the terminal pins 6 are connected by wire bonding after the chip is mounted on the package as shown in FIG.

16.18がそのワイヤであり、この接続を行なうとパ
ッド8と10は電気的には一体になる。
16 and 18 are the wires, and when this connection is made, pads 8 and 10 become electrically integrated.

つ1リパツケ一ジ外部からはメモリ電源端子は1つに見
え、従来のものと同じになる。
One memory power supply terminal appears to be one from the outside of the repackage, and is the same as the conventional one.

しかしチップをパッケージに搭載しない状態、筐たはチ
ップが1だウエノ・から分離されていない状態ではパッ
ド8,10は互いに独立しており、相互の電気的連結は
ない。
However, when the chip is not mounted on the package, and when the chip is not separated from the housing or the chip, the pads 8 and 10 are independent of each other and are not electrically connected to each other.

第2図はメモリセル部2の要部を示すもので、各メモリ
セルMCはノリツブフロップ要部を構成するMOS )
ランジスタQ 1 t Q 2 %負荷抵抗(−!たは
トランジスタ)R1tR2およびワード線(図示せず)
で選択されるトランスファゲートQ3.Q4からなり、
1列のセルMC,MC・・・・・・がピッド線BL、B
Lを共用する。
Figure 2 shows the main part of the memory cell section 2, and each memory cell MC is a MOS that constitutes the main part of a Noritsu flop.
Transistor Q 1 t Q 2 % Load resistor (-! or transistor) R1tR2 and word line (not shown)
The transfer gate selected by Q3. Consisting of Q4,
Cells MC, MC in one column... are pit lines BL, B
Share L.

ワード線は図示していないが、ビット線BL 、BLと
直交して走り、トランスノアゲートQ3.Q4・・・・
・・のゲートと接続される。
Although word lines are not shown, they run perpendicular to bit lines BL and BL, and are connected to transnor gates Q3. Q4...
Connected to the gate of...

パッド8は配線12により各メモリセルMCへ図示の如
く接続され、各セルへ電源を供給する。
The pad 8 is connected to each memory cell MC by a wiring 12 as shown in the figure, and supplies power to each cell.

第4図はメモリチップの概略平面図でMC8&’jメモ
リセル部、WDはワードデコーダ、SAはセンスアンプ
、CDはコラムデコーダ、ABはアドレスバッファ、D
はデータ入出力部である。
Figure 4 is a schematic plan view of the memory chip, showing the MC8&'j memory cell section, WD a word decoder, SA a sense amplifier, CD a column decoder, AB an address buffer, and D
is the data input/output section.

パッド8,10はかかるチップの周辺適所に設けられる
Pads 8, 10 are provided at appropriate locations around the periphery of such a chip.

このメモリでは前述したように組立て前の段階ではワイ
ヤ16.18は設けられていないので電極8,10間は
分離されている。
In this memory, as described above, the wires 16 and 18 are not provided at the stage before assembly, so the electrodes 8 and 10 are separated.

従ってメモリ用電源電極8にプローブを当ててメモリセ
ル部2のみの電流をチェックできる。
Therefore, the current in only the memory cell section 2 can be checked by applying a probe to the memory power supply electrode 8.

チップ全体の消費電流が60mAでもメモリセル部2の
電流は1mA以下と少ないが、本考案のようにすれば確
実にその値を知り、正常、異常を把握できる。
Even if the current consumption of the whole chip is 60 mA, the current of the memory cell section 2 is small, less than 1 mA, but if the present invention is used, this value can be known reliably and whether it is normal or abnormal can be determined.

尚、ウェー・プロービング試験時には高温試験が困難な
ので、高温状態でのメモリ消費電流を実測することはで
きないが、常温時の値が判明すれば従来より正確に高温
時の正常、異常を推定することが可能である。
Note that it is difficult to perform high-temperature tests during wave probing tests, so it is not possible to actually measure memory current consumption under high-temperature conditions, but if the value at room temperature is known, it will be possible to estimate normality and abnormality at high temperatures more accurately than before. is possible.

筐た常温試験で過大な電流値であるものが高温で良化す
ることは考えられないので、常温試験の結果で直ちに不
良品と判断して問題はない。
It is unlikely that a product with an excessive current value in the room temperature test would improve at high temperatures, so there is no problem in immediately determining that the product is defective based on the room temperature test results.

尚、第1図におけるワイヤ16,18は第3図に示す他
の実施例のようにすれば1本のワイヤだけで済む。
Incidentally, if the wires 16 and 18 in FIG. 1 are replaced with the other embodiment shown in FIG. 3, only one wire is required.

つ1す、素子製造時に予め配線12゜14間(パッド8
,10間)にはダイオード接続されたMOS)ランジス
タQ5を挿入しておく。
1. When manufacturing the device, prepare the wiring between 12° and 14° (pad 8
, 10) is inserted with a diode-connected MOS transistor Q5.

その極性はパッド10からパッド8への電流は流すがそ
の逆方向へは電流を流さない向きである。
The polarity is such that current flows from pad 10 to pad 8, but does not flow in the opposite direction.

このようにすればパッド8から見ればパッド10は導電
的に分離されているのでパッド8にグローブを当てメモ
リセル部のみの電源電流を測定することができ、前記実
施例と同様の効果が得られる。
In this way, since the pad 10 is electrically conductively isolated when viewed from the pad 8, it is possible to measure the power supply current only in the memory cell portion by applying a glove to the pad 8, and the same effect as in the previous embodiment can be obtained. It will be done.

そして組立時に外部電源端子6とパッド10との間をワ
イヤ18で接続すれば、周辺回路部4のみならず順方向
のダイオードQ5を介してメモリセル部2へも電源電流
が供給される。
If the external power supply terminal 6 and the pad 10 are connected with the wire 18 during assembly, power supply current is supplied not only to the peripheral circuit section 4 but also to the memory cell section 2 via the forward diode Q5.

但し、この場合にはダイオードQ5の順方向降下分だけ
メモリセル部2側の電源電圧は低下する。
However, in this case, the power supply voltage on the memory cell section 2 side is reduced by the forward drop of the diode Q5.

以上述べたように本考案によれば、メモリセル部だけの
電流を分離して測定できるので、ICメモリの良、不良
判別が一層確実にそして製造の初期の段階でチェックで
きる利点がある。
As described above, according to the present invention, since the current of only the memory cell portion can be measured separately, there is an advantage that it is possible to more reliably determine whether the IC memory is good or bad and can be checked at an early stage of manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案の一実施例を示す概略平面
図および要部回路図、第3図は本考案の他の実施例を示
す要部回路図、第4図はメモリチップの概略平面図、第
5図はICメモリの概略断面図である。 図中、2はメモリセル部、4は周辺回路部、6は外部電
源端子、8はメモリ用電源パッド、10は周辺回路用電
源パッド、16.18はワイヤである。
1 and 2 are a schematic plan view and a circuit diagram of a main part showing one embodiment of the present invention, FIG. 3 is a circuit diagram of a main part showing another embodiment of the invention, and FIG. 4 is a diagram of a memory chip. FIG. 5 is a schematic plan view and a schematic cross-sectional view of the IC memory. In the figure, 2 is a memory cell section, 4 is a peripheral circuit section, 6 is an external power supply terminal, 8 is a memory power supply pad, 10 is a peripheral circuit power supply pad, and 16.18 is a wire.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数のスタティック型メモリセルをマトリクス状に配し
てなるメモリセル部と周辺回路部とを半導体チップに形
成し、該チップをパッケージに収容してなる半導体IC
メモリにおいて、該チップにメモリセル部へ電力を供給
するメモリセル用電源パッドと該周辺回路部へ電力を供
給する周辺回路用電源パッドとを独立させて設けて、該
メモリセル部に於ける消費電流と該周辺回路部に於ける
消費電流とを該チップを該パッケージに収容する前に測
定可能な構造とし、そして前記パッケージに取付けられ
た複数の端子ピンのうちの1つの電源端給ピンと2つの
前記パッドとの間に、ピンからパッドへの電力供給を可
能にする回路を接続してなることを特徴とする半導体I
Cメモリ。
A semiconductor IC in which a memory cell section in which a plurality of static memory cells are arranged in a matrix and a peripheral circuit section are formed on a semiconductor chip, and the chip is housed in a package.
In a memory, a memory cell power supply pad that supplies power to the memory cell section of the chip and a peripheral circuit power supply pad that supplies power to the peripheral circuit section are provided independently to reduce the consumption in the memory cell section. The structure is such that the current and the current consumption in the peripheral circuit section can be measured before the chip is housed in the package, and one power supply end supply pin and two of the plurality of terminal pins attached to the package are provided. A semiconductor I characterized in that a circuit that enables power supply from the pin to the pad is connected between the two pads.
C memory.
JP1980023240U 1980-02-25 1980-02-25 semiconductor IC memory Expired JPS5937866Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980023240U JPS5937866Y2 (en) 1980-02-25 1980-02-25 semiconductor IC memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980023240U JPS5937866Y2 (en) 1980-02-25 1980-02-25 semiconductor IC memory

Publications (2)

Publication Number Publication Date
JPS56127526U JPS56127526U (en) 1981-09-28
JPS5937866Y2 true JPS5937866Y2 (en) 1984-10-20

Family

ID=29619350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980023240U Expired JPS5937866Y2 (en) 1980-02-25 1980-02-25 semiconductor IC memory

Country Status (1)

Country Link
JP (1) JPS5937866Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527254A (en) * 1982-11-15 1985-07-02 International Business Machines Corporation Dynamic random access memory having separated VDD pads for improved burn-in
JPH0614439B2 (en) * 1987-04-24 1994-02-23 株式会社東芝 Storage device test method
JPH01166400A (en) * 1987-12-23 1989-06-30 Toshiba Corp Static type random access memory

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103672A (en) * 1976-02-26 1977-08-31 Matsushita Electric Works Ltd Sealing case for small size electric appliances

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113359U (en) * 1976-02-26 1977-08-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103672A (en) * 1976-02-26 1977-08-31 Matsushita Electric Works Ltd Sealing case for small size electric appliances

Also Published As

Publication number Publication date
JPS56127526U (en) 1981-09-28

Similar Documents

Publication Publication Date Title
US6625073B1 (en) Apparatus and method for testing for defects between memory cells in packaged semiconductor memory devices
US6117693A (en) System for fabricating and testing assemblies containing wire bonded semiconductor dice
EP0405586B1 (en) Semiconductor device and method of burning in the same
TW523848B (en) Manufacturing method for semiconductor wafer, semiconductor chip, and semiconductor device
US4527254A (en) Dynamic random access memory having separated VDD pads for improved burn-in
JP3112955B2 (en) Circuit for encoding identification information on circuit dice
US5253208A (en) Identification circuit for indicating redundant row or column substitution
JPS5937866Y2 (en) semiconductor IC memory
US5521511A (en) Method and device for testing integrated power devices
JP3495835B2 (en) Semiconductor integrated circuit device and inspection method thereof
US6621285B1 (en) Semiconductor chip having a pad arrangement that allows for simultaneous testing of a plurality of semiconductor chips
JPS588079B2 (en) hand tie memory
JPS6130044A (en) Semiconductor chip inspection method
US5412337A (en) Semiconductor device providing reliable conduction test of all terminals
JPH10178073A (en) Inspection method and production of semiconductor device
JPS5998389A (en) Semiconductor memory
JPH0685030A (en) Semiconductor integrated circuit
JPH03200347A (en) Measurement of non-volatile memory device
JPS62276879A (en) Semiconductor integrated circuit
JPS5936360B2 (en) semiconductor memory
JP2001194426A (en) Device for tester inspection, semiconductor integrated circuit device and method for inspection of tester
JPH01278033A (en) Pad arrangement structure of semiconductor integrated circuit
JPH04322441A (en) Semiconductor integrated circuit device, its inspecting method and inspecting device for use therein
JPH03139842A (en) Integrated circuit wafer
JPH0837214A (en) Test and manufacture of semiconductor device