JPS59374A - Filtering agent for water disposal - Google Patents

Filtering agent for water disposal

Info

Publication number
JPS59374A
JPS59374A JP10941582A JP10941582A JPS59374A JP S59374 A JPS59374 A JP S59374A JP 10941582 A JP10941582 A JP 10941582A JP 10941582 A JP10941582 A JP 10941582A JP S59374 A JPS59374 A JP S59374A
Authority
JP
Japan
Prior art keywords
manganese
specific gravity
water
water treatment
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10941582A
Other languages
Japanese (ja)
Inventor
Kazunori Sonedaka
和則 曽根高
Atsushi Nishino
敦 西野
Akihiko Yoshida
昭彦 吉田
Ichiro Tanahashi
棚橋 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10941582A priority Critical patent/JPS59374A/en
Publication of JPS59374A publication Critical patent/JPS59374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the filtering agent for the catalytically oxidizing treatment of water to remove Mn content, humic acid, etc. from underground or surface water, by concomposing it from the specified amounts of manganese oxide, an inorganic binder and light-weight aggregate. CONSTITUTION:The filtering agent for water disposal is composed of, by wt%, 40-80 manganese oxide, 15-50 an inorganic binder and 5-50 lightweight aggregate. MnO2 or Mn2O3 as said manganese oxide, one or more of hydraulic cement, air-setting cement, alkali silicate and glass frit as said inorganic binder, and lapilli, puzzolana, acid clay or the like having apparent specific gravity below 2 as said lightweight aggregate are respectively used. These constitutional materials are granulated and used as a granulated body having apparent specific gravity below 1.2g/cc.

Description

【発明の詳細な説明】 本発明は、地下水、地表水などに含まれている可溶性金
属や可溶性有機酸、たとえば鉄分、マンガン分、フミン
酸などを除去する接触酸化水処理用P材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a P material for catalytic oxidation water treatment that removes soluble metals and soluble organic acids, such as iron, manganese, humic acid, etc. contained in groundwater, surface water, etc.

従来、鉄やマンガンを含む水の処理技術として接触酸化
法が多く用いられている。この接触酸化法に用いる沖材
には、一般的にマンガン砂、マンガンゼオライトまたは
軟マンガン鉱があり、実際に広く普及しているのはマン
ガン砂である。
Conventionally, a catalytic oxidation method has been widely used as a treatment technology for water containing iron and manganese. Offshore materials used in this catalytic oxidation method generally include manganese sand, manganese zeolite, or soft manganese ore, and manganese sand is actually widely used.

マンガン砂は、砂の表面にマンガン酸化物を被部したも
ので、一般的に担体粒子として珪砂を用い、砂粒子1m
”につき塩化マンガンの3重量%水溶液150/を加え
て充分混合した後、過マンガン酸カリウムの3重量%水
溶液7501を加え、再度撹拌して砂粒子の表面に接触
酸化性のあるMnO2・H2Oの被膜を生成させること
によって製造されている。マンガンゼオライトも同様な
方法で製造メされる。この反応は次のように示される。
Manganese sand is made by coating the surface of sand with manganese oxide. Generally, silica sand is used as a carrier particle, and sand particles of 1 m are used.
After adding 150% of a 3% by weight aqueous solution of manganese chloride and mixing thoroughly, 7501% of a 3% by weight aqueous solution of potassium permanganate was added and stirred again to remove catalytically oxidizing MnO2/H2O from the surface of the sand particles. Manganese zeolite is also produced in a similar manner. The reaction is shown below.

13 Mn” +2 MnO4−+7 H2O−)  
5 Mn 02  ・ H20+ 4 H”上記のよう
一報じて得られたマンガン砂は、次のような欠点を有す
る。
13 Mn” +2 MnO4−+7 H2O−)
5 Mn 02 ・H20+ 4 H”The manganese sand obtained as described above has the following drawbacks.

1)担体表面に均一にMnO2・H2Oの被膜が生成さ
れない、2)塩化マンガン、過マンガン酸カリウムの利
用効率が悪い、3)接触酸化性能が低く、除鉄には効果
的であるが、除マンガン能にはほとんど効果がなく、除
鉄能を大きくするだめにC12や03量が多く必要であ
る。 4)逆洗、再生操作の繰り返しの際、担体表面に
被着した二酸化マンガンが脱落し、流出するなどの損失
が大きく、従って劣化も大きい、5)濾過条件(線速度
、空間速度)をきびしくすると除鉄効果も極端に低下す
る。しかし、利点として、みかけ比重が1・2士0・1
的と比較的小さいため、逆洗、再生時の逆洗水量が少な
く、かつ短時間でマンガン砂を再生することができる。
1) A film of MnO2/H2O is not uniformly formed on the surface of the carrier. 2) The utilization efficiency of manganese chloride and potassium permanganate is poor. 3) The catalytic oxidation performance is low, and although it is effective for iron removal, It has almost no effect on manganese ability, and large amounts of C12 and 03 are required to increase iron removal ability. 4) When backwashing and regeneration operations are repeated, manganese dioxide adhering to the surface of the carrier falls off and flows out, resulting in large losses, resulting in large deterioration. 5) Strict filtration conditions (linear velocity, space velocity). As a result, the iron removal effect will be extremely reduced. However, the advantage is that the apparent specific gravity is 1.2 and 0.1.
Since the target is relatively small, the amount of backwash water during backwashing and regeneration is small, and manganese sand can be regenerated in a short time.

このようなマンゴ−’dやマンガンゼオライトの欠点E
解決するため、本発明者らは先に、電解二酸化マンガン
粒を用いることを提案した(特公昭52−14543号
、同52−14544号公報)。
Disadvantages of such mango-'d and manganese zeolites E
In order to solve this problem, the present inventors previously proposed the use of electrolytic manganese dioxide particles (Japanese Patent Publications No. 52-14543 and No. 52-14544).

すなわち、マンガン塩溶液を用いて電解採取した電解二
酸化マンガンを水洗、脱酸し、粉砕機により粗粉砕して
接触酸化水処理用炉材として用いるのである。この二酸
化マンガン粒は、従来のマンガン砂、マンガンゼオライ
トと比較し、除鉄、除マンガン能は高く、特にマンガン
砂を用いた接触酸化法では除去しにくかったマンガンの
除去性能は著しく高い。しかし、二酸化マンガン粒の見
掛は比重は、2.5±0.6!?100と大きく、逆洗
That is, electrolytic manganese dioxide, which has been electrolytically extracted using a manganese salt solution, is washed with water, deoxidized, and coarsely pulverized using a pulverizer to be used as a furnace material for catalytic oxidation water treatment. These manganese dioxide grains have a higher ability to remove iron and manganese than conventional manganese sand and manganese zeolite, and in particular have a significantly high ability to remove manganese, which is difficult to remove with the catalytic oxidation method using manganese sand. However, the apparent specific gravity of manganese dioxide grains is 2.5±0.6! ? Large 100, backwash.

再生時に使用する逆洗水量は多く、かつ二酸化マンガン
粒の再生には長時間を要する欠点がある。
The drawback is that the amount of backwash water used during regeneration is large, and it takes a long time to regenerate manganese dioxide particles.

ただし、接触酸化能が大きいため、逆洗や再生回数は従
来のマンガン砂よりも非常に少ないため、逆洗水量の総
水量ははるかに少ない。
However, due to its large catalytic oxidation ability, the number of backwashing and regeneration times is much lower than that of conventional manganese sand, so the total water volume of backwashing water is much smaller.

また、本発明者らは先に、二酸化マンガンと無機質バイ
ンダーからなる粒状水処理用炉材も提案した(特公昭5
1−36944号公報)。すなわチ、二酸化マンガン粉
末とアルミナセメント粉末を適量混合し、成形に必要な
水を添加して混練し、粒状の成形物として用いるのであ
る。この成形物を接触酸化水処理用炉材として用いるこ
とにより、二酸化マンガン粒と比較し、除マンガン能は
、やや劣るが、二酸化マンガン粒よりも繰り返し使用に
耐える。また、二酸化マンガン粒よりも見掛は比重は1
.6±o 、 2 &1゜と小さく、逆洗水量も少ない
など利点も多い。しかし、マンガン砂と比較し、逆洗水
量は多い。
In addition, the present inventors had previously proposed a furnace material for granular water treatment consisting of manganese dioxide and an inorganic binder (Japanese Patent Publication No. 5
1-36944). That is, appropriate amounts of manganese dioxide powder and alumina cement powder are mixed, water necessary for molding is added and kneaded, and used as a granular molded product. By using this molded product as a furnace material for catalytic oxidation water treatment, it can withstand repeated use better than manganese dioxide grains, although its manganese removal ability is slightly inferior to that of manganese dioxide grains. Also, the apparent specific gravity is 1 compared to manganese dioxide grains.
.. It has many advantages, such as being small at 6±o, 2&1°, and requiring less backwash water. However, compared to manganese sand, the amount of backwash water is large.

このように本発明者らが提案した炉材には一長一短があ
る。
As described above, the furnace material proposed by the present inventors has advantages and disadvantages.

本発明は、これらの長所を生かしたものである。The present invention takes advantage of these advantages.

すなわち、マンガン酸化物と無機質バインダーと軽量骨
材を主成分とした粒状物で、マンガン酸化物が40〜8
0重量係、無機質バインダーが16〜60重量係、軽量
骨材が6〜45重量−の組成範囲で構成された水処理用
炉材である。
In other words, it is a granular material whose main components are manganese oxide, an inorganic binder, and lightweight aggregate, and the manganese oxide content is 40 to 8.
This water treatment furnace material has a composition range of 0 weight ratio, an inorganic binder of 16 to 60 weight ratio, and a lightweight aggregate of 6 to 45 weight ratio.

以下、各成分について詳述する。Each component will be explained in detail below.

(A)  マンガン酸化物 マンガン酸化物として、二酸化マンガン(Mn02)、
三二酸化マンガン(Mn206)、四三酸化マンガン(
Mn30a)が代表的なものであり、通常熱処理により
以下のように結晶変態を生じる。
(A) Manganese oxide As manganese oxide, manganese dioxide (Mn02),
Manganese sesquioxide (Mn206), trimanganese tetraoxide (
Mn30a) is a typical example, and usually undergoes crystal transformation as described below by heat treatment.

Mn o2soo−<ao′c Mn2o、 cars
o−* ooo’c、、、o4特にMnO2には、7−
MnO2,β−MnO2,α−Mn02があり、またM
n2O3にはα−Mn205がよく知られている。これ
らのマンガン酸化物中、除鉄、除マンガンおよび除フミ
ン酸に対する活性能は、 7−Mn0z)β−Mn02≧a−Mn02)a −M
n20s )) Mn3O4 の序列となっている。
Mn o2soo-<ao'c Mn2o, cars
o-*ooo'c,,,o4 Especially for MnO2, 7-
There are MnO2, β-MnO2, α-Mn02, and MnO2.
α-Mn205 is well known as n2O3. Among these manganese oxides, the activity for removing iron, removing manganese, and removing humic acid is as follows: 7-Mn0z)β-Mn02≧a-Mn02)a-M
n20s )) Mn3O4 order.

このような活性能は、第1図に示すよりなカラムを用い
た試験法によって比較することができる。この試験法は
内径50顛のカラム1に以下の条件で作成した各種マン
ガン酸化物2をs o cc充填し、Mn2+濃度が5
 ppm、次亜塩素酸ソーダ濃度が残留塩素に換算して
1,0〜0.8ppmの混合原水3を流量e o cc
 刀の条件で下向流方式で通過させ、処理水4中のMn
2+濃度と残留塩素を測定するもので、これによって各
種マンガン酸化物の接触酸化能を比較できる。
Such activity can be compared by a test method using a column as shown in FIG. In this test method, a column 1 with an inner diameter of 50 mm is filled with various manganese oxides 2 prepared under the following conditions, and the Mn2+ concentration is 5.
ppm, mixed raw water 3 with a sodium hypochlorite concentration of 1.0 to 0.8 ppm converted to residual chlorine at a flow rate e o cc
The Mn in the treated water was
This measures the 2+ concentration and residual chlorine, allowing comparison of the catalytic oxidation ability of various manganese oxides.

なお、各種マンガン酸化物の下部に、炉床5として、多
孔性ガラスフィルターを設置している。
Note that a porous glass filter is installed as a hearth 5 below the various manganese oxides.

iK 1のγ−MnO2粒は、硫酸酸性硫酸マンガン浴
(Mn” 0.6 ””/1 、 H2S 040−6
 N )を浴温度95℃、電流密度(D4  ) 0.
8 A / dm’で2週間電解して採取したγ−Mn
O2を陽極板から剥離し、J I S−に1467によ
るNH4Clの20重量%水溶液中のMn02OpH値
が4・6となるように、Na2CO3を用いて脱酸した
ものである。
The γ-MnO2 grains of iK 1 were prepared in a sulfuric acid acidic manganese sulfate bath (Mn"0.6""/1, H2S 040-6
N) at a bath temperature of 95°C and a current density (D4) of 0.
γ-Mn collected by electrolysis at 8 A/dm' for 2 weeks
O2 was peeled off from the anode plate and deoxidized using Na2CO3 so that the Mn02O2O pH value in a 20% by weight aqueous solution of NH4Cl was 4.6 according to JIS-1467.

捷だ、A2のa−MnO2粒は、前記β−Mn02を希
H2SO4(K+を共存)によシ酸処理したもので、0
.5N  H2S0A中にKCIを0.1モノ71添加
し、50〜60℃で4時間処理して得たものである。
The a-MnO2 grains of A2 are made by treating the β-Mn02 with dilute H2SO4 (with K+) and 0
.. It was obtained by adding 0.1 mono71 of KCI to 5N H2SOA and treating at 50 to 60°C for 4 hours.

次に、A3のβ−Mn02粒は、前記γ−MnO2t)
“fを250℃で2時間熱処理したもの、A4のa−M
n205は、7−MnO2粒を5Q/6℃で2時間熱処
理したもの1.+F1i5のMn3O4粒は960℃で
2時間熱処理したもの、A6は比較試料のマンガン砂で
ある。このようにして作成したマンガン酸化物を用いて
、接触酸化能を測定した結果を第2図に示した。また各
々のマンガン酸化物の比表面積(Bli:T法により測
定)は次のとおりである。
Next, the A3 β-Mn02 grains are the γ-MnO2t)
"f heat treated at 250℃ for 2 hours, A4 a-M
n205 is 1.7-MnO2 grains heat-treated at 5Q/6°C for 2 hours. The Mn3O4 grains of +F1i5 were heat treated at 960° C. for 2 hours, and A6 was manganese sand as a comparative sample. The results of measuring the catalytic oxidation ability of the manganese oxide thus prepared are shown in FIG. Further, the specific surface area (measured by the Bli:T method) of each manganese oxide is as follows.

A1 γ−MnO248m2/ y I6.2  β−MnO223m”/ fA3  a 
−MnO218rn”/ fA4  a−Mn2031
0m”/p A 5  Mn304   0−5 m’ / fA6
 マンガン砂 0.9 rn” / 9以上の結果から
も明らかなように、γ−MnOzは特に除マンガン能に
優れ、次にβ−MnO2、α−MnO2、α−Mn20
sは従来のマンガン砂よりも少なくとも6倍以上の除マ
ンガン能を有する。しかし、Mn5O<は、マンガン砂
よりも若干除マンガン能は良いが、製造上、高温焼成等
の製造法から好ましいとは言えない。すなわち、マンガ
ン酸化物として、二酸化マンガン、三二P/cc以下が
より好ましい。見掛は比重が2・0’/c a 以上の
骨材を用いると、前述した逆洗。
A1 γ-MnO248m2/ y I6.2 β-MnO223m”/ fA3 a
-MnO218rn”/ fA4 a-Mn2031
0m"/p A 5 Mn304 0-5 m'/fA6
As is clear from the results of manganese sand 0.9 rn” / 9 or more, γ-MnOz has particularly excellent demanganizing ability, followed by β-MnO2, α-MnO2, and α-Mn20.
s has at least 6 times more manganese removal ability than conventional manganese sand. However, although Mn5O< has a slightly better manganese removal ability than manganese sand, it cannot be said to be preferable due to manufacturing methods such as high-temperature firing. That is, as the manganese oxide, manganese dioxide with a concentration of 32 P/cc or less is more preferable. If aggregate with an apparent specific gravity of 2.0'/ca or more is used, the above-mentioned backwashing will occur.

再生時の逆洗水量が多くなり、さらに再生までの時間が
長くなる。このことは水処理用炉材の見掛・け比重を重
くすることにつながる。すなわち水処理用炉材の見掛は
比重を1.2 ’/cc以下にすることが困難となるた
めである。
The amount of backwash water during regeneration increases, and the time required for regeneration becomes longer. This leads to an increase in the apparent specific gravity of the water treatment furnace material. That is, it is difficult to reduce the apparent specific gravity of the water treatment furnace material to 1.2'/cc or less.

以」二のことから好ましい軽量骨相は、人工ゼオライト
、活性炭、ケイ酸カルシウム、石炭灰、火山れき、エー
ドプラヌ、樹脂粉末である。特に石炭灰を使用すること
は、灰分中に微量のミネラル分(アルカリ金属、アルカ
リ土類金属の酸化物)を含有しているので有利であわ、
さらに多量に産業廃棄物として廃棄されている石炭灰の
有効利用につながる。
For the following reasons, preferred lightweight bone materials are artificial zeolite, activated carbon, calcium silicate, coal ash, volcanic rubble, eidoplanu, and resin powder. In particular, it is advantageous to use coal ash because the ash contains trace amounts of minerals (oxides of alkali metals and alkaline earth metals).
Furthermore, it will lead to the effective use of coal ash, which is disposed of in large quantities as industrial waste.

次に、マンガン酸化物と無機質バインダーと軽量骨材の
組成比について説明する。
Next, the composition ratio of manganese oxide, inorganic binder, and lightweight aggregate will be explained.

代表例として、マンガン酸化物にγ−MnOz粉末(3
0oメソシユパスが90%以上)、無機質バインダーに
アルミナセメント(市販品で電気化学工業製ハイアルミ
ナセメント)、軽量骨材に合成ゼオライト(東洋ソーダ
製F1)をそれぞれ使用した。これらを第1表に示す配
合比で十分混合した後、成形に必要な水を添加して混練
した。この混練物を押出し成形機を用いて直径○、Bm
のベレットを作成し、表面を乾燥後、直ちに球状機で、
球状(ビーズ状)とし、硬化後、16〜48メツシユに
整粒したものを水処理炉材とした。
As a typical example, γ-MnOz powder (3
Alumina cement (commercially available, Hi-Alumina Cement manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as the inorganic binder, and synthetic zeolite (F1 manufactured by Toyo Soda Co., Ltd.) was used as the lightweight aggregate. After thoroughly mixing these at the compounding ratio shown in Table 1, water necessary for molding was added and kneaded. This kneaded material was molded using an extrusion molding machine with a diameter of ○ and Bm.
After creating a pellet and drying the surface, immediately use a spherical machine to
The particles were shaped into spheres (beads), and after curing, they were sized to a size of 16 to 48 meshes and used as water treatment furnace material.

なお、ここに用いたγ−MnO2粉末、アルミナセメン
ト、合成ゼオライトの見掛は比重は、それぞれ2 、 
ts モ。、1.61i100.1.31’/、。であ
る。
The apparent specific gravity of the γ-MnO2 powder, alumina cement, and synthetic zeolite used here are 2 and 2, respectively.
ts mo. , 1.61i100.1.31'/,. It is.

ただし見掛は比重は、内径12鮎、長さ300gの比色
管に、原料粉末を20y−を秤量し、30分間タッピン
グし測定したものである。また表中、水処理用炉材の見
掛は比重は、上述した方法で同様に測定した。機械的強
度は、水処理用炉材60ccを第1図に示すカラムに充
填し、逆洗展開率(流水前の体積が逆洗水により、みか
け体積を増大した容量%)を60%(みかけ体積76 
cc )とし、逆洗を1時間行なった時の重量減少率で
評価し、減少率が0〜5重量%を◎、5〜10重量%表
しだ。
However, the apparent specific gravity was measured by weighing 20y of the raw material powder into a colorimetric tube with an inner diameter of 12mm and a length of 300g, and tapping it for 30 minutes. Further, in the table, the apparent specific gravity of the water treatment furnace material was measured in the same manner as described above. Mechanical strength was determined by filling the column shown in Figure 1 with 60 cc of water treatment furnace material, and increasing the backwash expansion rate (volume % of the volume before flowing water to the apparent volume increased by backwash water) to 60% (apparent volume). Volume 76
cc) and was evaluated based on the weight loss rate after 1 hour of backwashing, and the weight loss rate was 0 to 5% by weight, ◎, and 5 to 10% by weight.

第1表から明らかなように、無機質バインダーの配合量
が16重量%以下になると、機械的強度は著しく低下し
ている。また合成ゼオライトの配合量が6重量係以下に
なると、見掛は比重は1.2ノ/cc以」−となり好ま
しくない。一方50重量%以」−になると見掛は比重は
好ましいが、機械的強度が低下する。
As is clear from Table 1, when the amount of inorganic binder added is 16% by weight or less, the mechanical strength is significantly reduced. If the amount of synthetic zeolite is less than 6% by weight, the apparent specific gravity will be less than 1.2 mm/cc, which is not preferable. On the other hand, if it exceeds 50% by weight, the apparent specific gravity is favorable, but the mechanical strength decreases.

以上のことから、無機質バインダーが16重量係以」二
、また軽量骨材が60重量%以下にすると機械的強度の
大きい水処理用炉材を得ることができる。一方、見掛は
比重の場合、無機質バインダー量が60重量%以下、軽
量骨材が5重量係以上になると、見掛は比重の小さい優
れた水処理用F材を得ることができる。
From the above, if the inorganic binder is 16% by weight or less and the lightweight aggregate is 60% by weight or less, a water treatment furnace material with high mechanical strength can be obtained. On the other hand, when apparent is a specific gravity, if the amount of inorganic binder is 60% by weight or less and the lightweight aggregate is 5% by weight or more, an excellent F material for water treatment with a small apparent specific gravity can be obtained.

次に本来の特性、すなわち浄化能は、前記のマンガン酸
化物の特性比較で述べた試験条件で、除マンガン能を比
較した。ただし、市販のマンガン砂の除マンガン能を1
とし、◎はその10倍以上、○は6〜10倍、△は2〜
6倍、×は2倍以下を表している。
Next, regarding the original properties, that is, the purifying ability, the manganese removal ability was compared under the test conditions described in the comparison of the characteristics of manganese oxides. However, if the manganese removal ability of commercially available manganese sand is 1
◎ is 10 times or more, ○ is 6 to 10 times, △ is 2 to
6 times, × represents 2 times or less.

第1表から明らかなように、マンガン酸化物の配合量が
30重量%以下になると、市販のマンガン砂と同程度あ
るいは若干良い程度である。
As is clear from Table 1, when the amount of manganese oxide is 30% by weight or less, it is comparable to or slightly better than commercially available manganese sand.

以上のことから、マンガン酸化物が40〜80重量%、
無機質バインダーが16〜60重量%、軽量骨材が5〜
50重量%の範囲が好ましい。
From the above, manganese oxide is 40 to 80% by weight,
Inorganic binder: 16-60% by weight, lightweight aggregate: 5-5%
A range of 50% by weight is preferred.

以   下   余   白 第1表 以下、本発明を実施例に基づきさらに詳しく説明する。Below Below Other White Table 1 Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 γ−Mn0260重量%、アルミナセメント25重量褒
及び第2表のように見掛は比重の異なる各種の骨材15
重量%を混合後、成形に必要な水を添加して湿式混合し
、径0.81tMの造粒成形物を作成し、温水中で養生
後、水洗、乾燥し、16〜48メソシユに整粒した。軽
量骨材1造粒成形物の見掛は比重は、前述した比色管を
用いて測定した。
Example 1 γ-Mn0260% by weight, alumina cement 25% by weight, and various aggregates with different apparent specific gravity as shown in Table 2 15
After mixing the weight%, water necessary for molding was added and wet-mixed to create a granulated molded product with a diameter of 0.81 tM, and after curing in warm water, it was washed with water, dried, and sized to 16 to 48 mesh size. did. The apparent specific gravity of the granulated lightweight aggregate 1 was measured using the colorimetric tube described above.

なお、除マンガン能は、炉材s o caを第1図のよ
りなカラムに充填し、Mn2+をs、oppm、残留塩
素を1,0〜o、sppm含む原水を線密度1・87m
 / h、空間速度7.2 h−’  の条件でカラム
を通過させて求めた。
The ability to remove manganese was determined by filling the column shown in Figure 1 with furnace material SOCA, and raw water containing s, opm of Mn2+ and 1.0 to 0, sppm of residual chlorine at a linear density of 1.87 m.
/h and space velocity of 7.2 h-' through the column.

まだ、機械的強度は、逆洗展開率を60%として1時間
逆洗した時の重量減少率で評価した。再生能は、上記原
水を用い、処理水中のMn2+濃度が0.3ppm以上
すなわち0.35ppmになると、原水の供給を中止し
、逆洗水量31/分で30分間逆洗再生した。そのサイ
クルが20回後における除マンガン能の減少率、すなわ
ち初期の除マンガン能0−0.3ppmの処理水量Q1
と20サイクル後の除マンガン能0〜o、appmの処
理水量Q2との比Q+ / Q2が1.0〜0.9を◎
、0.9〜0・7を0.0.7〜0.5を△、0.5以
下を× として評f曲した。
However, the mechanical strength was evaluated by the weight loss rate when backwashing was performed for 1 hour with a backwash development rate of 60%. The regeneration ability was determined by using the above-mentioned raw water, and when the Mn2+ concentration in the treated water became 0.3 ppm or more, that is, 0.35 ppm, the supply of raw water was stopped, and backwash regeneration was performed for 30 minutes at a backwash water rate of 31/min. Decrease rate of manganese removal ability after 20 cycles, that is, amount of treated water with initial manganese removal ability of 0-0.3 ppm Q1
The ratio Q+/Q2 of the manganese removal capacity 0 to o after 20 cycles and the amount of treated water Q2 of appm is 1.0 to 0.9.
, 0.9 to 0.7 was evaluated as 0.0.7 to 0.5 as Δ, and 0.5 or less as ×.

これらの評価結果を第2表に示す。These evaluation results are shown in Table 2.

以   下   余   白 骨Hの具用は比重が2.0 ’/cc以上になると、水
処理用炉材の成形物の具用は比重は1 、2 !?/c
c以上となり、特に再生使用における寿命劣化が大きく
なる。すなわち、逆洗再生時に、成形物の見掛は比重が
大きいと、逆洗展開率は小さく、水処理用P4A粒子の
表面に付着したMnO2・H2O層の脱着が少ないため
、寿命に大きな影響を与える。逆に逆洗展開率が大きく
なりすぎると、炉材粒子と粒子が衝突し、粒子の摩耗が
大きくなり好ましくない。表から好ましい水処理用P利
の見掛は比重は、0・8〜1. 、21’/、0である
。表には明記していないが、化学処理γ−MnO2(み
かけ比重1.8、p−/cc)の場合、好ましい水処理
用炉材の見掛は比重は0.6〜1・2机。の範囲であっ
た。以上のことから見掛は比重は” 2 ’/’cc以
下が好ましい3、 実施例2 γ−MnO250重量係、無機質バインダーとしで、軽
質炭酸カルシウム40重量係、軽量骨材として石炭灰1
0重量%を用い、実施例1と同様の製ン黴で炉材を作り
S同様の条件で評価した結果を第3表に示す。
Below Margin When the specific gravity of bone H is 2.0'/cc or more, the specific gravity of the molded material of water treatment furnace material is 1 or 2! ? /c
c or more, and the deterioration of life especially during reuse becomes significant. In other words, if the apparent specific gravity of the molded product is large during backwash regeneration, the backwash expansion rate will be small and the MnO2/H2O layer attached to the surface of the P4A particles for water treatment will be less likely to be desorbed, which will have a large impact on the lifespan. give. On the other hand, if the backwash expansion rate becomes too large, the furnace material particles collide with the particles, which increases the wear of the particles, which is not preferable. From the table, the apparent specific gravity of preferable P uses for water treatment is 0.8 to 1. ,21'/,0. Although not specified in the table, in the case of chemically treated γ-MnO2 (apparent specific gravity 1.8, p-/cc), the preferred water treatment furnace material has an apparent specific gravity of 0.6 to 1.2 units. It was within the range of From the above, the apparent specific gravity is preferably 2'/'cc or less3. Example 2 γ-MnO 250% by weight, as an inorganic binder, light calcium carbonate 40% by weight, and coal ash 1% as a lightweight aggregate.
Table 3 shows the results of making a furnace material using the same manufacturing mold as in Example 1 and evaluating it under the same conditions as S using 0% by weight.

第3表 実施例3 実施例1の扁4中のマンガン酸化物を化学処理γ−Mn
O2(比表面積110 ”7’y)  と、前記化学処
理γ−Mn02を550℃で2時間熱処理したtx−M
nzOs(比表面積20 rr?7. )に代え、 実
施例1と同様の製3Uで炉材を作り、同様の条件評価△ した結果を第4表に示す。
Table 3 Example 3 Chemical treatment of manganese oxide in the plate 4 of Example 1 γ-Mn
O2 (specific surface area 110''7'y) and tx-M obtained by heat treating the chemically treated γ-Mn02 at 550°C for 2 hours.
In place of nzOs (specific surface area 20 rr?7.), a furnace material was made of 3U made in the same manner as in Example 1, and the results were evaluated under the same conditions as shown in Table 4.

第4表 表から明らかなように、マンガン酸化物の結晶系や製工
天による差はほとんどない。特に除マンガン能は別11
〉A4〉扁12の順でA11が優れた結果を得だ。これ
はマンガン酸化物の比表面積、賛い換えると、P4−A
の比表面積の差による。ノFlli11゜4.12の比
表面積はそれぞれ70 /y+  32 ’/y+2 11+であり、1o rn’/、以上が好ましいと言え
一 る。
As is clear from Table 4, there is almost no difference depending on the crystal system or manufacturing quality of manganese oxide. In particular, the ability to remove manganese is another 11.
In the order of 〉A4〉Flat 12, A11 obtained excellent results. This is the specific surface area of manganese oxide, in other words, P4-A
Due to the difference in specific surface area. The specific surface area of NOFlli11°4.12 is 70/y+32'/y+211+, respectively, and it can be said that 1 o rn'/or more is preferable.

実施例4 実施例10A3の軽量骨相をポリエチレン粉末(10o
メツシュ以下100%)に代え。実施例1と同様の製夕
転で炉材を作り、同様の条件で評価した結果を第6表に
示す。
Example 4 The lightweight bone phase of Example 10A3 was mixed with polyethylene powder (100
(100% below mesh) instead. Furnace materials were made using the same method as in Example 1 and evaluated under the same conditions. Table 6 shows the results.

第5表 実施例5 実施例2の無機質バインダーを各種変えた炉材の評価結
果を第6表に示す。
Table 5 Example 5 Table 6 shows the evaluation results of the furnace materials of Example 2 with various inorganic binders.

成を第7表に示す。このフリットをバインダーとした炉
材は、マンガン酸化物、バインダー及び骨材の混合物1
00重量部に対して、成形助剤のカルボキシメチルセル
ロースを0・6重量部添加して成形物とし、500℃で
10分間焼成して製造した。
The composition is shown in Table 7. The furnace material using this frit as a binder is a mixture of manganese oxide, binder and aggregate.
0.6 parts by weight of carboxymethylcellulose as a molding aid was added to 0.00 parts by weight to form a molded product, which was then baked at 500° C. for 10 minutes to produce a molded product.

第6図 第6表から明らかなように、各種の無機質バインダーを
単独で用いたり併用しても、良好な結果が得られた。ま
た、成形助剤たとえば、−次結合剤、成形性改善剤を添
加し、成形することもできる。成形助剤は、比較的低温
(6o O’C以下)で熱分解するものを用いることが
好ましいが、少量、好ましくは5重量多以下炉材に含有
させてもよい。
As is clear from FIG. 6 and Table 6, good results were obtained when various inorganic binders were used alone or in combination. Further, molding can be carried out by adding molding aids such as secondary binders and moldability improving agents. Although it is preferable to use a forming aid that thermally decomposes at a relatively low temperature (6o O'C or less), it may be included in the furnace material in a small amount, preferably 5 weight or less.

以−Hのように、本発明の水処理用炉材は、接触酸化能
にすぐれ、特に除マンガン能が大きく、また再生も容易
で、長期の使用に耐えるものである。
As shown in E-H, the water treatment furnace material of the present invention has excellent catalytic oxidation ability, particularly high manganese removal ability, is easy to regenerate, and can withstand long-term use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水処理用沢材の除マンガン能を測定するための
カラム試験装置の縦断面略図、第2図は各種マンガン酸
化物の除マンガン能の比較を示す。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
1 図 手続補正書(方式) 昭和67年10月 3日 特許庁長官殿 ■事件の表示 昭和67年特許願第109415号 2発明の名称 水処理用r材 3補正をする者 事件との関係      特  許  出  願  人
任 所  大阪府門真市太字門真1006番地名 称 
(582)松下電器産業株式会社代表者    山  
下  俊  彦 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 なお、隘17に用いたガラスフリット粉末の組成を第7
表に示す。このフリットをバインダーとしたr材は、マ
ンガン酸化物、バインダー及び骨材の混合物100重量
部に対して、成形助剤のカルボキシメチルセルロースを
0.6重量部添加して成形物とし、500℃で10分間
焼成して製造した。 第7表
FIG. 1 is a schematic vertical cross-sectional view of a column test device for measuring the manganese removal ability of water treatment swamp materials, and FIG. 2 shows a comparison of the manganese removal ability of various manganese oxides. Name of agent: Patent attorney Toshio Nakao and one other name
1. Written amendment to figure procedure (method) October 3, 1988 Mr. Commissioner of the Japan Patent Office ■Case description 1988 Patent Application No. 109415 2. Name of the invention r-material for water treatment 3. Person making the amendment Relationship to the case Special Permission Application Appointment Address 1006 Bold Kadoma, Kadoma City, Osaka Prefecture Name
(582) Matsushita Electric Industrial Co., Ltd. Representative Yama
Toshihiko Shimo 4 Agent 571 Address Matsushita Electric Industrial Co., Ltd. 1006 Kadoma, Kadoma City, Osaka Prefecture The composition of the glass frit powder used in No. 17 was
Shown in the table. R material using this frit as a binder is made by adding 0.6 parts by weight of carboxymethyl cellulose as a molding aid to 100 parts by weight of a mixture of manganese oxide, binder and aggregate, and forming a molded product at 500°C. It was produced by baking for a minute. Table 7

Claims (1)

【特許請求の範囲】 (1)マンガン酸化物と無機質バインダーと軽量骨骨材
が5〜50重量−である水処理用炉材。 (2ン  マンガン酸化物が、二酸化マンガン及び三二
酸化マンガンよりなる群から選ばれたものである特許請
求の範囲第1項記載の水処理用p材。 (3)無機質バインダーが、水硬性セメント、気硬性セ
メント、ケイ酸アリカリ及びガラスフリットよりなる群
から選ばれた少なくとも1種である特許請求の範囲第1
項記載の水処理用P利。 (4)軽惜骨利の見掛は比重が2・0以下である特許請
求の範囲第1項記載の水処理用F材。 (6)見掛は比重が1・2’/QC以下の粒状物からな
る特許請求の範囲第1項記載の水処理用F材。
[Scope of Claims] (1) A water treatment furnace material comprising manganese oxide, an inorganic binder, and lightweight aggregate in an amount of 5 to 50% by weight. (2) The P material for water treatment according to claim 1, wherein the manganese oxide is selected from the group consisting of manganese dioxide and manganese sesquioxide. (3) The inorganic binder is hydraulic cement, Claim 1, which is at least one member selected from the group consisting of air-hard cement, alkali silicate, and glass frit.
Use of P for water treatment as described in section. (4) The F material for water treatment according to claim 1, wherein the apparent specific gravity of the light-sparing bone material is 2.0 or less. (6) The F material for water treatment according to claim 1, which consists of granules having an apparent specific gravity of 1.2'/QC or less.
JP10941582A 1982-06-24 1982-06-24 Filtering agent for water disposal Pending JPS59374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10941582A JPS59374A (en) 1982-06-24 1982-06-24 Filtering agent for water disposal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10941582A JPS59374A (en) 1982-06-24 1982-06-24 Filtering agent for water disposal

Publications (1)

Publication Number Publication Date
JPS59374A true JPS59374A (en) 1984-01-05

Family

ID=14509663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10941582A Pending JPS59374A (en) 1982-06-24 1982-06-24 Filtering agent for water disposal

Country Status (1)

Country Link
JP (1) JPS59374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276846A (en) * 2000-04-04 2001-10-09 Toyo Seikan Kaisha Ltd Purifying agent for service water
JP2017047376A (en) * 2015-09-02 2017-03-09 株式会社川本製作所 Test device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276846A (en) * 2000-04-04 2001-10-09 Toyo Seikan Kaisha Ltd Purifying agent for service water
JP4586232B2 (en) * 2000-04-04 2010-11-24 東洋製罐株式会社 Water purification agent
JP2017047376A (en) * 2015-09-02 2017-03-09 株式会社川本製作所 Test device

Similar Documents

Publication Publication Date Title
Tan et al. Current development of geopolymer as alternative adsorbent for heavy metal removal
KR101182271B1 (en) Porous manganese oxide absorbent for Lithium having spinel type structure and a method of manufacturing the same
US2145901A (en) Purification of water
CN105195148B (en) A kind of preparation method of load type laminated bimetal composite oxide catalyst
TWI457173B (en) Process for granulating adsorbent and granules prepared by the same
CN112827468B (en) Preparation method and application of fly ash-based defluorination adsorbent
CN110227408A (en) A kind of preparation of carbon dioxide absorber and its purification method and device
CN108726623B (en) Sewage treatment method based on recyclable modified porous ceramic material
CN109759079A (en) Application of the modified manganese sand in catalyzing hydrogen peroxide degradation of organic waste water
JPS59374A (en) Filtering agent for water disposal
CN108383540B (en) Modified fly ash ceramic and preparation method and application thereof
TW201609246A (en) Manufacturing method of inorganic adsorbent for granulating radionuclide
KR100845521B1 (en) Media of constructed wetland for the treatment of municipal wastewater and preparation methods thereof
CN106145083A (en) The preparation method of a kind of spherical hollow carbon shell, spherical hollow carbon shell and application thereof
JPWO2006011191A1 (en) Anion adsorbent, method for producing the same, and water treatment method
JP4164681B2 (en) How to recover phosphorus
JP2007117923A (en) Anion adsorbing material, its manufacturing method, method for removing anion, method for regenerating anion adsorbing material and method for recovering element
JPS58183928A (en) Removal of ozone in ozone-containing gas
JP2002361266A (en) Chemicals for water treatment and method for using the same
JP2016078017A (en) Gas adsorbent, gas adsorption molded body and method for producing the gas adsorbent
JPH1072213A (en) Production of granular zeolite and nitrogen-containing soil conditioner from incineration ash of sewage sludge
JP3395039B2 (en) Silver ion or sodium ion adsorbent and adsorption treatment method
WO2021195839A1 (en) Magnetic adsorbent based on waste biomass, preparation method therefor, and use thereof
JP3850843B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide
JPS6084124A (en) Filter material for purifying water