JPH1072213A - Production of granular zeolite and nitrogen-containing soil conditioner from incineration ash of sewage sludge - Google Patents

Production of granular zeolite and nitrogen-containing soil conditioner from incineration ash of sewage sludge

Info

Publication number
JPH1072213A
JPH1072213A JP9123919A JP12391997A JPH1072213A JP H1072213 A JPH1072213 A JP H1072213A JP 9123919 A JP9123919 A JP 9123919A JP 12391997 A JP12391997 A JP 12391997A JP H1072213 A JPH1072213 A JP H1072213A
Authority
JP
Japan
Prior art keywords
sewage sludge
zeolite
incineration ash
water
sludge incineration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9123919A
Other languages
Japanese (ja)
Inventor
Tetsuo Sawazaki
哲夫 沢崎
Takuji Iwai
卓司 岩井
Masami Nakao
正巳 中尾
Tetsuo Takahashi
哲郎 高橋
Tomomichi Ekusa
知通 江草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9123919A priority Critical patent/JPH1072213A/en
Publication of JPH1072213A publication Critical patent/JPH1072213A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Water Treatment By Sorption (AREA)
  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Fertilizers (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain granular zeolite used for treating water, etc., by treating zeolite synthesized from ash generated by incinerating sewage sludge by a specified method. SOLUTION: Water is added, e.g. by 25-35% to zeolite synthesized from ash incineration ash of sewage sludge, they are kneaded and molded to a certain diameter, e.g. 3-5mmϕ by extrusion with an extrusion granulator and the resultant granules are dried and fired to produce the objective granular zeolite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥焼却灰か
らの粒状ゼオライト及び窒素含有土壌改良材の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing granular zeolite and nitrogen-containing soil conditioner from sewage sludge incineration ash.

【0002】[0002]

【従来の技術】従来より、下水汚泥焼却灰はそのほとん
どが埋立て処理され、その有効利用はほとんどされてい
なかった。下水汚泥焼却灰の組成はSiO2 を主成分と
し、その他にAl2 3 等を含有している。
2. Description of the Related Art Conventionally, most of sewage sludge incineration ash has been landfilled, and its effective use has hardly been achieved. The composition of the sewage sludge incineration ash contains SiO 2 as a main component, and also contains Al 2 O 3 and the like.

【0003】このような組成をもつ下水汚泥焼却灰の有
効利用のため、本発明者らは、下水汚泥焼却灰に対し苛
性ソーダ溶液との水熱処理を行うことによってカチオン
交換容量を有するゼオライト系鉱物を製造する方法を提
供した(特願平4−339942号、特願平5−297
706号)。
[0003] In order to effectively use sewage sludge incineration ash having such a composition, the present inventors conducted hydrothermal treatment of sewage sludge incineration ash with a caustic soda solution to obtain a zeolite-based mineral having a cation exchange capacity. Production methods were provided (Japanese Patent Application Nos. 4-339942 and 5-297).
No. 706).

【0004】すなわち、そのゼオライト化方法では、下
水汚泥焼却灰と2N〜3N濃度の苛性ソーダ溶液を下水
汚泥焼却灰に対する苛性ソーダ溶液の量比を1〜3:1
2〜7、反応温度を90℃〜150℃、反応時間4h以
上の水熱反応を行った後、ろ過、洗浄してゼオライト化
した灰を合成する。
In other words, in the zeolite conversion method, the sewage sludge incineration ash and the 2N to 3N concentration of caustic soda solution are mixed at a volume ratio of the caustic soda solution to the sewage sludge incineration ash of 1 to 3: 1.
After performing a hydrothermal reaction at 2 to 7 at a reaction temperature of 90 ° C. to 150 ° C. for a reaction time of 4 hours or more, filtration and washing are performed to synthesize zeolite ash.

【0005】[0005]

【発明が解決しようとする課題】本発明は、下水汚泥焼
却灰から得たゼオライトから水処理用等に使用される粒
状ゼオライトの製造方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing granular zeolite used for water treatment or the like from zeolite obtained from sewage sludge incineration ash.

【0006】また、本発明は、上記本発明によって得ら
れた粒状ゼオライトの有効利用方法を提供することもそ
の課題の一つとしている。
Another object of the present invention is to provide a method for effectively using the granular zeolite obtained by the present invention.

【0007】[0007]

【課題を解決するための手段】本発明の下水汚泥焼却灰
からの粒状ゼオライトの製造方法は、下水汚泥焼却灰か
ら前記したように合成したゼオライトに水を加えて混練
した後押出造粒機で押出して一定粒径に成形した後に乾
燥し、さらに650℃〜750℃の温度で焼成すること
を特徴とする。
The method of the present invention for producing granular zeolite from sewage sludge incineration ash is characterized by adding water to the zeolite synthesized as described above from sewage sludge incineration ash, kneading the mixture, and then using an extrusion granulator. It is characterized in that it is extruded, formed into a certain particle size, dried, and further fired at a temperature of 650 ° C to 750 ° C.

【0008】下水汚泥焼却灰の組成は、SiO2 を主成
分とし、その他にAl2 3 、Na 2 O、Fe2 3
CaO等を含有しているが、下水汚泥のゼオライト化さ
れた灰は粉状であるため、水処理用等の吸着材としての
利用が困難であり、その粒状化が求められている。
The composition of sewage sludge incineration ash is SiOTwoThe main
Minutes, and AlTwoOThree, Na TwoO, FeTwoOThree,
Although it contains CaO etc., sewage sludge is converted to zeolite.
As the ash is in powder form, it is used as an adsorbent for water treatment, etc.
It is difficult to use and its granulation is required.

【0009】下水汚泥焼却灰から合成したゼオライトの
粒状化にあたっては、水中で粒状の形が崩壊しないで、
かつ、粒状ゼオライトがカチオン交換容量を保持するこ
とが求められている。
In the granulation of zeolite synthesized from sewage sludge incineration ash, the granular shape does not collapse in water.
In addition, it is required that the granular zeolite has a cation exchange capacity.

【0010】本発明者は、鋭意検討の結果、本発明を考
えるに至った。すなわち、下水汚泥焼却灰から合成した
粉状のゼオライトに対して、例えば25〜35wt%の
水を加えて混練した後、押出造粒機(例えば圧力5〜2
0kg/cm2 )で押し出して、例えば3mmφ〜5m
mφの一定の粒径に成形した後乾燥し、次に、650℃
〜750℃でこれを焼成するようにした。
As a result of intensive studies, the inventor has come to consider the present invention. That is, for example, 25-35 wt% of water is added to and kneaded with powdery zeolite synthesized from sewage sludge incineration ash, and then extruded with a granulator (for example, a pressure of 5 to 2%).
0kg / cm 2 ), for example, 3mmφ ~ 5m
After forming into a certain particle size of mφ and drying, then 650 ° C
This was to be fired at 7750 ° C.

【0011】前記造粒に当っては、バインダー(ポリビ
ニルアルコール等)の添加を試みたが、水中で形状を保
持し、かつ、カチオン交換能を0.5eq/kg以上有
するものを作ることが困難であった。
In the above granulation, an attempt was made to add a binder (polyvinyl alcohol, etc.), but it was difficult to produce a material having a shape in water and having a cation exchange capacity of 0.5 eq / kg or more. Met.

【0012】前記のように、下水汚泥焼却灰から合成し
たゼオライトに水を加えて混練して押出機で押出して一
定粒径に造粒成形したものを焼成する温度条件として
は、650℃より低い焼成温度ではカチオン交換能は有
するが水中での崩壊現象が発生する。
As described above, the temperature condition for firing the zeolite synthesized from sewage sludge incineration ash, adding water, kneading, extruding with an extruder and granulating to a constant particle size, is lower than 650 ° C. At the calcination temperature, it has cation exchange ability, but collapses in water.

【0013】一方、750℃以上の焼成温度ではカチオ
ン交換能が0.1eq/kgに低下してゼオライトの機
能が消失する。本発明における650℃〜750℃の焼
成温度では、カチオン交換能が0.5eq/kg以上あ
って、かつ、水中での崩壊現象がなくて形状を維持する
ことができる。
On the other hand, at a calcination temperature of 750 ° C. or higher, the cation exchange capacity is reduced to 0.1 eq / kg, and the function of zeolite is lost. At the firing temperature of 650 ° C. to 750 ° C. in the present invention, the cation exchange capacity is 0.5 eq / kg or more, and the shape can be maintained without collapse phenomenon in water.

【0014】以上説明したように、本発明によれば、水
中で崩壊することがなく、しかも、カチオン交換能を有
する粒状ゼオライトを製造することができる。本発明の
評価試験を以下に説明する。
As described above, according to the present invention, a granular zeolite which does not collapse in water and has a cation exchange ability can be produced. The evaluation test of the present invention will be described below.

【0015】(1)水への浸漬試験 試験方法は、焼成造粒物を水に浸漬した後、手の平でも
み洗いを行って造粒物の崩壊状態で評価した。試験結果
を示す表1に示されるように、650℃以上の焼成物で
は、粒形の崩壊がなかった。
(1) Immersion test in water The test method was such that the fired granules were immersed in water, washed with a palm, and evaluated in the collapsed state of the granules. As shown in Table 1 showing the test results, in the fired product at 650 ° C. or higher, there was no collapse of the particle shape.

【0016】[0016]

【表1】 [Table 1]

【0017】なお表1中の焼成は、表1中に記載された
焼成温度より100℃低い温度で30分間焼成した後目
標とする焼成温度で10分間焼成を行なった。
The firing in Table 1 was performed at a temperature 100 ° C. lower than the firing temperature described in Table 1 for 30 minutes, and then at the target firing temperature for 10 minutes.

【0018】(2)焼成温度とカチオン交換容量 カチオン交換容量は、Sholenberg法により測
定された。図3に示すように、焼成温度が750℃まで
の本発明に係る焼成物では、カチオン交換容量は約1.
0eq/kgあるが、800℃以上の焼成物ではカチオ
ン交換容量は0.1eq/kg以下となった。
(2) Firing temperature and cation exchange capacity The cation exchange capacity was measured by the Sholenberg method. As shown in FIG. 3, in the calcined product according to the present invention in which the calcining temperature is up to 750 ° C., the cation exchange capacity is about 1.1.
Although it was 0 eq / kg, the cation exchange capacity of the calcined product at 800 ° C. or higher was 0.1 eq / kg or less.

【0019】次に、本発明は、以上のようにして下水汚
泥焼却灰から得た粒状ゼオライトの有効利用方法を提供
するという本発明の課題を解決するため次の方法を提供
する。
Next, the present invention provides the following method for solving the problem of the present invention, which provides a method for effectively utilizing granular zeolite obtained from sewage sludge incineration ash as described above.

【0020】すなわち、本発明は、MF膜等のろ過材
(砂ろ過、UF膜、RO膜でもよい)で懸濁物除去処理
を行った下水2次処理水を、前記したように本発明によ
って下水汚泥焼却灰から得られた粒状ゼオライトを充填
した焼却灰吸着塔に通水する等によって、下水2次処理
水中のアンモニア性窒素をその粒状ゼオライトに吸着さ
せ、アンモニア性窒素を吸着した該粒状ゼオライトを土
壌改良材に使用することを特徴とする方法を提供する。
That is, according to the present invention, the secondary sewage treated water subjected to the suspension removal treatment with a filter material such as an MF membrane (a sand filtration, a UF membrane, or an RO membrane) may be used according to the present invention as described above. By passing water through an incineration ash adsorption tower filled with granular zeolite obtained from sewage sludge incineration ash, the ammoniacal nitrogen in the sewage secondary treatment water is adsorbed on the granular zeolite, and the ammoniacal nitrogen adsorbed on the granular zeolite Is used as a soil conditioner.

【0021】本発明による下水汚泥焼却灰から得た粒状
ゼオライトの上記有効利用方法によれば、該粒状ゼオラ
イトを塔に充填する等して、そこに予め懸濁粒子(S
S)除去を行ったアンモニア含有の下水2次処理水を通
水して粒状ゼオライトにアンモニア性窒素を吸着させて
窒素含有土壌改良材を製造することができる。
According to the above-mentioned method for effectively utilizing the granular zeolite obtained from the sewage sludge incineration ash according to the present invention, the granular zeolite is filled in a tower or the like, and the suspended particles (S
S) The removed ammonia-containing sewage secondary treatment water is passed through to adsorb ammonia nitrogen to the granular zeolite to produce a nitrogen-containing soil conditioner.

【0022】こうして、本発明によれば下水汚泥焼却灰
から製造した粒状ゼオライトに、下水2次処理水を通水
して肥料成分であるアンモニア性窒素を吸着させること
により、下水の浄化を行うと共にそのゼオライトを肥料
成分を含んだ土壌改良材として活用することができる。
As described above, according to the present invention, the granular zeolites produced from sewage sludge incineration ash are passed through the secondary sewage water to adsorb ammonia nitrogen as a fertilizer component, thereby purifying sewage. The zeolite can be used as a soil conditioner containing a fertilizer component.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の第1形態)本発明の実施の第1形態を、図1及
び図2によって説明する。図2に示すように、下水汚泥
焼却灰に苛性ソーダ溶液を添加して、95℃〜210℃
の温度で4〜18時間水熱反応を発生させ、その上でろ
過、洗浄を行った後に100℃の温度で乾燥して粒状の
ゼオライトを合成する。
(First Embodiment) A first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 2, a caustic soda solution is added to sewage sludge incineration ash,
A hydrothermal reaction is generated at a temperature of 4 to 18 hours, followed by filtration and washing, followed by drying at a temperature of 100 ° C. to synthesize granular zeolite.

【0024】この下水汚泥灰から合成したゼオライトに
対して、図1に示すように、水を30wt/%加えてニ
ーダ(バッチ湿式捏和機)で混練した後押出式造粒機で
3mmφ×5mmLに成形する。次に、これを乾燥して
水分を飛ばした後、電気炉で、650℃〜750℃の温
度で10分間焼成を行って粒状ゼオライトを製造する。
なお、この場合の造粒条件は、表2に示す通りである。
As shown in FIG. 1, 30 wt /% water is added to the zeolite synthesized from the sewage sludge ash, the mixture is kneaded in a kneader (batch wet kneader), and then 3 mmφ × 5 mmL in an extrusion granulator. Mold into Next, this is dried to remove moisture, and then calcined in an electric furnace at a temperature of 650 ° C. to 750 ° C. for 10 minutes to produce granular zeolite.
The granulation conditions in this case are as shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】前記「課題を解決するための手段」の欄で
詳述したように、本実施の第1形態によれば、下水汚泥
焼却灰より、水中で形状を保持し、かつ、カチオン交換
能を有する粒状のゼオライトを製造することができる。
As described in detail in the section of "Means for Solving the Problems", according to the first embodiment, sewage sludge incineration ash retains its shape in water and has a cation exchange capacity. Can be produced.

【0027】(実施の第2形態)次に、本発明により下
水汚泥焼却灰から得られた粒状のゼオライトを用いて、
下水2次処理水の浄化を行うと共に窒素含有土壌改良材
を製造する方法の実施形態について説明する。
(Second Embodiment) Next, using granular zeolite obtained from sewage sludge incineration ash according to the present invention,
An embodiment of a method for purifying sewage secondary treatment water and producing a nitrogen-containing soil improving material will be described.

【0028】この実施の第2形態で用いる、下水汚泥焼
却灰から作った粒状のゼオライトの物性、充填塔の仕様
とゼオライト試験のフローシートをそれぞれ表3と図4
に示す。
Table 3 and FIG. 4 show the physical properties of the granular zeolite made from sewage sludge incineration ash, the specification of the packed tower, and the flow sheet of the zeolite test used in the second embodiment, respectively.
Shown in

【0029】[0029]

【表3】 [Table 3]

【0030】図4において、1は下水からMF膜で懸濁
粒子(SS)を除去するためのMF処理槽、2はヘッダ
ー管、3は流量計を示している。4は前記した下水汚泥
焼却灰から作った粒状ゼオライトを充填したゼオライト
充填塔である。
In FIG. 4, reference numeral 1 denotes an MF treatment tank for removing suspended particles (SS) from sewage using an MF membrane, 2 denotes a header tube, and 3 denotes a flow meter. Reference numeral 4 denotes a zeolite packed tower filled with granular zeolite made from the above-described sewage sludge incineration ash.

【0031】図4のフローにおいて、MF処理槽1のM
F膜でSS除去した下水2次処理水をゼオライト充填塔
4に通水した試験結果を表4、表5及び図5に示す。
In the flow shown in FIG.
Table 4 and Table 5 and FIG. 5 show the test results in which the sewage secondary treated water from which SS was removed by the F membrane was passed through the zeolite packed tower 4.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】これらの試験結果に見られるように、下水
汚泥焼却灰から合成した粒状ゼオライトの充填塔に対す
る下水2次処理水の通水試験結果では、アンモニア吸着
の破過点と飽和点での合成ゼオライトのアンモニア吸着
量は、それぞれ、3.2gNH4 −N/kgと4.9g
NH4 −N/kgで、窒素含有の土壌改良材が製造でき
た。
As can be seen from these test results, the results of the test of the passage of the secondary sewage treated water to the packed tower of granular zeolite synthesized from sewage sludge incineration ash show that the synthesis at the breakthrough point and the saturation point of ammonia adsorption was performed. ammonia adsorption amount of zeolite, respectively, 3.2gNH 4 -N / kg and 4.9g
At NH 4 -N / kg, a soil improver containing nitrogen could be produced.

【0035】また、通水時の破過点では、ゼオライト充
填塔出口の下水2次処理水のアンモニア濃度は1mg/
リットル以下となり、富栄養化の原因物質とされるアン
モニア性窒素濃度をほとんど除去することができた。
At the breakthrough point during the passage of water, the ammonia concentration of the sewage secondary treatment water at the outlet of the zeolite packed tower was 1 mg /
Liters or less, almost eliminating the concentration of ammonia nitrogen, which is the cause of eutrophication.

【0036】アンモニア性窒素を含有したゼオライト
は、肥料成分含有の土壌改良材として活用することがで
きる。
The zeolite containing ammonia nitrogen can be used as a soil conditioner containing a fertilizer component.

【0037】[0037]

【発明の効果】本発明により、従来有効利用が殆んどさ
れていなかった下水汚泥焼却炉灰から商品価値のあるカ
チオン交換容量が0.5eq/kg以上で、かつ、水中
で崩壊しない粒状ゼオライトを製造することができるよ
うになった。造粒された下水汚泥焼却灰からの粒状ゼオ
ライトは水中でその形状を保持すると共にカチオン交換
容量を有しているので、充填塔に充填してアンモニウム
イオン除去する水処理材等として有効に利用することが
できる。
According to the present invention, a granular zeolite having a commercial value of cation exchange capacity of 0.5 eq / kg or more and not disintegrating in water is obtained from sewage sludge incinerator ash, which has hardly been used effectively in the past. Can now be manufactured. Granular zeolite from granulated sewage sludge incineration ash retains its shape in water and has a cation exchange capacity, so it can be effectively used as a water treatment material that fills a packed tower and removes ammonium ions. be able to.

【0038】また、本発明により下水汚泥焼却炉灰から
得られた粒状ゼオライトに下水2次処理水のアンモニア
性窒素を吸着させる方法によれば、下水の浄化を行うと
共に、肥料成分を含んだ土壌改良材を得ることができ
る。
According to the method of the present invention for adsorbing ammonia nitrogen in the secondary sewage sewage on granular zeolite obtained from sewage sludge incinerator ash, the sewage is purified and the soil containing fertilizer components is removed. An improved material can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係るゼオライトの製
造方法のフロー図。
FIG. 1 is a flowchart of a method for producing a zeolite according to a first embodiment of the present invention.

【図2】本発明の実施の第1形態に用いられるゼオライ
ト合成のプロセス図。
FIG. 2 is a process diagram of zeolite synthesis used in the first embodiment of the present invention.

【図3】下水汚泥焼却灰からの合成ゼオライトの焼成温
度とカチオン交換容量の関係を示す図。
FIG. 3 is a diagram showing the relationship between the sintering temperature and the cation exchange capacity of synthetic zeolite from sewage sludge incineration ash.

【図4】本発明の実施の第2形態による下水汚泥焼却炉
灰からの窒素含有土壌改良材の製法のためのゼオライト
試験におけるフローシートを示す図面。
FIG. 4 is a drawing showing a flow sheet in a zeolite test for producing a nitrogen-containing soil conditioner from sewage sludge incinerator ash according to a second embodiment of the present invention.

【図5】下水汚泥焼却炉灰から得た粒状ゼオライトによ
る通水試験結果を示す通水時間とアンモニア濃度の関係
線図。
FIG. 5 is a graph showing the relationship between water passage time and ammonia concentration, showing the results of a water passage test using granular zeolites obtained from sewage sludge incinerator ash.

【符号の説明】[Explanation of symbols]

1 MF処理槽 2 ヘッダー管 3 流量計 4 ゼオライト充填槽 Reference Signs List 1 MF treatment tank 2 Header tube 3 Flow meter 4 Zeolite filling tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/28 C02F 11/00 M 11/00 2115−4H C05G 3/04 C04B 35/00 ZAB C09K 17/02 H C05G 3/04 B09B 3/00 304G C09K 17/02 C04B 35/00 ZABV // C09K 101:00 (72)発明者 高橋 哲郎 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 (72)発明者 江草 知通 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C02F 1/28 C02F 11/00 M 11/00 2115-4H C05G 3/04 C04B 35/00 ZAB C09K 17/02 H C05G 3/04 B09B 3/00 304G C09K 17/02 C04B 35/00 ZABV // C09K 101: 00 (72) Inventor Tetsuro Takahashi 1-8-1, Koura, Kanazawa-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd. Inside Yokohama Research Laboratory (72) Inventor Chimichi Egusa 12 Nishikicho, Naka-ku, Yokohama-shi Yokohama Heavy Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下水汚泥焼却灰から合成したゼオライト
に水を加えて混練した後、押出造粒機で押出して一定粒
径に成形した後に乾燥し、さらに650℃〜750℃の
温度で焼成することを特徴とする下水汚泥焼却灰からの
粒状ゼオライトの製造方法。
1. Water is added to a zeolite synthesized from sewage sludge incineration ash, kneaded, extruded by an extrusion granulator, formed into a certain particle size, dried, and further calcined at a temperature of 650 ° C. to 750 ° C. A method for producing granular zeolite from sewage sludge incineration ash.
【請求項2】 ろ過材で懸濁物を除去した下水2次処理
水中のアンモニア性窒素を請求項1の方法で得られた粒
状ゼオライトに吸着させ、同粒状ゼオライトを土壌改良
材とすることを特徴とする下水汚泥焼却灰からの窒素含
有土壌改良材の製造方法。
2. A method for adsorbing ammoniacal nitrogen in the sewage secondary treatment water from which suspended matter has been removed with a filter medium to the granular zeolite obtained by the method of claim 1, and using the granular zeolite as a soil improving material. A method for producing a nitrogen-containing soil conditioner from sewage sludge incineration ash.
JP9123919A 1996-05-30 1997-05-14 Production of granular zeolite and nitrogen-containing soil conditioner from incineration ash of sewage sludge Withdrawn JPH1072213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9123919A JPH1072213A (en) 1996-05-30 1997-05-14 Production of granular zeolite and nitrogen-containing soil conditioner from incineration ash of sewage sludge

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-136435 1996-05-30
JP13643596 1996-05-30
JP9123919A JPH1072213A (en) 1996-05-30 1997-05-14 Production of granular zeolite and nitrogen-containing soil conditioner from incineration ash of sewage sludge

Publications (1)

Publication Number Publication Date
JPH1072213A true JPH1072213A (en) 1998-03-17

Family

ID=26460710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9123919A Withdrawn JPH1072213A (en) 1996-05-30 1997-05-14 Production of granular zeolite and nitrogen-containing soil conditioner from incineration ash of sewage sludge

Country Status (1)

Country Link
JP (1) JPH1072213A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027983A (en) * 2004-07-21 2006-02-02 Kanatsu Giken Kogyo Kk Zeolite molding method and clayish kneaded zeolite composition
JP2006193368A (en) * 2005-01-13 2006-07-27 Denki Kagaku Kogyo Kk Nitrogenous fertilizer composition
JP2007022834A (en) * 2005-07-14 2007-02-01 Denki Kagaku Kogyo Kk Nitrogen fertilizer composition
JP2007223868A (en) * 2006-02-27 2007-09-06 Yoshiyuki Suzuki Method for manufacturing ceramic solid article
JP2009011883A (en) * 2007-06-29 2009-01-22 Toyo Univ Apparatus and method for natural penetration clarification of polluted water using sand recycled from incinerator fly ash

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027983A (en) * 2004-07-21 2006-02-02 Kanatsu Giken Kogyo Kk Zeolite molding method and clayish kneaded zeolite composition
JP2006193368A (en) * 2005-01-13 2006-07-27 Denki Kagaku Kogyo Kk Nitrogenous fertilizer composition
JP2007022834A (en) * 2005-07-14 2007-02-01 Denki Kagaku Kogyo Kk Nitrogen fertilizer composition
JP2007223868A (en) * 2006-02-27 2007-09-06 Yoshiyuki Suzuki Method for manufacturing ceramic solid article
JP2009011883A (en) * 2007-06-29 2009-01-22 Toyo Univ Apparatus and method for natural penetration clarification of polluted water using sand recycled from incinerator fly ash

Similar Documents

Publication Publication Date Title
US6132624A (en) Method for treating waste water
CN111632575A (en) Composite adsorbent and preparation method thereof
JP2006521986A (en) Aluminosilicate with zeolite N structure
US4994191A (en) Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing wide-pored molecular sieves of the ETS-10 type
WO2014110014A1 (en) Strontium and cesium specific ion-exchange media
Abdulkareem et al. Treatment of clinoptilolite as an adsorbent for the removal of copper ion from synthetic wastewater solution
Pan et al. The investigation into the adsorption removal of ammonium by natural and modified zeolites: kinetics, isotherms, and thermodynamics
Yadav et al. Effect of surface modification of natural zeolite on ammonium ion removal from water using batch study: An overview
JPH1072213A (en) Production of granular zeolite and nitrogen-containing soil conditioner from incineration ash of sewage sludge
JP7400716B2 (en) Inorganic ion exchanger and its manufacturing method, and method for purifying water containing radioactive strontium
JP3227517B2 (en) Treatment method for phosphorus-containing wastewater
JPH022612B2 (en)
CN111054304B (en) Method for modifying natural zeolite by sodium nitrate combined roasting, product and application thereof
JPS61227840A (en) Preparation of inorganic adsorbent using sludge of water purifying plant as raw material
JPS61192385A (en) Treatment of fluorine-containing waste solution
JPH0217220B2 (en)
JP3240442B2 (en) Granulated dephosphorizing agent and wastewater treatment method
Gorimbo Effect of the Homoionic Form of Clinoptilolite on Ni2 Adsorption Isotherms: A Thermodynamic Study
JPH0221941A (en) Phosphorus adsorbent and production thereof
JP2002059001A (en) Anion adsorbent
JPS63287547A (en) Adsorbent for fluoride ion
RU2180319C1 (en) Method of production of synthetic granulated faujasite
JP3395039B2 (en) Silver ion or sodium ion adsorbent and adsorption treatment method
JP2005162513A (en) Manufacturing method of zeoliting soil from soil derived from municipal waterworks, waste water treatment method and treatment method of used zeoliting soil
JPH0429794A (en) Removal of heavy metal particularly lead from aqueous system containing competitive ions using ets-1o type wide-pored molecular sieve

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803