JPS5937464B2 - Coulometric titration method - Google Patents

Coulometric titration method

Info

Publication number
JPS5937464B2
JPS5937464B2 JP10451876A JP10451876A JPS5937464B2 JP S5937464 B2 JPS5937464 B2 JP S5937464B2 JP 10451876 A JP10451876 A JP 10451876A JP 10451876 A JP10451876 A JP 10451876A JP S5937464 B2 JPS5937464 B2 JP S5937464B2
Authority
JP
Japan
Prior art keywords
electrolytic
counter electrode
ion concentration
titration
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10451876A
Other languages
Japanese (ja)
Other versions
JPS5330391A (en
Inventor
清二 石川
孝信 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP10451876A priority Critical patent/JPS5937464B2/en
Publication of JPS5330391A publication Critical patent/JPS5330391A/en
Publication of JPS5937464B2 publication Critical patent/JPS5937464B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は電量滴定方法に関するものである。[Detailed description of the invention] The present invention relates to a coulometric titration method.

中和滴定や酸化一還元滴定等に用いられている電量滴定
は、周知のように、電気分解によつて滴定試薬を生成さ
せ、これを電解液中の被測定物と5 反応させて滴定を
行う方法であり、滴定終了までに流れた電気量を測定し
、ファラデーの電気分解の法則から滴定に要した試薬量
を算出するものである。従つて、電量滴定における電解
電気量と被測定0物が滴定される量とはファラデーの法
則に基づいた一定の関係でなければならないが、電解効
率の低下によつて両者の関係は必ずしも一定にならない
Coulometric titration, which is used for neutralization titration, oxidation-reduction titration, etc., is a process in which a titration reagent is generated by electrolysis, and this is reacted with the analyte in an electrolytic solution to perform titration. This method measures the amount of electricity that has flowed until the end of the titration, and calculates the amount of reagent required for the titration from Faraday's law of electrolysis. Therefore, the amount of electrolyzed electricity in coulometric titration and the amount of the analyte titrated must have a constant relationship based on Faraday's law, but the relationship between the two may not necessarily be constant due to a decrease in electrolytic efficiency. No.

電解効率の低下は電解槽と対極槽間の隔膜を通してイオ
ンが拡散や電気泳動によつて洩れるこ5 とに起因する
ものであり、これを軽減するため、両槽の間に隔膜で仕
切られた中間槽を設けた滴定セル装置が提案されている
。しかし、該滴定セル装置を用いる場合も滴定の回数又
は量が増すにつれてイオンの洩れも大きくなり、電解効
率が低下0 してくる欠点がある。電解効率の低下は、
イオンの拡散が小さい隔膜を用いかつその厚さを厚くす
れば軽減できるが、この場合は電解の電気抵抗が大きく
て大電流が流せないので、滴定に長時間を要する不都合
がある。このため、従来法では高濃”5 度の試料を精
度よく短時間にしかも繰返して測定することは断念され
ていた。そこで、本発明者等は前記した中間槽を有する
滴定セル装置に於ける電解効率低下の抑制策につき鋭意
検討を重ねた結果、該中間槽のイオン濃度を電解的に所
定濃度に調節する方法が極めて効果的であることを知得
し、この知見に基づき本発明を完成した。
The decrease in electrolytic efficiency is caused by ions leaking through the diaphragm between the electrolytic cell and the counter electrode cell due to diffusion and electrophoresis.5 To reduce this, a diaphragm is used to separate the two cells. A titration cell device equipped with an intermediate tank has been proposed. However, even when using this titration cell device, there is a drawback that as the number or amount of titration increases, the leakage of ions also increases and the electrolytic efficiency decreases. The decrease in electrolytic efficiency is due to
This can be alleviated by using a diaphragm with low ion diffusion and increasing its thickness, but in this case, the electric resistance of the electrolyte is large and a large current cannot be passed, so the titration takes a long time. For this reason, conventional methods have given up on repeatedly measuring highly concentrated samples in a short period of time with high precision.Therefore, the present inventors have developed a titration cell device with an intermediate tank as described above. As a result of intensive studies on measures to suppress the decrease in electrolytic efficiency, we learned that a method of electrolytically adjusting the ion concentration in the intermediate tank to a predetermined concentration is extremely effective, and based on this knowledge, we completed the present invention. did.

以下、本発明を図面と共に詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明方法に用いられる装置の一例の模式的な
構成図である。図中、1は滴定セル装置、2は電解槽、
3は第1対極槽、4は第2対極槽、5及び6は隔膜、9
は第1の電解電極、10は第2の電解電極、11は第3
の電解電極、12は終点検出電極、13はイオン濃度検
出電極、14はイオン濃度調節用電解制御装置、15は
電量滴定用電解制御装置、16は電量滴定電気量を表示
する表示装置である。滴定セル装置1は、カラス又はア
クリル樹脂等で作られた電解槽2、第1対極槽3及び第
2対極槽4の3つの槽より構成され、これら3つの槽は
、多孔性焼結ガラス、セラミツク、あるいは寒天やシリ
カゲルで被覆されたガラスフイルタ一等周知の隔膜5,
6によつて、電解槽2と第1対極槽3、該第1対極槽3
と第2対極槽4とがそれぞれ連通されている。
FIG. 1 is a schematic diagram of an example of an apparatus used in the method of the present invention. In the figure, 1 is a titration cell device, 2 is an electrolytic tank,
3 is a first counter electrode tank, 4 is a second counter electrode tank, 5 and 6 are diaphragms, 9
is the first electrolytic electrode, 10 is the second electrolytic electrode, and 11 is the third electrolytic electrode.
12 is an end point detection electrode, 13 is an ion concentration detection electrode, 14 is an electrolysis control device for adjusting ion concentration, 15 is an electrolysis control device for coulometric titration, and 16 is a display device for displaying the amount of electricity for coulometric titration. The titration cell device 1 is composed of three tanks: an electrolytic tank 2 made of glass or acrylic resin, a first counter electrode tank 3, and a second counter electrode tank 4, and these three tanks are made of porous sintered glass, Well-known diaphragm 5, such as ceramic or glass filter coated with agar or silica gel.
6, the electrolytic cell 2 and the first counter electrode cell 3, the first counter electrode cell 3
and the second counter electrode tank 4 are in communication with each other.

そして、電解槽2内には第1の電解電極9及び終点検出
電極12が配設される。第1の電解電極9は滴定試薬を
生成させるための電極であり、周知の電極が用いられる
が、白金線の網からなるものが推奨される。終点検出電
極12は滴定の目的に応じて適宜選択されるが、例えば
中和滴定の場合はPH測定電極、酸化還元滴定の場合は
白金電極などが用いられる。また、電解槽内2には攪拌
用の回転子7が設置される。第1対極槽3内には第2の
電解電極10及びイオン濃度検出電極13が配設される
。第2の電解電極10は電量滴定の対極、または第1対
極槽3内のイオン濃度調節用のイオンを生成させるため
の電極での役割を果たすので、第1の電解電極9と同様
のものが好ましい。イオン濃度検出電極13は第1対極
槽3内の溶液のイオン濃度を検出するためのものである
から終点検出電極12と同様なPH測定電極、白金電極
等が用いられる。また、第1対極槽3内には撹拌用の回
転子8が設置される。第2対極槽4内には、前記第1の
電解電極9及び第2の電解電極10の対極となる第3の
電解電極11が設置される。この第3の電解電極11も
前記第1の電解電極9と同様のものが好ましい。イオン
濃度調節用電解制御装置14は、イオン濃度検出電極1
3から得られる第1対極槽3内の溶液のイオン濃度に対
応した電気信号を予じめ設定された電気信号値(通常は
電量滴定終了時に終点検出電極12から得られる電気信
号値が採用される。
A first electrolytic electrode 9 and an end point detection electrode 12 are arranged inside the electrolytic cell 2 . The first electrolytic electrode 9 is an electrode for producing a titration reagent, and a well-known electrode can be used, but one made of a platinum wire mesh is recommended. The end point detection electrode 12 is appropriately selected depending on the purpose of titration, and for example, a PH measuring electrode is used for neutralization titration, and a platinum electrode is used for redox titration. Moreover, a rotor 7 for stirring is installed in the electrolytic cell 2. A second electrolytic electrode 10 and an ion concentration detection electrode 13 are arranged within the first counter electrode tank 3 . The second electrolytic electrode 10 plays the role of a counter electrode for coulometric titration or an electrode for generating ions for adjusting the ion concentration in the first counter electrode tank 3, so the second electrolytic electrode 10 is similar to the first electrolytic electrode 9. preferable. Since the ion concentration detection electrode 13 is for detecting the ion concentration of the solution in the first counter electrode tank 3, a PH measurement electrode, platinum electrode, etc. similar to the end point detection electrode 12 is used. Moreover, a rotor 8 for stirring is installed in the first counter electrode tank 3 . A third electrolytic electrode 11 serving as a counter electrode to the first electrolytic electrode 9 and the second electrolytic electrode 10 is installed in the second counter electrode tank 4 . This third electrolytic electrode 11 is also preferably similar to the first electrolytic electrode 9. The electrolysis control device 14 for adjusting ion concentration includes the ion concentration detection electrode 1
The electric signal corresponding to the ion concentration of the solution in the first counter electrode tank 3 obtained from 3 is set to a preset electric signal value (usually the electric signal value obtained from the end point detection electrode 12 at the end of coulometric titration is adopted). Ru.

)と対比するか、あるいは終点検出電極12から得られ
る電解槽2内の溶液のイオン濃度に対応する電気信号と
前記設定された電気信号値と対比し、その偏差に見合つ
た電解電流を第2の電解電極10及び第3の電解電極1
1に印加するためのものであり、第2図に示すように、
検出増幅部19,20、イオン濃度偏差検出部21、イ
オン濃度設定器23、電解電流制御部24より構成され
る。検出増幅部19及び20は、イオン濃度検出電極1
3及び終点検出電極12に於ける溶液のイオン電位ある
いは分極電位等を検出し、これをその電位と絶縁された
直流電圧信号に変換増幅するものであり、高入力抵抗の
入出力絶縁型増幅器、交流定電流差電圧検出方式による
分極電位増幅器(特開昭49−83495参照)等目的
に応じ種種の増幅器が用いられる。イオン濃度偏差検出
部21及びイオン濃度設定器23としては通常の減算回
路及び電位設定器がそれぞれ用いられる。また、電解電
流制御部24としては、従来電量滴定の電解電流制御部
として用いられている定電流出力オンオフ制御方式、連
続比例出力制御方式等が用いられる。電量滴定用電解制
御装置15及び電量滴定電気験表示装置16は、例えば
特開昭49−83495に示されるように、終点検出電
極12から得られる電気信号をその終点値からの偏差に
見合つて比例する電流出力に変換して第1の電解電極9
と第3の電解電極11との間または第1の電解電極9と
第2の電解電極10との間に供給し、その供給された電
流値を積算し、該電気量に見合つた分析値として表示さ
れるよう構成された周知のものが用いられる。
), or the electric signal corresponding to the ion concentration of the solution in the electrolytic cell 2 obtained from the end point detection electrode 12 is compared with the set electric signal value, and the electrolytic current commensurate with the deviation is set as the second electric signal. electrolytic electrode 10 and third electrolytic electrode 1
1, and as shown in Figure 2,
It is composed of detection amplification sections 19 and 20, an ion concentration deviation detection section 21, an ion concentration setting device 23, and an electrolytic current control section 24. The detection amplification units 19 and 20 are connected to the ion concentration detection electrode 1
3 and the end point detection electrode 12, the ionic potential or polarization potential of the solution is detected, and this is converted and amplified into a DC voltage signal insulated from that potential. Various types of amplifiers are used depending on the purpose, such as a polarization potential amplifier using an AC constant current differential voltage detection method (see Japanese Patent Laid-Open No. 49-83495). A normal subtraction circuit and a potential setting device are used as the ion concentration deviation detection section 21 and the ion concentration setting device 23, respectively. Further, as the electrolytic current control section 24, a constant current output on/off control method, a continuous proportional output control method, etc., which are conventionally used as an electrolytic current control section for coulometric titration, are used. The coulometric titration electrolytic control device 15 and the coulometric titration electric test display device 16, as shown in Japanese Patent Laid-Open No. 49-83495, calculate the electric signal obtained from the end point detection electrode 12 in proportion to the deviation from the end point value. The first electrolytic electrode 9
and the third electrolytic electrode 11 or between the first electrolytic electrode 9 and the second electrolytic electrode 10, the supplied current value is integrated, and an analysis value corresponding to the amount of electricity is obtained. A well-known device configured to be displayed is used.

次にこのように構成された装置を用いて酸の中和滴定を
行う場合について説明する。
Next, the case where acid neutralization titration is performed using the apparatus configured as described above will be described.

滴定方法としては、電量滴定用の電解電流を電解電極9
と11との間に印加する場合と、電解電極9と10との
間に印加する場合とのそれぞれについて、第1対極槽3
内の溶液のイオン濃度を予じめ設定された濃度に調節す
る場合と、電解槽2内の溶液のイオン濃度と同じ濃度に
調節保持する場合の4通りの方法があるが、最初に電解
電流を電解電極9と11に印加し、第1対極槽3内の溶
液のイオン濃度を予じめ設定された濃度に調節保持する
場合について説明する。先づ、3つの槽2,3,4に1
%程度の硫酸ソーダ、塩化カリ等の電解液を入れる。
As a titration method, the electrolytic current for coulometric titration is applied to the electrolytic electrode 9.
and 11 and between the electrolytic electrodes 9 and 10, the first counter electrode tank 3
There are four methods: adjusting the ion concentration of the solution in the electrolytic cell 2 to a preset concentration, and adjusting and maintaining it at the same concentration as the ion concentration of the solution in the electrolytic cell 2. will be applied to the electrolytic electrodes 9 and 11 to adjust and maintain the ion concentration of the solution in the first counter electrode tank 3 at a preset concentration. First, 1 for the three tanks 2, 3, and 4.
% of sodium sulfate, potassium chloride, or other electrolyte.

次に電解槽2に試料を入れ、スイツチ17を接点b側に
閉じ、スイツチ22を接点d側に閉じた後スイツチ18
を閉にする。すると電量滴定用電解制御装置15から電
解電流が電解電極9と11に印加され電量滴定が開始さ
れる。この電解電量は、終点検出電極12から得られる
水素イン濃度に対応した電気信号が予じめ設定された終
点値に達するまで、任意に設定された電流値で供給され
る。そして、その滴定に使用された電気量はクーロン数
あるいはグラム当量数に換算されて滴定結果として電箪
滴定電気量表示装置16に表示される。一方、滴定の開
始後、第1対極槽3の溶液の水素イオン濃度が上昇を始
めると、イオン濃度調節用電解制御装置14において、
検出増幅部19とイオン濃度設定器23とからの信号が
イオン濃度偏差検出部21で対比され、その偏差に見合
つた電解電流が電解電流制御部24から電解電極10,
11に印加され、第1対極槽3内へ洩込んできた水素イ
オンが電解的に中和されるので、同槽3内の溶液の水素
イオン濃度は所定濃度に保持される。
Next, put the sample into the electrolytic bath 2, close the switch 17 to the contact b side, close the switch 22 to the contact d side, and then switch 18.
close. Then, an electrolytic current is applied from the coulometric titration electrolysis control device 15 to the electrolytic electrodes 9 and 11, and coulometric titration is started. This amount of electrolytic electricity is supplied at an arbitrarily set current value until the electrical signal corresponding to the hydrogen ion concentration obtained from the end point detection electrode 12 reaches a preset end point value. Then, the amount of electricity used for the titration is converted into a number of coulombs or a number of gram equivalents and displayed on the titration amount display device 16 as a titration result. On the other hand, after the start of titration, when the hydrogen ion concentration of the solution in the first counter electrode tank 3 starts to rise, in the electrolytic control device 14 for adjusting ion concentration,
The signals from the detection amplification section 19 and the ion concentration setting device 23 are compared in the ion concentration deviation detection section 21, and an electrolysis current corresponding to the deviation is sent from the electrolysis current control section 24 to the electrolysis electrode 10,
11 and leaked into the first counter electrode tank 3 are electrolytically neutralized, so that the hydrogen ion concentration of the solution in the first counter electrode tank 3 is maintained at a predetermined concentration.

第1対極槽3内の溶液の水素イオン濃度を電解槽2内の
溶液の水素イオン濃度と同一濃度に調節する場合は、ス
イツチ22を接点c側に閉じればよい。この場合、検出
増幅器19から得られる信号と対比される信号は、検出
部20からイオン濃度偏差検出部21へ導入され、以下
前記と同様にして両信号の偏差が常に零となるように制
御される。従つて、第1対極槽3内の溶液の水素イオン
濃度は、電量滴定の開始時に最高値を示すが、滴定の進
行に従つて水素イオンが逐次電解的に中和されるので、
電解槽2内の溶液の水素イオン濃度に保持される。また
、電量滴定用の電解電流を電解電極9及び10に印加す
る場合は、スイツチ17を接点a側に閉じた状態で前記
と同様の操作をすればよい。
When adjusting the hydrogen ion concentration of the solution in the first counter electrode tank 3 to be the same as the hydrogen ion concentration of the solution in the electrolytic tank 2, the switch 22 may be closed to the contact c side. In this case, a signal to be compared with the signal obtained from the detection amplifier 19 is introduced from the detection section 20 to the ion concentration deviation detection section 21, and is thereafter controlled in the same manner as described above so that the deviation between both signals is always zero. Ru. Therefore, the hydrogen ion concentration of the solution in the first counter electrode tank 3 reaches its maximum value at the start of the coulometric titration, but as the titration progresses, the hydrogen ions are successively electrolytically neutralized.
The hydrogen ion concentration of the solution in the electrolytic cell 2 is maintained. Further, when applying electrolytic current for coulometric titration to the electrolytic electrodes 9 and 10, the same operation as described above may be performed with the switch 17 closed to the contact a side.

以上、酸の中和滴定の場合について説明したが、アルカ
リの中和滴定の場合は電解電極に印加する電解電流の極
性を逆にすればよい。また、イオン濃度の検出は、電気
的に行うのが好ましいが、色の変化で検出することもで
きる。
The case of acid neutralization titration has been described above, but in the case of alkali neutralization titration, the polarity of the electrolytic current applied to the electrolytic electrode may be reversed. Further, although it is preferable to detect the ion concentration electrically, it can also be detected by a change in color.

この場合は、第1電極槽3内に、設定された水素イオン
濃度で変色する指示薬を加えておき、色の変化を光学的
にあるいは肉眼で検出し、電解電極10と11に電解電
流を供給すればよい。以上詳述したように、本発明は第
1対極槽内の溶液のイオン濃度を電解的に所定濃度に調
節保持するという簡単な方法によつて電解効率の低下が
防止される。
In this case, an indicator that changes color at a set hydrogen ion concentration is added to the first electrode tank 3, the color change is detected optically or with the naked eye, and electrolytic current is supplied to the electrolytic electrodes 10 and 11. do it. As described above in detail, the present invention prevents a decrease in electrolytic efficiency by a simple method of electrolytically adjusting and maintaining the ion concentration of the solution in the first counter electrode tank at a predetermined concentration.

また、特に拡散や電気泳動の小さい隔膜を使用する必要
がないので、大電流を流すことができ、滴定時間が大幅
に短縮できる利点がある。従つて本発明は酸、アルカリ
の中和滴定、カールフイツシヤ一法による水分測定、硫
黄、窒素の分析等の酸化一還元滴定を、特に高濃度の試
料を用いて繰返し行なう場合の電量滴定方法として優れ
ている。以下、本発明を実施例により更に詳細に説明す
るが、本発明はその要旨をこえない限り以下の実施例に
限定されるものではない。
Furthermore, since there is no need to use a diaphragm with particularly low diffusion or electrophoresis, there is an advantage that a large current can be passed and the titration time can be significantly shortened. Therefore, the present invention provides a coulometric titration method for neutralization titration of acids and alkalis, moisture measurement by Karl Fischer method, oxidation-reduction titration such as analysis of sulfur and nitrogen, especially when performing repeated titrations using highly concentrated samples. Are better. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 第1図に示す装置の隔膜5として有効面積約10cd,
厚さ約1.5m1Lf)G4カラスフイルタ一に寒天を
約2mm溶着させたもの、隔膜6として有効面積約10
cd,厚さ約1mmのセラミツクスフイルタ一電解電極
9,10,11として白金網、終点検出電極12及びイ
オン濃度検出電極13としてPH複合電極を用い、また
滴定セル装置1の各槽に1%Na2sO休溶液を入れた
装置(スィツチ17は接点b側に閉じた状態)を用いて
0.1N塩酸(F一0.966)の中和滴定を行つた。
Example: The effective area of the diaphragm 5 of the device shown in FIG. 1 is about 10 cd,
Approximately 2 mm of agar is welded to a G4 glass filter (thickness: approx. 1.5 m 1 Lf), effective area as diaphragm 6 is approx. 10
cd, a ceramic filter with a thickness of about 1 mm, a platinum mesh as the electrolytic electrodes 9, 10, and 11, a PH composite electrode as the end point detection electrode 12 and the ion concentration detection electrode 13, and 1% Na2sO in each tank of the titration cell device 1. Neutralization titration of 0.1N hydrochloric acid (F-0.966) was performed using an apparatus containing a resting solution (switch 17 was closed to the contact b side).

滴定の間、第1対極槽3内の溶液のPHは7.0に自動
調節した。得られた結果を第1表及び第2表に示す。ま
た、比較のために第1対極槽3内の溶液のPH調節を行
わない以外は実施例と全く同様にして中和滴定を行つた
結果を第2表に併記する。
During the titration, the pH of the solution in the first counter electrode tank 3 was automatically adjusted to 7.0. The results obtained are shown in Tables 1 and 2. For comparison, Table 2 also shows the results of neutralization titration performed in exactly the same manner as in the example except that the pH of the solution in the first counter electrode tank 3 was not adjusted.

第2表から明らかなように、比較例(従来法)では測定
回数が進むに従つて電解効率が逐次低下し、6回目で測
定不能となつたのに対し、本発明法では試料量を増して
もまた測定回数を増しても電解効率は99.7〜99.
9の範囲内にあり、精度よく測定できることが分かる。
As is clear from Table 2, in the comparative example (conventional method), the electrolytic efficiency gradually decreased as the number of measurements progressed, and it became impossible to measure at the 6th measurement, whereas in the method of the present invention, the amount of sample was increased. However, even if the number of measurements is increased, the electrolytic efficiency remains between 99.7 and 99.
9, indicating that measurement can be performed with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電量滴定装置の一例の模式的な構
成図、第2図はイオン濃度調節用電解制御装置の→Iの
回路プロツク図である。 1・・・滴定セル装置、2・・・電解槽、3・・・第1
対極槽、4・・・第2対極槽、゜5,6・・・隔膜、9
.10,11・・・電解電極、12・・・終点検出電極
、13・・・イオン濃度検出電極、14・・・イオン濃
度調節用電解制御装置、15・・・電量滴定用電解制御
装置、16・・・電量滴定電気量表示装置。
FIG. 1 is a schematic block diagram of an example of a coulometric titration device according to the present invention, and FIG. 2 is a →I circuit block diagram of an electrolytic control device for adjusting ion concentration. 1... Titration cell device, 2... Electrolytic cell, 3... First
Counter electrode tank, 4...Second counter electrode tank, ゜5, 6...Diaphragm, 9
.. DESCRIPTION OF SYMBOLS 10, 11... Electrolysis electrode, 12... End point detection electrode, 13... Ion concentration detection electrode, 14... Electrolysis control device for adjusting ion concentration, 15... Electrolysis control device for coulometric titration, 16 ...Coulometric titration electrical quantity display device.

Claims (1)

【特許請求の範囲】 1 試料を含む溶液が収容される電解槽と第1対極槽、
該第1対極槽と第2対極槽とがそれぞれ隔膜を介して連
通された滴定セル装置を用い、前記電解槽に電解電流を
供給して電量滴定を行うに当り、滴定の進行に伴つて変
化する前記第1対極槽内の溶液を、前記電量滴定電解電
流とは別の第2の電解電流によつて電気分解し、所定の
イオン濃度に調節することを特徴とする電量滴定方法。 2 電解槽内と第2対極槽内とにそれぞれ設置された電
解電極間に電解電流を印加することによつて電量滴定を
行い、第1対極槽内の溶液のイオン濃度を電気的に検出
し、得られたイオン濃度の変化に見合つた電気信号を前
記電解電流とは別の第2の電解電流に変換し、該第2の
電解電流を、第1対極槽内に設置された電解電極と前記
第2対極槽内の電解電極間に印加することにより、前記
第1対極槽内の溶液のイオン濃度を調節することを特徴
とする特許請求の範囲第1項に記載の電量滴定方法。 3 電解槽内と第1対極槽内とにそれぞれ設置された電
解電極間に電解電流を印加することによつて電量滴定を
行い、該第1対極槽内の溶液のイオン濃度を電気的に検
出し、得られたイオン濃度の変化に見合つた電気信号を
前記解電流とは別の第2の電解電流に変換し、該第2の
電解電流を、前記第1対極槽内の電解電極と第2対極槽
内に設置された電解電極間に印加することにより、前記
第1対極槽内の溶液のイオン濃度を調節することを特徴
とする特許請求の範囲第1項に記載の電量滴定方法。
[Claims] 1. An electrolytic cell in which a solution containing a sample is housed, and a first counter electrode cell;
When carrying out coulometric titration by supplying an electrolytic current to the electrolytic cell using a titration cell device in which the first counter electrode cell and the second counter electrode cell are connected to each other via a diaphragm, changes occur as the titration progresses. A coulometric titration method, characterized in that the solution in the first counter electrode tank is electrolyzed by a second electrolytic current different from the coulometric titration electrolytic current, and adjusted to a predetermined ion concentration. 2 Coulometric titration is performed by applying an electrolytic current between the electrolytic electrodes installed in the electrolytic cell and the second counter electrode tank, and the ion concentration of the solution in the first counter electrode tank is electrically detected. , converting the obtained electric signal corresponding to the change in ion concentration into a second electrolytic current different from the electrolytic current, and converting the second electrolytic current into an electrolytic electrode installed in the first counter electrode tank. 2. The coulometric titration method according to claim 1, wherein the ion concentration of the solution in the first counter electrode tank is adjusted by applying voltage between electrolytic electrodes in the second counter electrode tank. 3 Perform coulometric titration by applying an electrolytic current between the electrolytic electrodes installed in the electrolytic cell and the first counter electrode tank, and electrically detect the ion concentration of the solution in the first counter electrode tank. Then, the obtained electric signal corresponding to the change in ion concentration is converted into a second electrolytic current different from the electrolytic current, and the second electrolytic current is connected to the electrolytic electrode in the first counter electrode tank and the electrolytic current. 2. The coulometric titration method according to claim 1, wherein the ion concentration of the solution in the first counter electrode tank is adjusted by applying voltage between electrolytic electrodes installed in two counter electrode tanks.
JP10451876A 1976-09-01 1976-09-01 Coulometric titration method Expired JPS5937464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10451876A JPS5937464B2 (en) 1976-09-01 1976-09-01 Coulometric titration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10451876A JPS5937464B2 (en) 1976-09-01 1976-09-01 Coulometric titration method

Publications (2)

Publication Number Publication Date
JPS5330391A JPS5330391A (en) 1978-03-22
JPS5937464B2 true JPS5937464B2 (en) 1984-09-10

Family

ID=14382701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10451876A Expired JPS5937464B2 (en) 1976-09-01 1976-09-01 Coulometric titration method

Country Status (1)

Country Link
JP (1) JPS5937464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453571U (en) * 1987-09-28 1989-04-03
JPH025648U (en) * 1988-06-27 1990-01-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453571U (en) * 1987-09-28 1989-04-03
JPH025648U (en) * 1988-06-27 1990-01-16

Also Published As

Publication number Publication date
JPS5330391A (en) 1978-03-22

Similar Documents

Publication Publication Date Title
US3860498A (en) Method of measuring O{HD 2 {B and O{HD 2 {B containing constituents
KR20080003419A (en) Method and apparatus for detection of abnormal traces during electrochemical analyte detection
NZ192090A (en) Measuring a chemical characteristic of a liquid with immersed electrodes ph meter
US4443763A (en) Method and an apparatus for checking polarographic measuring electrodes
US3022241A (en) Method and apparatus for measurement of dissolved oxygen
JPS5937464B2 (en) Coulometric titration method
JPH05232029A (en) Method and apparatus for ph-value measurement by fluorescent photometry
US4960497A (en) Apparatus and method for minimizing the effect of an electrolyte's dissolved oxygen content in low range oxygen analyzers
EP0262582A3 (en) Method for determining the concentration ratio of lithium to sodium ions and apparatus for carrying out this method
US2773497A (en) Method and apparatus for measuring consumption of oxygen
Sevilla III et al. The electrician's multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry
US1657421A (en) Apparatus for the electrometric determination of hydrogen ion concentration
JP2004125668A (en) Oxidation-reduction potential measuring instrument
JP3025076B2 (en) Acid gas measuring device
Purdy et al. Sensitivity of Bromine-Bromide Potentiometric End Point
JP3633077B2 (en) pH sensor and ion water generator
JP2523608B2 (en) Phase difference detection method in AC applied polarization reaction
SU868528A1 (en) Method and device for determining oxygen potential of medium
SU894537A1 (en) Method of oxygen content determination
Vajgand et al. Potentiometric determination of pKA of organic bases in acetone by the application of coulometry
CN204128998U (en) For detecting the detecting device of urine
Głab et al. Determination of protonation constants by coulometric titration
Gresz PHOTOMETRIC IODINE MICROCOULOMETER
RU2011987C1 (en) Method for determining organic substance contents of water
SU1032402A1 (en) Mass transfer coefficient measuring method