JPS5834353A - Oxygen meter - Google Patents

Oxygen meter

Info

Publication number
JPS5834353A
JPS5834353A JP56132735A JP13273581A JPS5834353A JP S5834353 A JPS5834353 A JP S5834353A JP 56132735 A JP56132735 A JP 56132735A JP 13273581 A JP13273581 A JP 13273581A JP S5834353 A JPS5834353 A JP S5834353A
Authority
JP
Japan
Prior art keywords
cathode
anode
container
current
oxygen meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56132735A
Other languages
Japanese (ja)
Other versions
JPH029305B2 (en
Inventor
Yoshihiro Ozawa
小澤 義弘
Shunsuke Uchida
俊介 内田
Norio Nakayama
紀夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP56132735A priority Critical patent/JPS5834353A/en
Publication of JPS5834353A publication Critical patent/JPS5834353A/en
Publication of JPH029305B2 publication Critical patent/JPH029305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/49Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species

Abstract

PURPOSE:To measure the concentration of O2 and H2O2 dissolved in a liquid at the same time, by providing each pair of anodes and cathodes in a diaphragm type oxygen electrode and applying different applying voltage between each electrode. CONSTITUTION:O2 and H2O in a sample water enter into an electrolytic solution 13 passing through a diffusion film 2 provided on a sensor main body 1 which constitutes an oxygen meter. Cathodes 3, 4 and anodes 5, 6 are provided in the electrolytic solution 13. A battery 9 and an ammeter 18 are connected between the anode 5 and the cathode 3 and electric potential for reducing only H2O2 in the sample water is applied and then, an electric current A1 at this time is measured. Further, a battery 12 and an ammeter 11 are connected between the anode 6 and the cathode 4 and the electric potential for reducing O2 and H2O2 is applied and then, an electric current A2 at this time is measured. O2 is measured separately from H2O2 in a short time because the concentration of H2O2 in the sample water corresponds to the current A1 and that of O2 corresponds to the current A2-A1.

Description

【発明の詳細な説明】 本発明は、酸素計に係り、特に酸素(0□)および過酸
化水素(H2O2)が共存して溶存している水溶液中の
、02およびH2O2濃度を同時に測定する酸素計に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen meter, particularly an oxygen meter that simultaneously measures the concentration of 02 and H2O2 in an aqueous solution in which oxygen (0□) and hydrogen peroxide (H2O2) coexist and are dissolved. Regarding the meter.

従来、常温常圧下における水中溶存酸素計として隔膜式
酸素電極が知られている。またこれを高温高圧下でも測
定できるようにした圧カッくランス型の溶存酸素計も考
えられて゛いる。これらは対象溶液中に0□と同じよう
な電極反応を起こすH2O2が存在する場合は、両者を
区別することができず、溶存02として測定されてしま
う欠点がある。
Conventionally, a diaphragm-type oxygen electrode has been known as an underwater dissolved oxygen meter at room temperature and pressure. In addition, a pressure-coupling lance-type dissolved oxygen meter that can measure this even under high temperature and high pressure conditions is being considered. These methods have the disadvantage that if H2O2, which causes an electrode reaction similar to that of 0□, is present in the target solution, it is impossible to distinguish between the two, and it is measured as dissolved 02.

本発明の目的は、液体中に溶存している02およびH2
0□濃度を同時に測定できる酸素計を提供することにあ
る。
The object of the present invention is to solve the problem of 02 and H2 dissolved in a liquid.
An object of the present invention is to provide an oxygen meter capable of simultaneously measuring 0□ concentration.

本発明は、隔膜式酸素電極において、02 、 H2O
2による限界電流を与える印加電圧に違いがあることに
着眼してなされたもので、0□、 H2O2それぞれに
対し個別の印加電圧を与えることを特徴としている。
The present invention provides a diaphragm type oxygen electrode with 02, H2O
This method was developed based on the fact that there is a difference in the applied voltage that gives the limiting current due to 0□ and H2O2, and is characterized by applying separate applied voltages to each of 0□ and H2O2.

本発明の好適な一実施例である酸素計を第1図を用いて
以下に説明する。沸騰水型原子炉からサンプリングされ
た一次冷却水、すなわち、試料水中のO2,H2O2は
、酸素計を構成するセンサ本(3) 体1に設けられた拡散膜2を通って、内部に電解液13
が充填されたセンサ本体1に設けられた陰極3および4
に到達する。ここで0□、およびH2O2は還元され、
下記反応に従ってOH−イオンとなる。
An oxygen meter which is a preferred embodiment of the present invention will be described below with reference to FIG. O2 and H2O2 in the primary cooling water sampled from the boiling water reactor, that is, in the sample water, passes through the sensor body (3) that constitutes the oxygen meter. 13
cathodes 3 and 4 provided in the sensor body 1 filled with
reach. Here 0□ and H2O2 are reduced,
It becomes OH- ion according to the following reaction.

02+2H20+4e−→40H−・=−・=fllH
202+2e″’ →20H″’   ・−−−−−−
・−(2+(1)および(2)式の反応は、センサ本体
に設けられる陽極と陰極との間の印加電圧の絶対値が小
さい場合は、陰極における反応が律速となる。印加電圧
の絶対値を太きくしていくと、0□、あるいはH20□
の拡散膜2での拡散速度が律速となり、出力電流に飽和
が生じる。この出力電流に飽和が見られるところに印加
電圧を固定すれば、出力電流は試料水中のO3,あるい
はH2O2濃度に比例することになる。第2図に温度2
00t11’における印加電圧と出力電流の関係を0□
とH2O2について調べた結果を示す。H2O2が02
に比べ印加電圧の絶対値が低いところで、出力電流に飽
和が見られる。したがって、H2O2に対しては出力電
流に(4) 飽和が見られ、かつ0□に対しては陰極における還元反
応が起こらないような印加電圧V、を選べば、その出力
電流はH2O2の還元反応によると考えて良い。また0
2に対して出力電流に飽和が見られる■2なる印加電圧
を選べば、H202および02による還元電流が得られ
ることになる。第1図において、陰極を2分割し、陰極
3と陰極4とする。電線7によって、陰極3.電流計8
.電池9および陽極5を接続する。陽極5と陰極3との
間にvlなる電位を与える。陰極3ではH20□のみが
(2)式によって還元され、陽極5との間に電流A、が
流れる。この電流を電流計8で測定する。
02+2H20+4e-→40H-・=-・=fllH
202+2e'''→20H''' ・------
・-(2+For reactions in equations (1) and (2), if the absolute value of the applied voltage between the anode and cathode provided in the sensor body is small, the reaction at the cathode becomes rate-determining.The absolute value of the applied voltage As you increase the value, it becomes 0□ or H20□
The diffusion rate in the diffusion film 2 becomes rate-determining, and saturation occurs in the output current. If the applied voltage is fixed at a point where the output current is saturated, the output current will be proportional to the O3 or H2O2 concentration in the sample water. Figure 2 shows temperature 2.
The relationship between the applied voltage and output current at 00t11' is 0□
The results of an investigation on and H2O2 are shown. H2O2 is 02
Saturation can be seen in the output current when the absolute value of the applied voltage is low compared to . Therefore, if an applied voltage V is selected such that (4) saturation is observed in the output current for H2O2 and no reduction reaction occurs at the cathode for 0□, the output current It can be considered that 0 again
If an applied voltage of 2 is chosen, where saturation is seen in the output current compared to 2, then reduction currents due to H202 and 02 will be obtained. In FIG. 1, the cathode is divided into two parts, a cathode 3 and a cathode 4. By the electric wire 7, the cathode 3. Ammeter 8
.. Connect battery 9 and anode 5. A potential vl is applied between the anode 5 and the cathode 3. At the cathode 3, only H20□ is reduced according to equation (2), and a current A flows between it and the anode 5. This current is measured with an ammeter 8.

電線10によって、陰極4.電流計11.電池12およ
び陽極6を接続する。陰極4と陽極6との間にv2なる
電位を与える。陰極4では02およびH2O2の両方が
(1)式および(2)式によって還元され、陽極6との
間に電流A2が流れる。この電流を電流計10で測定す
る。したがって、H2O2に対しては電流値A、が、0
.に対しては電流値(A、−A、)が対応することにな
る。電流計8および11の測定値を演算器に入力して(
A2−AI)を求めてもよい。
An electric wire 10 connects the cathode 4. Ammeter 11. Connect battery 12 and anode 6. A potential v2 is applied between the cathode 4 and the anode 6. At the cathode 4, both 02 and H2O2 are reduced according to equations (1) and (2), and a current A2 flows between the cathode 4 and the anode 6. This current is measured with an ammeter 10. Therefore, for H2O2, the current value A is 0
.. The current value (A, -A,) corresponds to the current value (A, -A,). Input the measured values of ammeters 8 and 11 into the calculator (
A2-AI) may also be calculated.

印加電位v1およびv2は、起電力の異なる電池を選択
することにより、電池の個数を変えることにより、さら
に同じ起電力の電池を用いた場合には可変抵抗器を設け
ることによって所定の値にそれぞれ調節できる。
The applied potentials v1 and v2 can be adjusted to predetermined values by selecting batteries with different electromotive forces, by changing the number of batteries, or by providing a variable resistor when using batteries with the same electromotive force. Can be adjusted.

陰極3はH2O2還元用陰極であり、陰極4は0、還元
用陰極である。なお陽極5および陽極6では、電解液1
3と電極との組み合わせにもよるが(3)式のような反
応が進行する。
The cathode 3 is a cathode for reducing H2O2, and the cathode 4 is a cathode for reducing H2O2. Note that in the anode 5 and the anode 6, the electrolyte 1
Although it depends on the combination of 3 and the electrode, the reaction shown in equation (3) proceeds.

Ag+CL−−、kgCL+e−−・−−−−−−−(
3)本実施例におけるセンサ本体1および拡散膜2の材
料としては、四ふう化エチレン樹脂などのように耐熱性
で、かつ耐電解液性のものがよい。特に拡散膜2は、0
□およびH2O2を容易に透過させ、かつ電解液中のに
+やCt″′、あるいは、水溶液中の不純物イオン、例
えばCog + 、 Cu2+等を容易に透過させない
ようにする必要がある。また陽極5および6にはAg/
AgCt/Ct″′を用いるため、電解液としてKCL
の塩基性水溶液を用いる。
Ag+CL−-, kgCL+e−−・−−−−−−(
3) The sensor body 1 and the diffusion membrane 2 in this embodiment are preferably made of heat-resistant and electrolyte-resistant materials such as tetrafluoroethylene resin. In particular, the diffusion film 2 is 0
It is necessary to allow □ and H2O2 to permeate easily, and to prevent the permeation of + and Ct'' in the electrolytic solution, or impurity ions such as Cog + and Cu2+ in the aqueous solution. and 6 is Ag/
Since AgCt/Ct'' is used, KCL is used as the electrolyte.
Use a basic aqueous solution of

なお、陽極5および6としては、A、g/A、gBr/
′Br″′まだはAg/AgI/I−等の電極が使用可
能である。さらに陰極3および4としてはAgに比べて
イオン化傾向が小々るものなら良く、かつ酸素に腐食さ
れにくいものとしてA11.pt等があげられる。
In addition, as the anodes 5 and 6, A, g/A, gBr/
'Br'''Although it is still possible to use electrodes such as Ag/AgI/I-, the cathodes 3 and 4 may be made of materials that have a slight ionization tendency compared to Ag, and that are not easily corroded by oxygen. A11.pt etc. are mentioned.

本発明の他の実施例を第3図を用いて以下に説明する。Another embodiment of the present invention will be described below with reference to FIG.

第3図は陰極14および15を直列に並べた酸素計の概
略を示しだものである。陰極15は拡散膜2に近接して
設置し、かつ陰極15には小さな貫通孔16を多数設け
る。陰極15にはH2O2を還元するに十分な電位では
あるが、0□の還元を起こさせない電量V、をかける。
FIG. 3 schematically shows an oxygen meter in which cathodes 14 and 15 are arranged in series. The cathode 15 is installed close to the diffusion membrane 2, and the cathode 15 is provided with many small through holes 16. A voltage V of 0□ is applied to the cathode 15, which has a potential sufficient to reduce H2O2, but does not cause reduction.

陰極14は陰極15の後方(拡散膜2より遠い側)に設
置する。この陰極14には02を還元するに十分な電位
v2をかける。また電解液13を陰極15および14に
接触させるため、陰極14には一個あるいは複数個の貫
通孔を設ける。試料水中の02またけ)I20□はまず
拡散膜2を透過した後、陰極15に達する。ここでH2
0□だけが還元され、0□は陰極15の貫通孔16を通
る。この時、一部のH2O2も貫通孔16中を拡散する
が、貫通孔16の径に対し、陰極15の厚さを十分大き
くとれば、H2O2は貫通孔16を通過する間にほぼ全
量還元される。第4図に貫通孔と厚さの比に対するH2
O2の還元割合を示す。貫通孔16を通った02は、陰
極14に達し、ここで還元される。陰極15と陽極5間
の電流A、はH2O2濃度に、陰極14と陽極6間の電
流A2は02濃度に比例する。H2O2および02濃度
は前述の実施例と同様に個別に測定できる。
The cathode 14 is installed behind the cathode 15 (on the side farther from the diffusion membrane 2). A potential v2 sufficient to reduce 02 is applied to this cathode 14. Further, in order to bring the electrolytic solution 13 into contact with the cathodes 15 and 14, one or more through holes are provided in the cathode 14. I20□ in the sample water first passes through the diffusion membrane 2 and then reaches the cathode 15. Here H2
Only 0□ is reduced, and 0□ passes through the through hole 16 of the cathode 15. At this time, some H2O2 also diffuses through the through hole 16, but if the thickness of the cathode 15 is made sufficiently large relative to the diameter of the through hole 16, almost all of the H2O2 is reduced while passing through the through hole 16. Ru. Figure 4 shows H2 as a function of the through hole and thickness ratio.
The reduction rate of O2 is shown. The 02 that has passed through the through hole 16 reaches the cathode 14 and is reduced there. The current A between the cathode 15 and the anode 5 is proportional to the H2O2 concentration, and the current A2 between the cathode 14 and the anode 6 is proportional to the 02 concentration. H2O2 and 02 concentrations can be measured separately as in the previous example.

以上本実施例によれば水溶液中の02. H2O2の濃
度を同時に測定できる。
As described above, according to this embodiment, 02.0% in aqueous solution. The concentration of H2O2 can be measured simultaneously.

本発明によれば、直接的にサンプリング液と拡散膜を接
触させ、かつ電極反応を利用しているので、高湛水(例
えば原子炉圧力容器内の冷却水)中の02.H2O2濃
度を短時間に区別して測定できる。■(202は比較的
短寿命(分オーダ)のため従来の測定方法、すなわちサ
ンプリング液を化学分析等により測定する方法ではつか
まえられなかった成分も測定が可能になった。
According to the present invention, since the sampling liquid is brought into direct contact with the diffusion membrane and the electrode reaction is utilized, the 02. H2O2 concentration can be measured separately in a short time. (2) Since 202 has a relatively short lifespan (on the order of minutes), it has become possible to measure components that could not be detected by conventional measurement methods, ie, methods such as chemical analysis of sampling liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の好適な一実施例の縦断面図、第2図
は、本発明のもとになった電位、出力電流の関係を示す
説明図、第3図は、本発明における陰極の配置をシリー
ズにした場合の縦断面図、第4図は、陰極の厚みと貫通
孔半径の比に対するH2O2収率を示す説明図である。 1・・・センサ本体、2・・・拡散膜、3,4.t4゜
15・・・陰極、6・・・陽極、7.10・・・電線、
8゜第7図 〆p 力U 誓と 4Σど  でVノ
FIG. 1 is a vertical cross-sectional view of a preferred embodiment of the present invention, FIG. 2 is an explanatory diagram showing the relationship between potential and output current, which is the basis of the present invention, and FIG. FIG. 4, which is a vertical cross-sectional view when the cathodes are arranged in series, is an explanatory diagram showing the H2O2 yield with respect to the ratio of the thickness of the cathode and the radius of the through hole. 1... Sensor main body, 2... Diffusion film, 3, 4. t4゜15...Cathode, 6...Anode, 7.10...Electric wire,
8゜Figure 7〆p Force U oath and 4Σd and V no

Claims (1)

【特許請求の範囲】 1、開口を有して内部に電解液が充填されている容器と
、前記開口を被って前記容器に取付けられる隔膜と、前
記電解液に接触されてしかも前記容器に取付けられる陽
極および陰極とからなる酸素計において、前記陽極およ
び陰極を各々1対ずつ設け、1つの前記陽極および陰極
を接続する第1回路および他の前記陽極および陰極を接
続する第2回路を有し、第1電源および第1電流検出手
段を前記第1回路に設け、第2電源および第2電流検出
手段を前記第2回路に設けることを特徴とする酸素計。 2 前記第1回路に接続される陽極と陰極との間に印加
される電位と前記第2回路に接続される陽極と陰極との
間に印加される電位が異なる特許請求の範囲第1項記載
の酸素計。 3、 開口を有して内部に電解液が充填されている容器
と、前記開口を被って前記容器に取付けられる隔膜と、
前記電解液に接触されてしかも前記容器に取付けられる
陽極および陰極とから々る酸素計において、複数の貫通
孔を有するH2O2還元用陰極を前記電解液に接触させ
て前記容器に取付け、H2O2還元用陽極を前記電解液
に接触させて前記容器に取付け、 前記隔膜と前記H2O2還元用陰極との間の距離よりも
大きな距離で前記隔膜より離して02還元用陰極を前記
電解液に接触させて前記容器に取付け、0□還元用陽極
を前記電解液に接触させて前記容器に取付け、第1電源
および第1電流検出手段を有する第1回路にて前記H2
0□還元用陰極と前記H2O2還元用陽極を接続し、第
2電源および第2電流検出手段を有する第2回路にて前
記0□還元用陰極と前記0□還元用陽極を接続すること
を特徴とする酸素計。
[Claims] 1. A container having an opening and filled with an electrolytic solution, a diaphragm attached to the container covering the opening, and a diaphragm that is in contact with the electrolytic solution and attached to the container. An oxygen meter comprising a pair of anodes and a cathode, each comprising a pair of anodes and a cathode, a first circuit connecting one of the anodes and a cathode, and a second circuit connecting the other anode and cathode. An oximeter, characterized in that a first power source and a first current detection means are provided in the first circuit, and a second power source and a second current detection means are provided in the second circuit. 2. Claim 1, wherein the potential applied between the anode and cathode connected to the first circuit is different from the potential applied between the anode and cathode connected to the second circuit. oxygen meter. 3. a container having an opening and filled with an electrolyte, and a diaphragm attached to the container so as to cover the opening;
In an oxygen meter comprising an anode and a cathode that are in contact with the electrolyte and are attached to the container, a cathode for H2O2 reduction having a plurality of through holes is attached to the container in contact with the electrolyte, An anode is attached to the container in contact with the electrolytic solution, and a cathode for 02 reduction is placed in contact with the electrolytic solution at a distance from the diaphragm that is greater than the distance between the diaphragm and the cathode for reducing H2O2. The H2
The 0□ reduction cathode and the H2O2 reduction anode are connected, and the 0□ reduction cathode and the 0□ reduction anode are connected by a second circuit having a second power source and a second current detection means. Oxygen meter.
JP56132735A 1981-08-26 1981-08-26 Oxygen meter Granted JPS5834353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56132735A JPS5834353A (en) 1981-08-26 1981-08-26 Oxygen meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56132735A JPS5834353A (en) 1981-08-26 1981-08-26 Oxygen meter

Publications (2)

Publication Number Publication Date
JPS5834353A true JPS5834353A (en) 1983-02-28
JPH029305B2 JPH029305B2 (en) 1990-03-01

Family

ID=15088364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56132735A Granted JPS5834353A (en) 1981-08-26 1981-08-26 Oxygen meter

Country Status (1)

Country Link
JP (1) JPS5834353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122511A2 (en) * 1983-03-25 1984-10-24 Hitachi, Ltd. Method and apparatus for measuring simultaneously concentrations of dissolved gas
FR2610408A1 (en) * 1987-02-02 1988-08-05 Teledyne Ind ELECTROCHEMICAL DETECTOR OF GAS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056203U (en) * 1991-07-08 1993-01-29 杉安工業株式会社 Oil leakage prevention mechanism of hydraulic cylinder device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648549A (en) * 1979-09-24 1981-05-01 Albery Wyndham John Electrochemical sensor for oxygen* halogen and nitrous oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648549A (en) * 1979-09-24 1981-05-01 Albery Wyndham John Electrochemical sensor for oxygen* halogen and nitrous oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122511A2 (en) * 1983-03-25 1984-10-24 Hitachi, Ltd. Method and apparatus for measuring simultaneously concentrations of dissolved gas
FR2610408A1 (en) * 1987-02-02 1988-08-05 Teledyne Ind ELECTROCHEMICAL DETECTOR OF GAS

Also Published As

Publication number Publication date
JPH029305B2 (en) 1990-03-01

Similar Documents

Publication Publication Date Title
US3325378A (en) Electrochemical method and apparatus for measuring hydrogen content
US3098813A (en) Electrode
US3860498A (en) Method of measuring O{HD 2 {B and O{HD 2 {B containing constituents
JPH057657B2 (en)
EP0027005B1 (en) A method of electrochemical sensing and a sensor for oxygen, halothane and nitrous oxide
US3855096A (en) Electrochemical cells
US4985130A (en) Amperometric method and apparatus
US5256273A (en) Micro fuel-cell oxygen gas sensor
JP6952578B2 (en) Oxygen concentration measuring device and oxygen concentration measuring method
JPS5834353A (en) Oxygen meter
US20070227908A1 (en) Electrochemical cell sensor
JPH10311815A (en) Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method
EP0418886B1 (en) Apparatus and method for minimizing the effects of an electrolyte's dissolved oxygen content in low range oxygen analyzers
JPH0616024B2 (en) Apparatus and method for measuring hydrogen concentration in water
US2773497A (en) Method and apparatus for measuring consumption of oxygen
US4891102A (en) Method of determining carbon dioxide in the presence of oxygen
JP2021113727A (en) Hydrogen peroxide concentration detection device
JP4217077B2 (en) Stabilization method of diaphragm type electrode
Lingane A new coulometric titration method application to the determination of uranium
JP3025076B2 (en) Acid gas measuring device
Nei Some milestones in the 50-year history of electrochemical oxygen sensor development
JP3650919B2 (en) Electrochemical sensor
JPS61176846A (en) Ion sensor body
CN219830933U (en) Electrochemical composite sensor
JPS5942693Y2 (en) Residual chlorine meter