JPS5936724A - Pitch composition of raw material for carbon fiber - Google Patents

Pitch composition of raw material for carbon fiber

Info

Publication number
JPS5936724A
JPS5936724A JP14703682A JP14703682A JPS5936724A JP S5936724 A JPS5936724 A JP S5936724A JP 14703682 A JP14703682 A JP 14703682A JP 14703682 A JP14703682 A JP 14703682A JP S5936724 A JPS5936724 A JP S5936724A
Authority
JP
Japan
Prior art keywords
pitch
hydrogen
carbon
spinning
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14703682A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamada
泰弘 山田
Takeshi Imamura
健 今村
Hidemasa Honda
本田 英昌
Toru Sawaki
透 佐脇
Hideharu Sasaki
佐々木 英晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14703682A priority Critical patent/JPS5936724A/en
Priority to FR8313618A priority patent/FR2532322B1/en
Priority to US06/525,702 priority patent/US4590055A/en
Priority to GB08322788A priority patent/GB2129825B/en
Priority to DE19833330575 priority patent/DE3330575A1/en
Publication of JPS5936724A publication Critical patent/JPS5936724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:The titled pitch composition, consisting of a quinoline-soluble optically isotropic pitch, having specified values of average molecular weight of structural nunits, number of condensed rings and specific gravity, and capable of giving carbon fibers having a high strength and modulus. CONSTITUTION:A pitch composition which is an optically isotropic pitch, substantially 100% soluble in quinoline, consisting essentially of a polycyclic aromatic condensate, and having 200-400 average molecular weight of the structural units measured by the mass spectrometry (MS), 2-6 number of condensed rings and within 1.25-1.31 specific gravity range at 20 deg.C. Preferably, the pitch contains carbon (A) having 129-2,150ppm chemical shift, carbon (B) having 980- 129ppm chemical shift and carbon (C) having 13-53ppm chemical shift based on the TMS in the 13C-NMR respectively in the following ratios: 15-25%, 55-65% and 10-20%.

Description

【発明の詳細な説明】 本発明は、炭素繊維の製造用原料として有用なピッチ組
成物に関する。更に詳しくは、高温熱処理−溶融紡糸−
不融化処理−炭化処理という一連の工程を経ることによ
って、従来のピッチ糸炭素繊維では到達し得なかった高
強度と高モジュラスとを具備した訣素繊維を形成し得る
ところの、新規なピッチ組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to pitch compositions useful as raw materials for the production of carbon fibers. More specifically, high temperature heat treatment - melt spinning -
Through a series of steps including infusibility treatment and carbonization treatment, a new pitch composition that can form a core fiber with high strength and high modulus that could not be achieved with conventional pitch yarn carbon fibers. relating to things.

現在、炭素繊維としては、主として、ポリアクリ−ニト
リル(PAN)fa維を原料とするPAN系炭素炭素繊
維炭系又は石油系のピッチを原料とするピッチ系炭素繊
維が生産されている。
Currently, carbon fibers mainly produced include PAN-based carbon fibers made from polyacrynitrile (PAN) fa fibers and pitch-based carbon fibers made from carbon-based or petroleum-based pitches.

しかし、主として複合材料において樹脂の補強材として
使用される高強度高モジュラスの高性能炭素繊維はPA
N系が主流であり、ピッチ系は強度200)C9/−以
下の比較的低強度のものしか製造されていない。
However, high-strength, high-modulus, high-performance carbon fiber, which is mainly used as a reinforcing material for resins in composite materials, is PA.
N-based materials are the mainstream, and only pitch-based products with a relatively low strength of 200)C9/- or less are manufactured.

かかるピッチ系炭素繊維において、より高性能の繊維を
製造しようとする試みがなされており、これ迄にも、炭
素繊維製造用ピッチの製造に関し、次のような提案がな
されている。
Attempts have been made to produce pitch-based carbon fibers with higher performance, and the following proposals have been made so far regarding the production of pitch for carbon fiber production.

(−)  特定の縮合多環芳香族化合物を水素処理又は
熱処理して炭素繊維用ピッチとする方法(持分[45−
28013号2%公昭49−8634号)。
(-) A method of hydrogen-treating or heat-treating a specific condensed polycyclic aromatic compound to produce pitch for carbon fibers (equity [45-
No. 28013 2% Publication No. 49-8634).

(b)  石油系のタールやピンチなルイス酸系触媒の
存在下で第1の熱処理を施した後、該触媒を除去して第
2の熱処理を施してメンフェースピッチとする方法(特
公昭53−7533号)。
(b) A method in which a first heat treatment is performed in the presence of a petroleum-based tar or a pinch of Lewis acid catalyst, and then the catalyst is removed and a second heat treatment is performed to produce membrane face pitch (Japanese Patent Publication No. 53 -7533).

(c)  ピッチを不活性ガスの流通下又は減圧下に加
熱して所定のメンフェース含量をもつメソフェースピッ
チとする方法(%1Jllili53−86717号、
特開昭53−86718号)。
(c) A method of heating pitch under a flow of inert gas or under reduced pressure to produce mesophase pitch with a predetermined mesophase content (%1 Jllili No. 53-86717,
JP-A No. 53-86718).

(d)  光学的等方性ピッチを溶媒(ベンゼン、トル
モン、ベプタン等)で処理し、不溶部を加熱してネオメ
ソフェースを形成させる方法(特開昭54−16042
7.%開昭55−58287゜特開昭55−13080
9号)、。
(d) A method of treating optically isotropic pitch with a solvent (benzene, thormone, beptane, etc.) and heating the insoluble part to form neomesophase (Japanese Patent Application Laid-Open No. 54-16042
7. % Open Show 55-58287゜ JP Open Show 55-13080
No. 9),.

しかしながら、これらの方法によっても、PAN系炭紫
繊維に匹敵する高度な性能をもつ炭素!amを得ること
ができない為゛、現在に至るまで、ピッチ系炭素繊維は
、例えばアスベスト代替品のような強度が低くてもすむ
ような分野で用いられているのが実情である。また、前
記の各方法のうち、メンフェースのピッチとする方法は
、紡糸原液となるピッチの粘性が非常に大きいため、紡
糸性が悪(経済的な紡糸速度での溶融紡糸が困雛である
という製造上の問題も有する。
However, even with these methods, carbon with advanced performance comparable to PAN-based carbon fiber! Since pitch-based carbon fibers cannot be obtained, up to now, pitch-based carbon fibers have been used in fields where low strength is required, such as asbestos substitutes. In addition, among the above methods, the method using a membrane pitch has poor spinnability (melt spinning at an economical spinning speed is difficult) because the viscosity of the pitch used as the spinning stock solution is very high. There is also a manufacturing problem.

本発明者らは、ピッチ系炭素繊維の製造における上述の
如ぎ現状に鑑み、ピッチ類を原料としてすぐれた品質を
もつ災:A繊維を製造する方法を開発すべく研究を重ね
、さきに、紡糸後の不融化・炭化処理段階で光学的に異
方性のメン7z−スに転換する1WPI!4なプリメソ
フェースピッチを経由する新規な炭素繊維を製造する方
法を提案しくq9願昭56−117470号)、更K。
In view of the above-mentioned current situation in the production of pitch-based carbon fibers, the present inventors have conducted extensive research to develop a method for producing A fibers of excellent quality using pitches as raw materials. 1WPI is converted into an optically anisotropic menses at the infusibility/carbonization step after spinning! We would like to propose a new method for manufacturing carbon fibers using a pre-methoface pitch of 4.0 (Publication No. 56-117470), K.K.

かかるプリメソフェースピッチを工業的に製造するに適
した方法を提案したC%′履昭57−80670号)。
C%' (No. 80670/1983) proposed a method suitable for industrially producing such pre-methoface pitch.

本発明者らは、更に、高性能のピッチ系炭素Ii維を形
成しうるピッチ組成物について鋭意研究の結果、前記プ
リメソフェースピッチの原料となる夾質的K100%キ
/リンに可溶性の光学的等方性のピッチの化学的m造及
び性質が特に重要であり、この段階での多環縮合化合物
の基本構造がそのまま紡糸原液中に持込まれ、紡糸段階
での紡糸性、炭化処理段階での#維の内部構造形成に大
きく影響すること、そして、このZooチキノリン可溶
性の光学的等方性ピッチの構造単位体平均分子量、縮合
環数及び比重等が特定範囲内にあるもの(そのなかでも
lac−NMR,’H−NMR等に於いて特定のケミカ
ルシフトを有し、芳香化度やH/Cの値が特定の範囲内
に入るもの)が、特に高性能炭素繊維の原料ピッチとし
て有用であることを見い出し、本発明に到達したもので
ある。
Further, as a result of intensive research on pitch compositions capable of forming high-performance pitch-based carbon Ii fibers, the present inventors found that optical fibers soluble in the inclusionary K100% Kirin, which is the raw material for the Primesoface pitch, were found. The chemical structure and properties of isotropic pitch are particularly important, and the basic structure of the polycyclic condensed compound at this stage is carried into the spinning dope as it is, improving spinnability at the spinning stage and carbonization stage. It is important that the average molecular weight, number of condensed rings, specific gravity, etc. of the structural units of this Zoo chiquinoline soluble optically isotropic pitch are within specific ranges (among them, Those with specific chemical shifts in lac-NMR, 'H-NMR, etc., and whose aromatization degree and H/C value fall within specific ranges) are particularly useful as raw material pitch for high-performance carbon fibers. This is what we have discovered and arrived at the present invention.

即ち、本発明は、炭素繊維原料として用いられる実質的
に100優キノリン可溶性の光学的等方性ピッチであっ
て、質量スペクトル分析(MS )で測定した構造単位
体平均分子量が200〜400であり、縮合環数2〜6
の多環芳香族縮合体から主としてなり、且つ該ピッチの
20℃に於ける比重が1.25〜1.31であるピッチ
組成物である。
That is, the present invention provides an optically isotropic pitch which is substantially 100% quinoline soluble and which is used as a raw material for carbon fibers and has a structural unit average molecular weight of 200 to 400 as measured by mass spectrometry (MS). , number of fused rings 2-6
This pitch composition is mainly composed of a polycyclic aromatic condensate, and has a specific gravity of 1.25 to 1.31 at 20°C.

一般に、高性能炭素繊維紡糸用ピッチは、紡糸過程で配
向し得る程度の分子配向性と、糸条を形成しうる高分子
性及び流動性を兼備する必要がある。従来の技術では、
このうちの分子配向性に重点をおき、いわゆるメンフェ
ースを紡糸用ピッチとして使用すること忙より高性能炭
:A#R維を製造しようとする試みがなされてきた。
In general, high-performance carbon fiber spinning pitch needs to have both molecular orientation to the extent that it can be oriented during the spinning process, and high molecular properties and fluidity to form threads. With conventional technology,
Attempts have been made to produce high-performance carbon: A#R fiber by placing emphasis on molecular orientation and using so-called membrane as a pitch for spinning.

しかしながら、従来のメンフェースピッチでは高分子性
を付与しようとすると、流動性、曳糸性が低下し紡糸操
作が困難となる。また、かかるメンフェースピッチを紡
糸原液として製造される炭素繊維は、高度忙発達した配
向性の故に、炭素繊維前駆体ピッチ繊維中に巨大な葉状
ドメインを準備しがちであり、最終繊維の構造のラジア
ル化、ひいては繊維の縦割れ等による強度低下を招き易
い。このことが、従来、ピッチを原料としてPAN系炭
紫繊維に匹敵する炭素繊維を製造すべ(努力が続けられ
ているKも拘らず、未だ2ookg/−以上の高強度を
もつピッチ系炭素繊維が出現しない一因をなしていると
考えられる。
However, when attempting to impart polymeric properties to conventional membrane pitch, fluidity and spinnability deteriorate, making spinning operations difficult. In addition, carbon fibers produced using such menface pitch as a spinning dope tend to have huge foliate domains in the carbon fiber precursor pitch fibers due to their highly developed orientation, resulting in a change in the structure of the final fiber. It is easy to cause a decrease in strength due to radial formation and vertical cracking of the fibers. This has led to the conventional efforts to produce carbon fibers comparable to PAN-based carbon fibers using pitch as a raw material. This is thought to be one of the reasons why it does not appear.

本発明者らは、従来の紡糸用ピッチに比べて適度に分子
配向性が低く、且つ分子配向性、高分子性、流動性がた
くみにバランスした紡糸用ピッチを製造すべく研究の結
果、原料ピッチを熱処理してより高分子量の紡糸用ピッ
チを調整する過程に於いては、原料ピッチの有する基本
構造単位が大きく変化することがなく、熱処理前のピッ
チの有する基本構造が紡糸用ピッチに持込まれ、それが
最終繊維の製造に影響を及ぼすことを確認した。
As a result of research, the present inventors have developed a raw material to produce a spinning pitch that has moderately lower molecular orientation than conventional spinning pitch, and has a well-balanced molecular orientation, polymeric properties, and fluidity. In the process of heat-treating pitch to adjust spinning pitch with a higher molecular weight, the basic structural units of the raw material pitch do not change significantly, and the basic structure of the pitch before heat treatment is brought into the spinning pitch. It was confirmed that this had an effect on the production of the final fiber.

また、岬・処理前のピッチは、紡糸用ピッチに比較して
軟化点が低く且つ溶剤に対する溶解性も大である。従っ
て、炭素繊維の性能に悪影響を与えるもう一つの要因で
あるフリーカーボン等の異物を除去するには、熱処理前
のピッチの方がはるかに効率的に且つ厳密に実施し得る
In addition, the pitch before cape/treatment has a lower softening point and higher solubility in solvents than pitch for spinning. Therefore, removal of foreign substances such as free carbon, which is another factor that adversely affects the performance of carbon fibers, can be carried out much more efficiently and rigorously with the pitch before heat treatment.

不発シjは、かかる見地から、熱処理前の実質的にio
oチキノリン可溶な光学的婢方性ピッチに着目し、この
ピッチの化学的構造及び性質をコントルールすることに
よって、後の紡糸過程に於ける紡糸性を改善し、更には
最終炭素繊維の性1412をも向上せしめるようにした
ものである。
From this point of view, unexploded sieves are essentially IO before heat treatment.
By focusing on the optically bulky pitch that is soluble in chiquinoline and controlling the chemical structure and properties of this pitch, we can improve the spinnability in the subsequent spinning process and further improve the properties of the final carbon fiber. 1412 is also improved.

ところで、本発明者らの研究によれば、上述の如く紡糸
用ピンチの分子配向性を若干低下さゼ、しかも、流動性
、高分子性とのバランスのとれたものとするには、基本
的な炭素の縮合環構造を保持したまま、芳香族性を大き
く落さない程度に水添した構造をピッチに導入すること
が有効である。このようなピッチは、核がm分水添され
た化学構造を呈しており、炭素基本骨格を崩さず、分子
の平面性を適度に歪めていると考えられる。つまり、熱
処理前のピッチの分子量、芳香化度1分子平面性を適切
な範囲にコン)p−ルするのが最も有効である。
By the way, according to the research of the present inventors, as mentioned above, it is necessary to slightly reduce the molecular orientation of the spinning pinch, and also to achieve a well-balanced balance between fluidity and polymer properties. It is effective to introduce into the pitch a hydrogenated structure that maintains the fused carbon ring structure and does not significantly reduce aromaticity. Such pitch has a chemical structure in which the nucleus is hydrogenated by m, and it is thought that the planarity of the molecule is appropriately distorted without destroying the basic carbon skeleton. In other words, it is most effective to control the molecular weight, degree of aromatization, and flatness of one molecule of pitch before heat treatment to an appropriate range.

本発明のピッチ組成物は、かかる新知見に基づくもので
あり、先ず、実質的に金蓋がキノリンに可溶性であると
いう%徴を鳴する。このことはフリーカーボン等の異物
除去を有効に実施し得るために必要である。またキノリ
ン可溶性のものは分子量がある程度揃ったピッチであり
、引続く熱処理によ−って均質な紡糸用ピッチとなり得
るためにも不可欠である。
The pitch composition of the present invention is based on this new finding, and first of all, the pitch composition of the present invention shows that substantially gold is soluble in quinoline. This is necessary in order to effectively remove foreign substances such as free carbon. In addition, quinoline-soluble pitches are pitches whose molecular weights are uniform to a certain extent, and are essential because they can be made into homogeneous pitches for spinning by subsequent heat treatment.

更に、本発明のピッチ組成物は、質量スペクトル分析(
MS)で測定した#1構造平均分子量が200〜400
であって、縮合環数2〜6の多環芳香族縮合体から主と
して構成される。これらは、熱処理によって容易に適度
な重合度まで高分子化し、且つ流動性を維持する上で必
要である。従って、これらの値が上記範囲よりl」\さ
いときは、熱処理時の重合性に欠け、一方、上記範囲を
超えるときは、熱処理時に過度の重合が生起し、流動性
に欠けた紡糸用ピッチしか形成されない。
Furthermore, the pitch composition of the present invention can be analyzed by mass spectrometry analysis (
#1 structure average molecular weight measured by MS) is 200-400
It is mainly composed of a polycyclic aromatic condensate having 2 to 6 condensed rings. These are necessary to easily polymerize to an appropriate degree of polymerization by heat treatment and maintain fluidity. Therefore, if these values are l''\ than the above range, polymerizability during heat treatment will be lacking, while if it exceeds the above range, excessive polymerization will occur during heat treatment, resulting in spinning pitch lacking fluidity. only is formed.

加えて、本発明のピッチ組成物は、20℃に於ける比重
が1.25〜1.31の範囲にある。ここで比重はピン
チの芳香族性を赤わす1r18となり、比重が上記範囲
にあるものは、芳香族性を有しつつその分子の平面性に
適当な歪を有し、分子配向性を適度に低下させるととも
に、熱処理後の分子量の増大したピッチに流動性を与え
る。しかる罠、比重が1.25より小さいものは、熱処
理した紡糸用ピッチの芳香族性が低くなり過ぎ、引続く
炭化(#、成)過程における分子平面性(配向性)の発
現、紡糸過程における潜在的な配向性の付与及びピンチ
の熱安定性に問題を生じる。一方、比重が1.31を超
えると熱処理後のピッチの流動性が悪化し、また、紡糸
過程で配向が高度に発達しやすくなるので、好ましくな
い。
In addition, the pitch composition of the present invention has a specific gravity in the range of 1.25 to 1.31 at 20°C. Here, the specific gravity is 1r18, which eliminates a pinch of aromaticity, and those with a specific gravity in the above range have aromaticity, but have appropriate distortion in the planarity of their molecules, and moderate molecular orientation. At the same time, it imparts fluidity to the pitch with increased molecular weight after heat treatment. If the specific gravity is less than 1.25, the aromaticity of the heat-treated spinning pitch becomes too low, and the development of molecular planarity (orientation) during the subsequent carbonization (#) process and the occurrence of molecular flatness (orientation) during the spinning process. Problems arise with potential orientation and pinch thermal stability. On the other hand, when the specific gravity exceeds 1.31, the fluidity of the pitch after heat treatment deteriorates, and orientation tends to develop to a high degree during the spinning process, which is not preferable.

本発明のピッチ組成物は、上記の条件を満足すると共に
、更に”C−NMR及び”H−NMR等の核磁気共鳴ス
ペクトル分析において、次のようなケミカルシフトを有
するものが好ましい。即ち、 (1118C−NMRに於いて、TM11!基準のケミ
カルシフトが、 129〜15〇四の炭素Aの含冶率・・・ 15〜25
%80〜129p% の炭素Bの含有率・・・55〜6
5%13〜53卿 の炭gcの含有率・・・ 10〜2
0tfbを有するものが好適℃ある。この条件を満たす
ものは分子配向性を好ましく歪めたピッチの特徴である
。つまり、このピンチは、■紡糸用ピッチ中に適度に歪
んだ平面性を準備し、分子配向性を好ましく低下させる
。■かなり高い芳香族性をもつ為、熱的にもかなり安定
で、熱処理後も縮合環構造を保つ。■芳香核が部分水添
されている為、(活性水素に富み)熱処理時に好ましい
分子量の増大が生ずるが流動性は維持される。また、メ
ンフェースが共存ス、る系でもメンフェースとの相溶性
が良好で、紡糸性は良好であり、更に、不融化処理時に
目゛部分水添されたところが迅速に酸化され、不融化処
理を効率的に実施することができる。■熱処理によって
生成した紡糸用ピッチは、紡糸に引続く炭化(焼成)過
程で分子平向性を回復し、良好な結晶性及び配向性を発
現する。
The pitch composition of the present invention preferably satisfies the above conditions and also has the following chemical shift in nuclear magnetic resonance spectroscopy such as "C-NMR" and "H-NMR." That is, (in 1118C-NMR, the chemical shift based on TM11! is 129-1504 carbon A content... 15-25
Carbon B content of %80-129p%...55-6
5% 13~53 charcoal gc content...10~2
A preferred temperature is 0 tfb. What satisfies this condition is a pitch characteristic that favorably distorts molecular orientation. In other words, this pinch prepares a suitably distorted planarity in the pitch for spinning, and preferably lowers the molecular orientation. ■Because it has a fairly high aromaticity, it is also quite stable thermally and maintains its condensed ring structure even after heat treatment. (2) Since the aromatic nucleus is partially hydrogenated (rich in active hydrogen), a desirable increase in molecular weight occurs during heat treatment, but fluidity is maintained. In addition, even in systems where menface coexists, the compatibility with menface is good, and the spinnability is good.Furthermore, during the infusibility treatment, the partially hydrogenated area is quickly oxidized, and the infusibility treatment can be carried out efficiently. (2) The spinning pitch produced by heat treatment recovers molecular flatness during the carbonization (firing) process following spinning, and develops good crystallinity and orientation.

(21’H−NMRに於いて、TMS基準のケミカルシ
フトが、 5〜10−の水素HA・・・・・・40〜80%1.7
〜4pPの水素HB・・・・・・15〜401%でル)
ることか好ましい。また同ケミカルシフトが 1.1〜1.7ppmの水素Hc  ・・・5%以下(
特に好ましくは3%以下) 0.3〜1.1 ppの水素HD  ・・・5チ以下(
特に好ましくは1tI6以下) であることが好ましい。
(In 21'H-NMR, the chemical shift based on TMS is 5-10-hydrogen HA...40-80%1.7
~4pP hydrogen HB...15-401%)
That's preferable. In addition, hydrogen Hc with a chemical shift of 1.1 to 1.7 ppm...5% or less (
Particularly preferably 3% or less) 0.3 to 1.1 pp of hydrogen HD...5 or less (
Particularly preferably 1tI6 or less).

また、同ケミカルシフトが、 2.5〜3pImの水素HE  ・・・8〜11%3〜
4酵の水素■、 ・・・8〜17%1.7〜2+2酵の
水素HG  ・・・5〜7 チであることが好適であり
、更に、上記の条件に加え、 5〜7pplIの水素HX1   ・・・6〜15q6
が特に好ましく・。このHHは、二重結合に由来する水
素と考えられ、前記芳香核が部分水添されていることな
示す。
In addition, hydrogen HE with the same chemical shift of 2.5 to 3 pIm...8 to 11%3 to
Hydrogen for 4 fermentations ■...8-17% Hydrogen for 1.7-2+2 ferments HG...5-7 H is suitable, and in addition to the above conditions, 5-7 pplI hydrogen HX1...6~15q6
is particularly preferable. This HH is considered to be hydrogen derived from a double bond, and indicates that the aromatic nucleus is partially hydrogenated.

これらの”H−NMRの測定値で特定される条件を満足
するものは、かなり高い芳香族性を有する為、潜在的配
向性をもつ紡糸ピッチとなし得るものであり、また、縮
合環構造を保ちつつ部分的に水添された(活性水素を含
む)構造を有する為、引続く熱処理によって、好ましい
分子量を有するにも拘らず良好な流動性な保つ紡糸用ピ
ッチとなる。また、側鎖が少ない為、熱処理時に過度の
重合及び配向性の発達な防ぐ利点がある。
Those that satisfy the conditions specified by these H-NMR measurement values have considerably high aromaticity, and therefore can be used as spinning pitches with latent orientation, and also have a fused ring structure. Due to its partially hydrogenated structure (containing active hydrogen), subsequent heat treatment results in a spinning pitch that maintains good fluidity despite having a favorable molecular weight. Since the amount is small, it has the advantage of preventing excessive polymerization and development of orientation during heat treatment.

(3)  芳香化度が0.3〜0.5の範囲内にあり、
且つH/Cが0.55〜0.8の範囲内にあることが好
ましく・。このことは、芳香核の部分水添の状態が特に
好ましい状態にあることを意味する。
(3) the degree of aromatization is within the range of 0.3 to 0.5;
And it is preferable that H/C is within the range of 0.55 to 0.8. This means that the aromatic nucleus is in a particularly favorable state of partial hydrogenation.

次に、本発明でいう構造単位体平均分子量。Next, the average molecular weight of the structural unit in the present invention.

芳香化度、 ’ H−NMR、13C−NMR、H/ 
C@の測定法について説明する。
Aromatization degree, 'H-NMR, 13C-NMR, H/
The method for measuring C@ will be explained.

(1)  構造単位体平均分子量 質量スペクトル分析(MS)により測定する。MSは装
置として日本電子製JMS−D300型スペクトロメー
ターを用い、イオン化方法として畦を用1、あ。
(1) Structural unit average molecular weight Measured by mass spectrometry (MS). For MS, a JEOL JMS-D300 spectrometer was used as the device, and a ridge method was used as the ionization method.

(2)  芳香化度 KBr錠剤法で測定した赤外吸収スベク)/し分析(I
R)より、下記式により算出する。
(2) Aromatization degree KBr Infrared absorbance analysis (I) measured by tablet method
R), it is calculated by the following formula.

芳香化度− 3050cut−”強度/ (3050cm−”強度+
2925fi−’強度)なお、IR測定装置は、島津製
作所製IR−27G型を使用。
Aromatization degree - 3050cut-" strength / (3050cm-" strength +
2925fi-' intensity) The IR measuring device used is the IR-27G model manufactured by Shimadzu Corporation.

(3)と肚」遣1 測定装置として日本電子製PS−too’5スペクトロ
メーターを用い、ケミカルシフトはTMSを内標準とし
てγ値でpわす。
(3) Testing 1 A JEOL PS-too'5 spectrometer was used as a measuring device, and the chemical shift was expressed as a γ value using TMS as an internal standard.

NMRスペクトルは溶聾、にCDCノ、を用(Sて測定
The NMR spectra were measured using CDC (S).

(4)  ジεづ」1 測定装置として日本電子figs−100型スペクトロ
メーターを用い、ケミカルシフトはTMSを内標準とし
てγ値で表わす。
(4) Diεzu'1 A JEOL FIGS-100 type spectrometer was used as a measuring device, and the chemical shift was expressed as a γ value using TMS as an internal standard.

NMRスペクトルは溶媒にCDCl3を用(・、ゲーテ
ッドカップリング非NOEモード 、<ルス繰返し時間
7秒で測定。
NMR spectra were measured using CDCl3 as a solvent (・, gated coupling non-NOE mode, <7 seconds of Luss repetition time.

(51H/C JIS M−8813に従って測定した元素分析より次
式に従って算出する。
(51H/C Calculated according to the following formula from elemental analysis measured according to JIS M-8813.

)1/C=(H分析値/l)/(c分析値/12)上述
したような種々の特徴をもつ本発明のピッチ組成物は、
これをr過してフリーカーボン等を除去したのち、熱処
理することにより、多環縮合化合物のもつ特殊な基本構
造を維持したまま高分子化する。
)1/C=(H analysis value/l)/(c analysis value/12) The pitch composition of the present invention having various characteristics as described above,
This is filtered to remove free carbon and the like, and then heat treated to form a polymer while maintaining the special basic structure of the polycyclic condensed compound.

熱処理は、キノリン可溶性の成分が少(とも30%、好
ましくは50〜70%含まれる状態に達したときに終了
するのがよく、この段階まで熱処理したものは、紡糸性
が良好である。熱処理は減圧下で行うこともでき、また
組成物中に含まれる溶媒を除去したのち常圧下で行うこ
ともできる。
The heat treatment is preferably terminated when the quinoline-soluble component is contained in a small amount (at least 30%, preferably 50 to 70%), and those heat-treated to this stage have good spinnability.Heat treatment can be carried out under reduced pressure, or can be carried out under normal pressure after removing the solvent contained in the composition.

かかる本発明のピッチ組成物は、原料ピッチをオに製後
、特定の水素化溶媒な用いて水添処理することによって
製造される。しかし、従来公知のネオメゾフェースやド
ーマントメソフェースの如く−たんメンフェースを経由
する方法では製造することができない。 □ 次に、原料ピッチから本発明のピッチ組成物をつくり、
更にこれを熱処理して紡糸用ピッチとする例を具体的に
説明する。原料ピッチとしては、コールクール、コール
タールピッチ、石炭液化物などの石炭系重質油1石油の
常圧残留油、減圧蒸留残油及びこれらの残油の熱処理に
よって副生ずるタールやピッチ、オイルサンド。
The pitch composition of the present invention is produced by processing raw material pitch and then hydrogenating it using a specific hydrogenation solvent. However, it cannot be produced by a method that involves a membrane phase, such as the conventionally known neo-mesophase or dormant mesophase. □ Next, the pitch composition of the present invention is made from the raw pitch,
Further, an example in which this is heat-treated to produce pitch for spinning will be specifically explained. Raw material pitches include coal-based heavy oils such as coal cool, coal tar pitch, and coal liquefied petroleum, atmospheric residual oil from petroleum, vacuum distillation residual oil, and tar, pitch, and oil sand produced as by-products of heat treatment of these residual oils. .

ビチューメンなどの石油系重質油な用いることができる
が、コールタールピンチが本発明のピッチ組成りを製造
し易いので好ましい。
Although petroleum-based heavy oils such as bitumen can be used, coal tar pinch is preferred because it facilitates the production of the pitch composition of the present invention.

本発明のピッチ組成物は、前記市販原料ピッチを精製後
、特定の水素化溶媒下で加熱して第1段処理することに
よって製造される。次に、必架があれば前記溶媒を除去
したのち又は除去しつつ、これを高温に加熱する第2段
処理を施すことによって紡糸用ピッチが製造される。
The pitch composition of the present invention is produced by refining the commercially available raw material pitch and then subjecting it to a first stage treatment by heating it in a specific hydrogenation solvent. Next, pitch for spinning is produced by performing a second stage treatment of heating the solvent to a high temperature after or while removing the solvent, if any.

第1段処理で使用する水素化溶媒としては、テトラヒト
−キノリン(以下THQと略称する)が最適であるが、
キノリンとTHQとの混合物を使用してもよく、また、
触媒(コバルト−モリブデン系、酸化鉄系)の存在下で
水素ととも340〜450℃で10〜60分間加熱する
As the hydrogenation solvent used in the first stage treatment, tetrahydroquinoline (hereinafter abbreviated as THQ) is most suitable.
A mixture of quinoline and THQ may also be used;
Heat with hydrogen at 340-450° C. for 10-60 minutes in the presence of a catalyst (cobalt-molybdenum based, iron oxide based).

このように処理した生成物は、次の第2段処理に付され
る。
The product thus treated is subjected to the next second stage treatment.

第2段処理では、THQ処理ピッチは減圧下、例えば圧
力50 mM9以下で、450℃以上、好ましくは45
0〜550℃で5〜60分間保持する。この場合、この
ような減圧処理の代りに、THQを除去したのち常圧下
で450〜550もよい。
In the second stage treatment, the THQ treatment pitch is 450°C or higher, preferably 45°C, under reduced pressure, e.g., a pressure of 50mM9 or lower.
Hold at 0-550°C for 5-60 minutes. In this case, instead of such a reduced pressure treatment, after THQ is removed, the temperature may be 450 to 550 at normal pressure.

本発明のピッチ組成物は、前記#41段処理に特開昭5
9−36724(6) おいて、原料ピンチの組成や性質に応じて処理条件を上
記範囲内で適宜選定することによって、容易に製造する
ことができる。
The pitch composition of the present invention was applied to the #41 stage treatment in JP-A No. 5
No. 9-36724 (6) can be easily manufactured by appropriately selecting the processing conditions within the above range depending on the composition and properties of the raw material pinch.

以上述べたような本発明のピッチ組成惜を熱処理して得
た紡糸用ピッチは、紡糸温度において適度の粘弾的特性
を有し、溶融紡糸性はきわめて良好である。
The spinning pitch obtained by heat-treating the pitch composition of the present invention as described above has appropriate viscoelastic properties at the spinning temperature and has extremely good melt spinnability.

溶融紡糸は、それ自体公知の方法で行うことができる。Melt spinning can be performed by a method known per se.

例えば、本発明のピンチ組成物を孔径0.1〜0.8鰭
の紡糸孔をもつ口金から軟化点より50〜100℃高い
温度で押出し、紡糸口金から吐出したフィラメントを紡
糸(巻取)速度300〜150 o@/分で巻取ること
により容易に繊維化することができる。得られたピッチ
繊維は、次いでWI素の存在下にO,S〜3℃/分の昇
温速度′で250〜350℃まで加熱し、5〜30分間
維持することによって不融化処理し、これを更に、不活
性ガス中で2〜bの昇温速度で1000〜1500℃ま
で加熱し、この温度に10〜30分間維持することによ
って炭化処理を行う。
For example, the pinch composition of the present invention is extruded from a spinneret having spinning holes with a diameter of 0.1 to 0.8 fins at a temperature 50 to 100°C higher than the softening point, and the filament discharged from the spinneret is spun (taken up) at a speed of It can be easily made into fibers by winding at 300 to 150 o@/min. The obtained pitch fibers were then heated to 250-350°C in the presence of WI element at a heating rate of 3°C/min and maintained for 5-30 minutes to make them infusible. is further heated to 1000 to 1500° C. at a heating rate of 2 to b in an inert gas, and carbonized by maintaining this temperature for 10 to 30 minutes.

本発明のピッチ組成物を原料とする炭素繊維は、この炭
化処理の過程において完全なメ、ン7エースとなり、充
分に配向し且つ巨大なドメインを含まない緻密な構造の
炭素繊維を形成する。
The carbon fibers made from the pitch composition of the present invention become completely oriented during the carbonization process, forming carbon fibers with a dense structure that is fully oriented and does not contain large domains.

得られる炭素繊維は200に9/−以上の高強度とto
ton/−以上のモジュラスを有し、きわめて性能のす
ぐれたものとなる。
The obtained carbon fiber has a high strength of 200 to 9/- or more and to
It has a modulus of ton/- or more, and has extremely excellent performance.

次に、実施例及び比較例により本発明を更に詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

なお、各実施例中の炭素繊維の繊維径(糸径)。In addition, the fiber diameter (thread diameter) of the carbon fiber in each example.

引張強度、伸び率、モジュラスはJI8 Xt 760
1「炭素繊維試験方法」に従って測定した。
Tensile strength, elongation rate, and modulus are JI8 Xt 760
Measured according to 1 "Carbon Fiber Test Method".

なお、繊維径はへリウムーネオンレーザーを使用して測
定した。
Note that the fiber diameter was measured using a helium-neon laser.

実施例−1 itコールタール中ピッチ134gと、THQ402g
とを、電磁誘導回転攪拌装置を備えた8US−:116
製11オートクレーブに仕込み、嗜素で充分置換後、内
圧をOkf/asiGとし、密閉後、攪拌しながら43
 G”Cまで昇温し、430℃に達した後、さらに15
分間維持した。
Example-1 It coal tar medium pitch 134g and THQ 402g
8US-:116 equipped with an electromagnetic induction rotating stirring device.
After replacing the autoclave sufficiently with oxygen, the internal pressure was set to Okf/asiG, and after sealing it, the autoclave was heated to 43℃ while stirring.
After increasing the temperature to G"C and reaching 430℃,
It was maintained for a minute.

しかる後、室温まで冷却し、攪拌を止め、内容物を取り
出した。該内容物を水流7スビレ一ター減圧下A4定性
f紙で不溶中を除去した。かくして得られた母液を、2
90 ’C10sn+Torr雰囲気中で熱処理し、炭
素繊維紡糸用ピッチを調製し、紡糸、不融化、焼成を行
ない炭素繊維とし、物性を調べた。
Thereafter, the mixture was cooled to room temperature, stirring was stopped, and the contents were taken out. The undissolved contents were removed from the contents using A4 qualitative paper under reduced pressure using a water jet and a 7-filter filter. The mother liquor thus obtained was
A pitch for carbon fiber spinning was prepared by heat treatment in a 90'C10sn+Torr atmosphere, and carbon fibers were obtained by spinning, infusibility, and sintering, and the physical properties were investigated.

その結果、該原料ピッチ組成物のM8で測定した構造単
位体平均分子量は23Gであり、縮合環数4〜5と考え
られた。水を媒体として測定した20℃に於ける比重は
1.257であり、市販コールタール中ピンチの比重1
.284より減少しており、芳香族性の低下を示してい
た。
As a result, the average molecular weight of the structural unit measured by M8 of the raw pitch composition was 23G, and it was thought that the number of condensed rings was 4 to 5. The specific gravity at 20°C measured using water as a medium is 1.257, and the specific gravity of a pinch in commercially available coal tar is 1.257.
.. 284, indicating a decrease in aromaticity.

この様子をさらに詳しく調べる為、”C−NMR。In order to investigate this situation in more detail, we used "C-NMR."

”H−NMR,IR,元素分析を実施した。``H-NMR, IR, and elemental analysis were conducted.

CDCj、を溶媒として、グーデッドデカップリング非
NOEモード、パルス繰返時間7秒(ゲーテッド■法と
略記)で測定1−た”C−NMRの結果、テトラメチル
シラン(TMS )基準のケミカルシフトで129〜1
50%mに現われる炭素A、80〜129Mに現われる
炭素B、13〜53炉に現われる炭素Cの割合が、溶媒
を除く全検出炭素に対し、各々A −20,5%、B=
58.6チ、C=17.6%であり、市販コールタール
中ピッチのA −35,8%、B−55,3チ。
Measured using CDCj as a solvent, good decoupling, non-NOE mode, and pulse repetition time of 7 seconds (abbreviated as gated ■ method).1-C-NMR results, chemical shift based on tetramethylsilane (TMS). 129-1
The proportions of carbon A appearing at 50% m, carbon B appearing at 80-129M, and carbon C appearing at 13-53 furnace are A -20.5% and B = respectively, relative to the total detected carbon excluding the solvent.
58.6 inches, C=17.6%, pitch A-35.8%, B-55.3 days in commercially available coal tar.

C=8.0’%と比較した場合、3級芳香族炭素及びオ
レフィン炭素の合計は、T 11 Q処理によりほとん
ど変化しないのに対し、4級芳香族炭素が旗少し、脂肪
族炭素が増加していることが明らかにlIg、Hめられ
た。
When compared with C=8.0'%, the total of tertiary aromatic carbon and olefinic carbon hardly changes due to T 11 Q treatment, while quaternary aromatic carbon slightly increases and aliphatic carbon increases. It was obvious that he was doing this.

さらに、CDCj、を溶媒として測定したIH−NMR
の結果、HA−a 3.1 %、n、 −a 1.1 
%。
Furthermore, IH-NMR measured using CDCj as a solvent
As a result, HA-a 3.1%, n, -a 1.1
%.

Hc−3,5%、HD−0,9%、HG−5,8%、H
,−9,2%、HF−t 2.8 %、HH−11,2
%であった、。
Hc-3,5%, HD-0,9%, HG-5,8%, H
, -9,2%, HF-t 2.8%, HH-11,2
%Met,.

これは、市販コールタール中ピッチのHA−88,5%
 、 HB = 9.6 % 、 If(= 1.6%
+ Hl) ” O% e HG−0,8チ、 HF、
冒3.7チ、H,=2.7チ、HE11.9チと比較し
た場合、各種ナフテン水素に相当するHB、 HG、 
HT!、、 HF  及び、′オレフィン水素に相当す
るHHカ大きく増加する反面、側鎖水素に相当するHc
、 HDの増加が小さいことが示されている。かかるデ
ータは市販コールタール中ピッチの多環縮合骨格を維持
したまま、芳香環が部分的に水添された特殊な構造を有
していることを示す。かかる特殊なS造は、分子平面性
に歪を与え、ピッチモビリティを高める作用をし、且つ
、その歪は炭化(焼成)過程で脱水素が生じることによ
り、容易に修復される働きをしているものと考えられる
This is HA-88.5% pitch in commercially available coal tar.
, HB = 9.6%, If(= 1.6%
+ Hl) ” O% e HG-0,8chi, HF,
HB, HG, which correspond to various naphthene hydrogens,
HT! ,, HF and 'Hc, which corresponds to side chain hydrogen, increase significantly while
, it is shown that the increase in HD is small. These data indicate that pitch in commercially available coal tar has a special structure in which aromatic rings are partially hydrogenated while maintaining the polycyclic condensed skeleton. This special S structure exerts a strain on the molecular planarity and increases pitch mobility, and the strain is easily repaired by dehydrogenation occurring during the carbonization (firing) process. It is thought that there are.

なお、KBr成形法で測定したIRより次式%式% ) で算出した芳香化度、及びJIBM−8813に従って
測定した元素分析より次式、 HlC−(H分析値、”−1)/(C分析値/12)に
従って求めたHlCの値は各々0.43及び0.70で
あった。かかる芳香化度、及びHlCの値は、水添ピッ
チとしては、なお高い芳香化度を示しており、効果的な
水添と炭化(焼成)過程での容易な平面構造の修復の可
能性を示している。
In addition, the degree of aromatization was calculated from the IR measured by the KBr molding method using the following formula (% formula %), and from the elemental analysis measured according to JIBM-8813, the following formula: HlC-(H analysis value, "-1)/(C The HIC values determined according to analysis value/12) were 0.43 and 0.70, respectively.These aromatization degrees and HIC values indicate a still high degree of aromatization for a hydrogenated pitch. , demonstrating the possibility of facile planar structure restoration through effective hydrogenation and carbonization (calcination) processes.

該原料ピッチ組成物を465℃、 10Torr T1
5分間窒素雰囲気中で攪拌下熱処理し、炭素繊維紡糸用
ピッチとした。該紡糸用ピッチは、330℃に於て約1
000 poiseの粘度を有する均一な液体となる。
The raw pitch composition was heated at 465°C and 10 Torr T1.
The mixture was heat-treated under stirring in a nitrogen atmosphere for 5 minutes to obtain pitch for carbon fiber spinning. The spinning pitch is approximately 1 at 330°C.
It becomes a homogeneous liquid with a viscosity of 000 poise.

該紡糸用ピッチを定速降下プランジャーな有するシリン
グ゛−に入れ、充分脱泡後、370℃で吐出し、100
01rL/分の速波で巻取り、ピッチ+k Haとした
。該ピッチ繊維を、空気気流中で200℃から300℃
までの間を2℃/分の昇温速度で熱処理後、さらに30
0”Cで15分間熱処理し不融化繊維とし、引続き窒素
気流中で1500℃、15分間炭化(焼成)処理して炭
素繊維とした。該炭素繊維は8.5μの糸径。
The spinning pitch was put into a cylinder equipped with a constant-speed descending plunger, and after sufficient defoaming, it was discharged at 370°C and heated to 100°C.
It was wound with a fast wave of 01 rL/min, and the pitch was set to +k Ha. The pitch fibers are heated at 200°C to 300°C in an air stream.
After heat treatment at a heating rate of 2°C/min until
The carbon fibers were heat treated at 0''C for 15 minutes to make them infusible fibers, and then carbonized (fired) in a nitrogen stream for 15 minutes at 1500C to make carbon fibers.The carbon fibers had a thread diameter of 8.5μ.

2sakg/−の強度、と16 ton /−のモジュ
ラス、1.5%の伸度な有していた。
It had a strength of 2 sakg/-, a modulus of 16 ton/-, and an elongation of 1.5%.

市販コールタールピッチを、直接、同様の処理をして作
成した炭素繊維の物性は、強度75kg/ mtA 、
モジュラス4ton/−と低いものであった。
The physical properties of carbon fiber made by directly applying the same treatment to commercially available coal tar pitch are as follows: strength: 75 kg/mtA;
The modulus was as low as 4 tons/-.

比較例−1 実施例−1に使用したと同じ市販コールタール中ピンチ
10’Op’を、攪拌機付きガラス製三ロフラスコに仕
込み、窒素気流中、常圧400℃、10時間熱処理後、
取り出し、該熱処理ピンチ1重量部に対し、65III
tの脱水エチレンジアミン中で骸ピッチと等重量部の金
属リチウムにより80〜90℃で還元後、常法により中
和し、水洗、濾過を繰返し、水添コールタールピッチを
得た。該水添ピッチの一部をサンプリングし、実施例−
1と同様の分析を行ない、残りは熱処理し紡糸用ピッチ
とした後、実施例−1に準じ炭素繊維とし、物性を測定
した。
Comparative Example-1 Pinch 10'Op' in the same commercially available coal tar as used in Example-1 was charged into a glass three-lough flask equipped with a stirrer, and after heat treatment at normal pressure of 400°C in a nitrogen stream for 10 hours,
Take out and add 65III to 1 part by weight of the heat treated pinch.
After reduction at 80 to 90° C. with metal lithium in an amount equal to the weight of the skeleton pitch in dehydrated ethylene diamine (T), neutralization was performed by a conventional method, water washing and filtration were repeated to obtain hydrogenated coal tar pitch. A part of the hydrogenated pitch was sampled, and Example-
The remaining fibers were subjected to the same analysis as in Example 1, and the remaining fibers were heat-treated to make pitch for spinning, then made into carbon fibers according to Example 1, and their physical properties were measured.

その結果、前記水添ピンチの比重は1,147と大きく
減少しており、芳香化g、、H/Cも、各々、0.17
. 0.99であり、芳香族性が大きく減少していた。
As a result, the specific gravity of the hydrogenated pinch was greatly reduced to 1,147, and the aromatization g, H/C was also 0.17.
.. 0.99, indicating a significant decrease in aromaticity.

又、”C−NMR,及び’H−NMRより、A=’5.
8%、B=13.3%、C=77.8% 、 HA= 
15.8%、 HB= 46.8%、Hc−19,7%
、 HD= 11.7%、 HG= 17.4 q6.
 HE= 10.7係、 HF= 11.0%、 HH
= 7.6%であった。かかるデータは多環縮合骨格が
かなり破壊され、且つ芳香環が部分水添でとどまらず、
完全に水添されていることを示す。かかる構造のピッチ
は、単なる脱水素では分子平面性が修復されに(く、又
、熱的に不安定である為、紡糸用ピンチへの調製時、及
び、不融化、焼成時に加わる熱により、分子鎖の切断、
低分子物の生成が生じ易いと考えられ、炭素繊維の欠陥
が増大する惧れが高い。該水添ピッチをN2気流中で常
圧、400℃、1時間攪拌下熱処理し、紡糸用ピッチと
した後、実施例−1に準じ炭素繊維とし物性を測定した
。その結果、糸径は9重2強度は150kg/ −、モ
ジュラスは1o ton /−であった。
Also, from "C-NMR and 'H-NMR, A='5.
8%, B=13.3%, C=77.8%, HA=
15.8%, HB=46.8%, Hc-19.7%
, HD= 11.7%, HG= 17.4 q6.
HE= 10.7 factor, HF= 11.0%, HH
= 7.6%. Such data shows that the polycyclic fused skeleton is considerably destroyed, and the aromatic ring is not only partially hydrogenated,
Indicates complete hydrogenation. The molecular planarity of pitch with such a structure cannot be restored by simple dehydrogenation (also, it is thermally unstable), so it is difficult to restore the molecular planarity of pitch by simple dehydrogenation. molecular chain scission,
It is thought that low-molecular substances are likely to be produced, and there is a high possibility that defects in carbon fibers will increase. The hydrogenated pitch was heat-treated in a N2 stream at normal pressure at 400° C. for 1 hour with stirring to obtain pitch for spinning, and then made into carbon fiber according to Example 1 and its physical properties were measured. As a result, the yarn diameter was 9 times, the strength was 150 kg/-, and the modulus was 1 o ton/-.

比較例−2 市販石油ピッチ(Ashland社製)409を撹拌根
付きガラス製三ロフラスコに仕込み、窒素気流中、常圧
、  430’C,5,5時間熱処理後取り出し、該熱
処理ピッチ1重量部に対し、65m1の脱水エチレンジ
アミン中で該熱処理ピッチと等重量部の金属リチウムで
80〜90’C下還元後、常法により中和し、水洗、濾
過を繰返し、水添ピッチを得た。
Comparative Example 2 Commercially available petroleum pitch (manufactured by Ashland) 409 was placed in a glass three-loaf flask with stirring roots, heat treated at 430'C for 5.5 hours in a nitrogen stream at normal pressure, and then taken out. The pitch was reduced in 65 ml of dehydrated ethylenediamine at 80-90'C with an equal weight part of metallic lithium to the heat-treated pitch, neutralized by a conventional method, washed with water, and filtered repeatedly to obtain a hydrogenated pitch.

該水添ピッチの一部をサンプリングし、実施例−1と同
様の分析を行ない、残りは熱処理し、紡糸用ピッチとし
た後、実施例−1に準じ炭素繊維とし、物性を測定した
A part of the hydrogenated pitch was sampled and analyzed in the same manner as in Example-1, and the rest was heat-treated to make pitch for spinning, and then made into carbon fiber according to Example-1, and its physical properties were measured.

その結果、前記の水添ピッチの比重は1.10と小さく
、芳香化度、H/Cも各々、0.Ql。
As a result, the specific gravity of the hydrogenated pitch is as small as 1.10, and the degree of aromatization and H/C are also 0. Ql.

1.14であり、芳香族性が大きく減少していた。1.14, indicating a significant decrease in aromaticity.

又、′3C−NMR,及び’H−NMRよりA = 5
.3%。
Also, from '3C-NMR and 'H-NMR, A = 5
.. 3%.

B=12.7  % 、e−78,9% 、   H人
=  1 3.s  % 。
B=12.7%, e-78.9%, H person=1 3. s%.

HB= 45.5%、 Hc= 22.6%、 HD=
 13.4 %。
HB= 45.5%, Hc= 22.6%, HD=
13.4%.

HG= 18.5%、HE=9.7%、 HF= 9.
1%”11=4.2%であった。かがるデータは、多環
縮合環骨格がかなり破壊され、且つ芳香環が部分水添で
とどまらず、完全に水添されていることを示す。
HG=18.5%, HE=9.7%, HF=9.
1%"11=4.2%. The data show that the polycyclic condensed ring skeleton was considerably destroyed and the aromatic ring was not only partially hydrogenated but completely hydrogenated. .

かがる構造のピッチは、単なる脱水素では分子平面性が
修復されにり<、又、熱的に不安定である為、紡糸用ピ
ッチへの調製時及び不融化。
Pitch with a curved structure cannot be restored to its molecular planarity by simple dehydrogenation, and is thermally unstable, so it cannot be used when preparing pitch for spinning or infusible.

焼成時に加わる熱により、分子鎖の切断、低分子物の生
成が生じ易いと考えられ、炭素繊維の欠陥が増大する惧
れが高い。
It is thought that the heat applied during firing tends to cause molecular chain scission and generation of low-molecular substances, and there is a high possibility that defects in carbon fibers will increase.

該水添ピッチをN2気流中で常圧、400℃。The hydrogenated pitch was heated at normal pressure and 400°C in a N2 stream.

1時間攪拌下熱処理し、紡糸用ピッチとした後実施例−
1に準じ炭素繊維とし物性を測定した。
After heat treatment with stirring for 1 hour to prepare pitch for spinning, Example-
The physical properties of carbon fiber were measured according to 1.

その結果、糸径は9重2強度は140 kg/d。As a result, the thread diameter was 9 layers and the strength was 140 kg/d.

モジュラスは10.5 ton /−であった。The modulus was 10.5 tons/-.

比較例−3 市販石油ピンチ(A4hland社製)2ooyを攪拌
機付きガラス製三ロフラスコに仕込み、窒素気流中、常
圧、400’C,1時間熱処理後取り出し粉砕後肢熱処
理ピッチと等重量のテトラヒドロフラン(THp)中に
入れ、室温、窒素気流中で1時間攪拌した。しかる後、
該溶液をs4定性f紙と金巾を用いN、加圧沢過機で濾
過し、不溶物を除去した。が(して得られたf液に、T
HFK対し4倍量のトルエンを窒素気流中、攪拌下添加
し、さらにその状態で1時間攪拌を続けた。沈殿してき
たピッチなG−4グラスフイルターで沢遇することによ
り収集し、しかる後常法により乾燥した。該溶剤分別ピ
ッチの一部をサンプリングし、実施例−1と同様の分析
を行ない、残りは熱処理し、紡糸用ピッチとした後、実
施例−1に準じ炭素繊維とし、物性を測定した。
Comparative Example 3 Two ounces of commercially available petroleum pinch (manufactured by A4hland) were placed in a three-hole glass flask equipped with a stirrer, and after heat treatment at 400'C in a nitrogen stream for 1 hour, the same weight of tetrahydrofuran (THp) as the crushed hindlimb heat-treated pitch was taken out. ) and stirred for 1 hour at room temperature in a nitrogen stream. After that,
The solution was filtered with N and pressure filter using S4 qualitative F paper and a gold cloth to remove insoluble matter. (To the f solution obtained, T
Four times the amount of toluene relative to HFK was added under stirring in a nitrogen stream, and stirring was continued for 1 hour. The precipitate was collected by filtering it through a pitchy G-4 glass filter, and then dried by conventional methods. A part of the solvent-fractionated pitch was sampled and analyzed in the same manner as in Example-1, and the remainder was heat-treated to make pitch for spinning, and then made into carbon fiber according to Example-1, and its physical properties were measured.

その結果、前記溶剤分別ピッチの比重は、1.289で
あり、芳香化度、H/Cは各々、0.4 a 、  o
、e 4 テアツタ。又、′sC−NMR1及び’H−
NMRよりA= t 5.7 (11,B= 42.3
%、C= 40.7%、1(A−56,5%、  H,
= 35.9%、Hc=4.1%、 HD= 1.7%
、 HQ= 5.0チ、 HE= 13.4条、 HF
= 4.7%、 HH= 3.0%であった。かかるデ
ータは、高度に発達した芳香族多環縮合環より成り、分
子平面性が優れていることを示す。
As a result, the specific gravity of the solvent fractionated pitch was 1.289, and the degree of aromatization and H/C were 0.4 a and 0.4 o, respectively.
, e 4 Tea Tsuta. Also, 'sC-NMR1 and 'H-
From NMR, A = t 5.7 (11, B = 42.3
%, C = 40.7%, 1 (A-56,5%, H,
= 35.9%, Hc = 4.1%, HD = 1.7%
, HQ= 5.0chi, HE= Article 13.4, HF
= 4.7%, HH = 3.0%. These data indicate that it is composed of highly developed aromatic polycyclic condensed rings and has excellent molecular planarity.

かかる構造のピッチは、紡糸用ピンチへの調製熱処理に
おいて、高度に発達したメソフェースを与え、これが炭
素繊維中に巨大な葉状ドメントを形成し、糸に縦割れを
生せしめる原因となる可能性が高いと考えられる。
The pitch of such a structure gives a highly developed mesophase during the preparative heat treatment to the spinning pinch, which is likely to form giant lobe-like domains in the carbon fiber and cause longitudinal cracks in the yarn. it is conceivable that.

該溶剤分別ピンチをN2気流中、常圧、440℃、15
分間攪拌下熱処理し、紡糸用ピッチとした彼、実施例−
IK準じ炭素繊維とし、物性を測定した。その結果、糸
に縦割れを生じている物が認められ、強度は150〜1
00 kg/d。
The solvent fractionation pinch was heated in a N2 stream at normal pressure at 440°C for 15 minutes.
Example 1: Heat treated with stirring for minutes to prepare pitch for spinning.
Carbon fibers were prepared according to IK, and the physical properties were measured. As a result, some yarns were found to have vertical cracks, and the strength was 150 to 1.
00 kg/d.

モジュラスは8〜1ston/−の範囲にバラライてい
た。
The modulus varied in the range of 8 to 1 ston/-.

比較例−4 実施例−1で使用したと同じ市販コールタール中ピッチ
200gを攪拌機付きガラス製三ロフラスコに仕込み、
窒素気流中、常圧、400℃、1時間熱処理後取り出し
、比較例−3に準じて溶剤分別を行ない、溶剤分別ピッ
チを得た。
Comparative Example-4 200 g of pitch in the same commercially available coal tar as used in Example-1 was charged into a glass three-lough flask equipped with a stirrer.
After heat treatment in a nitrogen stream at normal pressure and 400° C. for 1 hour, the sample was taken out and subjected to solvent fractionation in accordance with Comparative Example 3 to obtain a solvent fractionated pitch.

該溶剤分別ピッチの一部をサンプリングし、実施例−1
と同様の分析な行ない、残りは熱処理し、紡糸用ピッチ
とした後、実施例−1に準じ炭素繊維とし、物性を測定
した。
A part of the solvent fractionation pitch was sampled and Example-1
The remaining fibers were subjected to the same analysis as above, and the remaining fibers were heat-treated and used as pitch for spinning, and then made into carbon fibers according to Example 1, and their physical properties were measured.

その結果、前記溶剤分別ピッチの比重は、1.335で
あり、芳香化度、H/’Cは各々、0.71 、 0.
55であり、極めて高い芳香族性を示していた。又、”
C−NMR,”H−NMRよりA口31.6%、B=5
7.7%、C=8.8%、I(A−76,0%、 ’H
B= 17.5%、Hc−3,3fD、HD!3.4 
% 、 H,= 0.6%l H,= 4.8 % 、
 H,−3,8%。
As a result, the specific gravity of the solvent fractionated pitch was 1.335, and the degree of aromatization and H/'C were 0.71 and 0.71, respectively.
55, indicating extremely high aromaticity. or,"
C-NMR, "A port 31.6% from H-NMR, B = 5
7.7%, C=8.8%, I(A-76,0%, 'H
B=17.5%, Hc-3,3fD, HD! 3.4
%, H, = 0.6%l H, = 4.8%,
H, -3.8%.

HH−1%であった。かかるデータは多環縮合環骨格が
発達しており且つほとんど芳香環より成ることを示す。
It was HH-1%. These data indicate that the polycyclic fused ring skeleton is well-developed and consists mostly of aromatic rings.

かかる構造のピッチはすでた良好な分子千曲性を有して
いると考えられ、紡糸用ソ”ソチへの調製熱処理に於て
、高度に発達したメンフェースを与え、これが、炭素繊
維中に巨大な葉状ドメインを形成し、糸に縦割れを生せ
しめる原因となると考えられる。
Pitch with such a structure is considered to have good molecular bending properties, and it gives a highly developed membrane during the heat treatment to prepare the carbon fiber for spinning. It is thought that this forms a huge foliate domain, which causes vertical cracks in the thread.

該溶剤分別ピッチなN2気流中で、常圧、450℃、1
0分熱処理し、紡糸用ピッチとした後、実施例−1に準
じ炭素繊維とし、物性を測定した。その結果、糸に1M
割れが観察され、強度は150〜1(10kg7 ma
rモジュラスは8〜12ton /−の範kIIIにバ
ラライていた。
The solvent was separated at normal pressure, 450°C, and 1
After heat-treating for 0 minutes to prepare pitch for spinning, carbon fibers were prepared according to Example 1, and physical properties were measured. As a result, 1M in the thread
Cracks were observed, and the strength was 150-1 (10kg7 ma
The r modulus varied in the range kIII from 8 to 12 tons/-.

比較例−5 大流り1−1に使用したと同じ市販コールタール中ピッ
チをキノリンにm ’91(、PilAすることにより
、ピッチ中の異物及び高度に発達した炭化物を除去し、
次いで、キノリンを留去することKよりコールタール中
ピッチ中のキノリン可溶成分を得た。該キノリン可溶ピ
ッチの一部をサンプリングし、実施例−1と同様の分析
を行ない、残りは熱処理し、紡糸用ピッチとした後、実
施例−1に準じ炭素繊維を作成した。
Comparative Example-5 The same commercially available coal tar pitch used in Onagare 1-1 was treated with quinoline m'91 (, PilA) to remove foreign substances and highly developed carbides in the pitch,
Then, quinoline was distilled off to obtain a quinoline-soluble component in pitch in coal tar. A part of the quinoline-soluble pitch was sampled and analyzed in the same manner as in Example-1, and the rest was heat-treated to make pitch for spinning, and then carbon fibers were produced according to Example-1.

その結果、キノリン可溶ピッチの比重は、1.341で
あり、芳香化度、H/Cは各々0.66゜0.55であ
り、高い芳香族性を示していた。又、”C−NMR,1
H−NMRよりA −35,8%、B≠55.3%、 
 c = s、o 嗟、  HA= 8 s、s tl
D、  HB−9,6%、 Ho= 1.6%、HD=
O%、  HG= 0.8%。
As a result, the specific gravity of the quinoline-soluble pitch was 1.341, and the degree of aromatization and H/C were each 0.66° and 0.55, indicating high aromaticity. Also, “C-NMR, 1
From H-NMR, A -35.8%, B≠55.3%,
c = s, o 嗟, HA = 8 s, s tl
D, HB-9.6%, Ho=1.6%, HD=
O%, HG=0.8%.

HE=3.7%、  HF=−2,7%、HH=1.9
%であった。
HE=3.7%, HF=-2.7%, HH=1.9
%Met.

かかるデータは、多環縮合環が発達しており且つ縮合環
がはとんど芳香環より成ることを示している。かかる構
造のピッチは、すでに良好な分子平面性を有していると
考えられ、紡糸用ピッチへの11製熱処理に於て、高度
に発達したメンフェースを与え、これが炭素繊維中に巨
大な葉状ドメインを形成し、糸に縦割れを生せしめる原
因となると考えられる。
These data indicate that polycyclic fused rings are well developed and that the fused rings consist mostly of aromatic rings. Pitch with such a structure is considered to already have good molecular planarity, and in the heat treatment of 11 to form pitch for spinning, it gives a highly developed membrane surface, which creates giant leaf-like structures in the carbon fiber. It is thought that this forms domains and causes longitudinal cracks in the yarn.

該千ノリン可溶ピッチをN、気流中、攪拌下。The 1,000N soluble pitch was mixed with N in a stream of air while stirring.

常圧で400℃、420分熱処理し、紡糸用ピッチとし
た。咳紡糸用ピッチは、メゾフェースより成る高粘度部
と非メゾフェースより主として成る低粘度部に極めて分
離しやすく、実施例=1に準じたピッチ繊維の作成は極
めて困難であった。かろうじて得られた少量のピッチ繊
維を不融化、焼成した結果、炭素繊維には縦割れが観察
され、強度は80〜140 kg / −*モジュラス
は7〜1ston/−の範囲にバラライていた。
It was heat-treated at 400° C. for 420 minutes at normal pressure to obtain pitch for spinning. Pitch for cough spinning was extremely easy to separate into a high viscosity part consisting of mesofaces and a low viscosity part mainly consisting of non-mesofaces, and it was extremely difficult to prepare pitch fibers according to Example 1. As a result of infusibility and firing of a small amount of barely obtained pitch fibers, longitudinal cracks were observed in the carbon fibers, and the strength varied from 80 to 140 kg/-* and the modulus varied from 7 to 1 ston/-.

比較例−6 FCCデカントオイルより得られる石油系ピッチの一部
をサンプリングし、実施例−1と同様の分析を行ない残
りは熱処理し、紡糸用ピッチとした蕾、実施例−1に準
じ炭素繊維を作成した。
Comparative Example-6 A part of the petroleum pitch obtained from FCC decant oil was sampled and analyzed in the same manner as in Example-1.The rest was heat treated and used as pitch for spinning.The buds were made into carbon fibers according to Example-1. It was created.

その結欠、前記石油系ピッチの比重は1.241であり
、芳香化度、H/Cは各々、9.37゜0.72であっ
た。これは、本発明のピッチと比較し、芳香化度及びH
/Cは近似しているものの、比重はかなり小さな値を示
し、多fJit縮金環に置換する側鎖の発達を示唆する
。又、” C−NMR。
The specific gravity of the petroleum pitch was 1.241, and the degree of aromatization and H/C were 9.37° and 0.72, respectively. This compared to the pitch of the present invention, the degree of aromatization and H
/C is similar, but the specific gravity shows a considerably small value, suggesting the development of side chains substituting in the multi-fJit condensed ring. Also, “C-NMR.

”H−NMRヨ’;l 求メタh = t 4.6 %
、  n −、a 1.1チ、C−43,3%、 H=
 54.89”t HB= 35.6%。
``H-NMR yo''; l Meta-seeking h = t 4.6%
, n −, a 1.1 h, C-43, 3%, H=
54.89”t HB= 35.6%.

HD−4,6%、 HD−1,8% 、 HG−3,7
% 、 H,=13.2%、 H,= 6.4%、 H
,= 2.3チであった。
HD-4,6%, HD-1,8%, HG-3,7
%, H,=13.2%, H,=6.4%, H
, = 2.3chi.

かかるデータは、多環縮合環の発達と、それに置換する
短い側鎖の発達をも示している。又、本質的には良好な
分子平面性を有すると思われる。
Such data also indicate the development of polycyclic fused rings and short side chains replacing them. It also seems to have essentially good molecular planarity.

かかる構造のピッチは、紡糸用ピッチへの調製熱処理に
於て、熱的に不安定な側鎖が切れ、これが引金となり高
度に発達したメンフェースを与える一方、切断により低
分子成分を生じ易いと考えられ、高度に発達したメンフ
ェースに起因する炭素繊維の縦割れ、及びメンフェース
と低分子成分の相溶性の欠如に基づく紡糸ピッチの相分
離、曳糸性の欠如を招きやすいと考えられる。該石油系
ピンチなN2気流中、攪拌下常圧で400℃、tooo
分熱処理し、紡糸用ピッチとした。該紡糸用ピンチは、
メンフェースより成る高粘度部と非メソフェースより主
として成る低粘度部にきわめて分離しやすく、実施例−
1に準じたピッチ繊維の作成は極めて困難であった。巻
取速度を300 m 7分に低下させることによりかろ
うじて得られた少量のピッチ繊維を不融化、焼成した結
果、炭素繊維には縦割れが観察され、強度は80〜14
 s kg/−。
Pitch with such a structure has thermally unstable side chains that are cut during heat treatment to prepare pitch for spinning, which triggers a highly developed membrane surface, but tends to produce low-molecular components due to cutting. It is thought that this tends to lead to vertical cracking of carbon fibers due to highly developed membranes, phase separation of spinning pitch due to lack of compatibility between membranes and low molecular weight components, and lack of spinnability. . In the petroleum-based pinch N2 stream, under stirring and at normal pressure, at 400°C, too
It was heat treated and used as spinning pitch. The spinning pinch is
It is very easy to separate into a high viscosity part consisting of mesoface and a low viscosity part mainly consisting of non-mesophase.
It was extremely difficult to create pitch fibers according to Example 1. By reducing the winding speed to 300 m/7 min, the small amount of pitch fibers barely obtained was made infusible and fired. As a result, longitudinal cracks were observed in the carbon fibers, and the strength was 80 to 14.
s kg/-.

モジュラスは7〜14ton/−の範囲にバラライてい
た。
The modulus varied in the range of 7 to 14 tons/-.

特許出願人 工業技術院長 石  坂  誠  − 指定代理人  九州工業技術試験所長 林       禎   −Patent applicant: Director of the Agency of Industrial Science and Technology Makoto Ishizaka − Designated agent Director of Kyushu Industrial Technology Laboratory Hayashi Tei -

Claims (1)

【特許請求の範囲】 1、 実質的にxoo%キノリン可溶性である光学的に
等方性のピッチであって、質量スペクトル分析(MS 
)で測定した構造単位体平均分子量が200〜400で
ある、縮合環数2〜6の多環芳香族縮合体から主として
なり、且つ該ピッチの20℃に於ける比重が1.25〜
1.31であることを特徴とする炭素繊維原料ピッチ組
成物。 2、  ”C−NMRに於いて、溶媒を除く全検出炭素
に対するテトラメチルシラン(TMS)基準のケミカル
シフト129〜150 ppmの炭素A、  80〜1
29 ppmの炭素B及び13〜53 ppmの炭素C
の割合が、それぞれA−15〜25%、B=55〜65
チ、C=10〜20%である特許請求の範囲第1項記載
のピッチ組成物。 3、’H−NMRに於いて、溶媒を除く全検出水素に対
スるテトラメチルシラン(TMs)基準のケミカルシフ
ト5〜10 ppmの水素HA、 1.7〜4卿の水素
HB  の割合が、それぞれHA=40〜80%、  
HB=15〜40チである特許請求の範囲第1項又は第
2項記載のピッチ組成物。 4、 前記ケミカルシフ) 1.1〜1.7p−の水素
H6及び0.3〜1.11116の水1AHD  の割
合が、それぞれHo−= 0〜5%、)ID=O〜5%
である特許請求の範囲第1項、第2g4又は第3項記載
のピッチ組成物。 5、 1H−NMRに於いて、溶媒を除く全検出水素に
対するテトラメチルシラン(TMS)基準のケミカルシ
フト2.5〜3卿の水素HIc、3〜4碧の水素H1及
び1.7〜2.2mAの水素H6の割合が、それぞれH
6=5〜7%、H,=8〜11チ、H,=8〜17チで
ある特許請求の範囲第3項又は第4項記載のピッチ組成
物。 6、’H−NMRに於いて、溶媒を除く全検出水素に対
するテトラメチルシラン(TMS )基準のケミカルシ
フト5〜7111mの水素HHの割合が6〜15%であ
る特許請求の範囲第1項〜第5項の何れか1項に記載の
ピッチ組成物。 7、 芳香化度が0.3〜0.5であり、且つH/Cが
0.55〜0.8である特許請求の範囲第1項〜第6項
の何れか1項に記載のピッチ組成物。
[Scope of Claims] 1. An optically isotropic pitch that is substantially xoo% quinoline soluble and that is
) is mainly composed of a polycyclic aromatic condensate having 2 to 6 condensed rings, with an average molecular weight of the structural unit measured by 200 to 400, and the pitch has a specific gravity of 1.25 to 1.25 at 20°C.
A carbon fiber raw material pitch composition characterized in that the pitch is 1.31. 2. In C-NMR, chemical shift of 129-150 ppm carbon A based on tetramethylsilane (TMS) relative to all detected carbons excluding solvent, 80-1
29 ppm carbon B and 13-53 ppm carbon C
The proportions of A-15 to 25% and B = 55 to 65, respectively.
The pitch composition according to claim 1, wherein H and C=10 to 20%. 3. In 'H-NMR, the ratio of hydrogen HA with a chemical shift of 5 to 10 ppm and hydrogen HB of 1.7 to 4 ppm based on tetramethylsilane (TMs) relative to all detected hydrogen excluding the solvent is , respectively HA=40-80%,
The pitch composition according to claim 1 or 2, wherein HB=15 to 40 inches. 4. The chemical shift) The proportions of hydrogen H6 of 1.1 to 1.7 p- and water 1AHD of 0.3 to 1.11116 are Ho- = 0 to 5%,) ID = O to 5%, respectively.
The pitch composition according to claim 1, 2g4 or 3. 5. In 1H-NMR, the chemical shifts based on tetramethylsilane (TMS) with respect to all detected hydrogen excluding the solvent are hydrogen HIc of 2.5 to 3, hydrogen H1 of 3 to 4, and hydrogen H1 of 1.7 to 2. The proportion of hydrogen H6 at 2 mA is respectively H
The pitch composition according to claim 3 or 4, wherein H = 5 to 7%, H = 8 to 11%, H = 8 to 17%. 6. In 'H-NMR, the proportion of hydrogen HH with a chemical shift of 5 to 7111 m based on tetramethylsilane (TMS) to all detected hydrogen excluding the solvent is 6 to 15%. The pitch composition according to any one of Item 5. 7. The pitch according to any one of claims 1 to 6, having a degree of aromatization of 0.3 to 0.5 and a H/C of 0.55 to 0.8. Composition.
JP14703682A 1982-08-24 1982-08-24 Pitch composition of raw material for carbon fiber Pending JPS5936724A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14703682A JPS5936724A (en) 1982-08-24 1982-08-24 Pitch composition of raw material for carbon fiber
FR8313618A FR2532322B1 (en) 1982-08-24 1983-08-23 PITCH COMPOSITIONS, PROCESSES FOR THE PREPARATION OF SUCH COMPOSITIONS, PIT FILAMENT, PROCESS FOR THE PREPARATION OF THE SAME, CARBON FIBER BASED ON PIT AND PROCESS FOR THE PREPARATION OF THE SAME
US06/525,702 US4590055A (en) 1982-08-24 1983-08-23 Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
GB08322788A GB2129825B (en) 1982-08-24 1983-08-24 Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
DE19833330575 DE3330575A1 (en) 1982-08-24 1983-08-24 CARBON FIBERS BASED ON PECH, COMPOSITION AND FIBER PREPRODUCT HERE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14703682A JPS5936724A (en) 1982-08-24 1982-08-24 Pitch composition of raw material for carbon fiber

Publications (1)

Publication Number Publication Date
JPS5936724A true JPS5936724A (en) 1984-02-29

Family

ID=15421069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14703682A Pending JPS5936724A (en) 1982-08-24 1982-08-24 Pitch composition of raw material for carbon fiber

Country Status (1)

Country Link
JP (1) JPS5936724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9684135B2 (en) 2013-09-09 2017-06-20 Japan Aviation Electronics Industry, Limited Optoelectrical connector and portable electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9684135B2 (en) 2013-09-09 2017-06-20 Japan Aviation Electronics Industry, Limited Optoelectrical connector and portable electronic device

Similar Documents

Publication Publication Date Title
JPS6254886B2 (en)
US4277325A (en) Treatment of pitches in carbon artifact manufacture
JPS61238885A (en) Method of refining raw material used for production of carbon product
JPS62270685A (en) Production of mesophase pitch
US5182010A (en) Mesophase pitch for use in the making of carbon materials
EP0119100A2 (en) Process for preparing a spinnable pitch product
JPS5936724A (en) Pitch composition of raw material for carbon fiber
JPS5841914A (en) Preparation of high-strength and high-modulus carbon fiber
JPH05132675A (en) Production of pitch
JPS60168787A (en) Production of pitch
JPS6030366B2 (en) Manufacturing method for high-strength, high-modulus carbon fiber
JPS58101191A (en) Preparation of mesophase pitch and carbon fiber from said pitch
JPS59136383A (en) Preparation of pitch for producing carbon fiber
JPH0413396B2 (en)
JPS60238387A (en) Production of pitch for carbonaceous material
JPS58136835A (en) Production of pitch for carbon fiber
JPS61162586A (en) Production of precursor pitch for carbon fiber
JPS5988923A (en) Manufacture of carbon fiber
EP0348599B1 (en) Process for producing an anisotropic pitch for carbon fibres
JPS6121189A (en) Preparation of pitch for producing high elongation type carbon fiber
JPH03223391A (en) Mesophase pitch for carbonaceous material
JPH0362197B2 (en)
JPS58132124A (en) Preparation of raw material for carbon fiber based on pitch
JPS6183319A (en) Carbon fiber and its production
JPH0517782A (en) Liquid crystal pitch for producing carbon yarn having high compression strength and production of carbon yarn having high compression strength