JPH0413396B2 - - Google Patents
Info
- Publication number
- JPH0413396B2 JPH0413396B2 JP57147037A JP14703782A JPH0413396B2 JP H0413396 B2 JPH0413396 B2 JP H0413396B2 JP 57147037 A JP57147037 A JP 57147037A JP 14703782 A JP14703782 A JP 14703782A JP H0413396 B2 JPH0413396 B2 JP H0413396B2
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- quinoline
- spinning
- hydrogen
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 45
- 239000004917 carbon fiber Substances 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 37
- 239000002904 solvent Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 238000005899 aromatization reaction Methods 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 7
- 238000005984 hydrogenation reaction Methods 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 claims description 4
- 239000011295 pitch Substances 0.000 description 85
- 238000009987 spinning Methods 0.000 description 35
- 208000012886 Vertigo Diseases 0.000 description 34
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 30
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- 239000000835 fiber Substances 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- LBUJPTNKIBCYBY-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline Chemical compound C1=CC=C2CCCNC2=C1 LBUJPTNKIBCYBY-UHFFFAOYSA-N 0.000 description 13
- 238000003763 carbonization Methods 0.000 description 12
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- 238000003756 stirring Methods 0.000 description 9
- 239000003921 oil Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920002239 polyacrylonitrile Polymers 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 5
- JUJWROOIHBZHMG-RALIUCGRSA-N pyridine-d5 Chemical compound [2H]C1=NC([2H])=C([2H])C([2H])=C1[2H] JUJWROOIHBZHMG-RALIUCGRSA-N 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000002074 melt spinning Methods 0.000 description 4
- 239000011302 mesophase pitch Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000011294 coal tar pitch Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011301 petroleum pitch Substances 0.000 description 3
- 125000003367 polycyclic group Chemical group 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WHRZCXAVMTUTDD-UHFFFAOYSA-N 1h-furo[2,3-d]pyrimidin-2-one Chemical compound N1C(=O)N=C2OC=CC2=C1 WHRZCXAVMTUTDD-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical class NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 244000073231 Larrea tridentata Species 0.000 description 1
- 235000006173 Larrea tridentata Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011304 carbon pitch Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229960002126 creosote Drugs 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011316 heat-treated pitch Substances 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000003027 oil sand Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- -1 polycyclic aromatic compound Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Working-Up Tar And Pitch (AREA)
- Inorganic Fibers (AREA)
Description
【発明の詳細な説明】
本発明は、炭素繊維の紡糸用原液として有用な
ピツチ組成物に関する。更に詳しくは、溶融紡糸
−不融化処理−炭化処理という一連の工程を経る
ことによつて従来のピツチ系炭素繊維では到達し
得なかつた高強度と高モジユラスとを具備した炭
素繊維を形成し得るところの、新規なピツチ組成
物に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pitch composition useful as a dope for spinning carbon fibers. More specifically, by going through a series of steps of melt spinning - infusibility treatment - carbonization treatment, it is possible to form carbon fibers with high strength and high modulus that could not be achieved with conventional pitch-based carbon fibers. However, the present invention relates to a new pitch composition.
現在、炭素繊維としては、主として、ポリアク
リロニトリル(PAN)繊維を原料とするPAN系
炭素繊維と石炭系又は石油系のピツチを原料とす
るピツチ系炭素繊維が生産されている。しかし、
主として複合材料において樹脂の補強材として使
用される高強度高モジユラスの高性能炭素繊維は
PAN系が主流であり、ピツチ系は強度200Kg/mm2
以下の比較的低強度のものしか製造されていな
い。 Currently, carbon fibers mainly produced include PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers and pitch-based carbon fibers made from coal-based or petroleum-based pitch. but,
High-strength, high-modulus, high-performance carbon fiber is mainly used as a reinforcing material for resins in composite materials.
PAN type is the mainstream, and Pitch type has a strength of 200Kg/mm 2
Only the following relatively low-strength products have been manufactured.
かかるピツチ系炭素繊維において、より高性能
の繊維を製造しようとする試みがなされており、
これ迄にも、炭素繊維製造用ピツチの製造に関
し、次のような提案がなされている。 Attempts have been made to produce higher performance fibers among such pitch-based carbon fibers.
Up to now, the following proposals have been made regarding the production of pitches for producing carbon fibers.
(a) 特定の縮合多環芳香族化合物を水素処理又は
熱処理して炭素繊維用ピツチとする方法(特公
昭45−28013号、特公昭49−3634号)。(a) A method of hydrogen-treating or heat-treating a specific condensed polycyclic aromatic compound to produce pitch for carbon fiber (Japanese Patent Publication No. 45-28013, Japanese Patent Publication No. 49-3634).
(b) 石油系のタールやピツチをルイス酸系触媒の
存在下で第1の熱処理を施した後、該触媒を除
去して第2の熱処理を施してメソフエースピツ
チとする方法(特公昭53−7533号)。(b) A method in which petroleum-based tar or pitch is subjected to a first heat treatment in the presence of a Lewis acid catalyst, and then the catalyst is removed and a second heat treatment is performed to produce mesophase pitch (Japanese Patent Publication No. 53 −7533).
(c) ピツチを不活性ガスの流通下又は減圧下に加
熱して所定のメソフエース含量をもつメソフエ
ースピツチとする方法(特開昭53−86717号、
特開昭53−36718号)。(c) A method of heating pitch under an inert gas flow or under reduced pressure to produce mesophase pitch with a predetermined mesophase content (Japanese Patent Application Laid-open No. 86717/1983,
(Japanese Patent Publication No. 53-36718).
(d) 光学的等方性ピツチを溶媒(ベンゼン、トル
エン、ペプタン等)で処理し、不溶部を加熱し
てネオメソフエースを形成させる方法(特開昭
54−160427号、特開昭55−58287号、特開昭55
−130809号)。(d) A method of treating optically isotropic pitch with a solvent (benzene, toluene, peptane, etc.) and heating the insoluble part to form a neomesophase (Japanese Patent Application Laid-open No.
No. 54-160427, JP-A No. 55-58287, JP-A-55
−130809).
しかしながら、これらの方法によつても、
PAN系炭素繊維に匹敵する高度な性能をもつ炭
素繊維を得ることができない為、現在に至るま
で、ピツチ系炭素繊維は、例えばアスベスト代替
品のような強度が低くてもすむような分野で用い
られているのが実情である。また、前記の各方法
のうち、メソフエースのピツチを使用する方法
は、紡糸原液となるピツチの粘性が非常に大きい
ため、紡糸性が悪く経済的な紡糸速度での溶融紡
糸が困難であるという製造上の問題も有する。 However, even with these methods,
Since it is not possible to obtain carbon fibers with advanced performance comparable to PAN-based carbon fibers, Pitu-based carbon fibers have until now been used in fields where low strength is required, such as asbestos substitutes. The reality is that In addition, among the above methods, the method using Mesophace pitch has a very high viscosity as a spinning dope, resulting in poor spinnability and difficulty in melt spinning at an economical spinning speed. It also has the above problem.
本発明者らは、ピツチ系炭素繊維の製造におけ
る上述の如き現状に鑑み、ピツチ類を原料として
すぐれた品質をもつ炭素繊維を製造する方法を開
発すべく研究を重ね、さきに、紡糸後の不融化・
炭化処理段階で光学的に異方性のメソフエースに
転換する特異なプリメソフエースピツチを経由す
る新規な炭素繊維を製造する方法を提案し(特開
昭58−18421)、更に、かかるプリメソフエースピ
ツチを工業的に製造するに適した方法を提案した
(特開昭58−196292号公報)。 In view of the above-mentioned current situation in the production of pitch-based carbon fibers, the present inventors have conducted research to develop a method for producing carbon fibers with excellent quality using pitch-based carbon fibers as raw materials. Infusibility/
We have proposed a new method for producing carbon fibers using a unique Primesophase pitch that converts into an optically anisotropic Mesophace during the carbonization process (Japanese Patent Application Laid-open No. 18421-1983), and furthermore, We have proposed a method suitable for industrially producing pitchi (Japanese Patent Application Laid-open No. 196292/1983).
本発明者らは、さらに、高性能のピツチ系炭素
繊維を形成し得る紡糸用ピツチ組成物について検
討を重ねた結果、該ピツチ組成物の性質及びその
中のキノリン可溶性成分の性質及び化学構造、就
中、ピツチの芳香化度や比重及びキノリン可溶性
成分の数平均分子量が高性能の炭素繊維を得るた
めに重要であり、これらが特定の範囲内にあるピ
ツチ組成物は溶融紡糸性が良好で、且つ紡糸後に
不融化処理及び炭化処理を行うことによつて、
PAN系炭素繊維に劣らないすぐれた性能をもつ
炭素繊維を形成し得る事実を見い出し、本発明に
到達したものである。 The present inventors further investigated the pitch composition for spinning that can form high-performance pitch carbon fibers, and found that the properties of the pitch composition, the properties and chemical structure of the quinoline-soluble component therein, In particular, the degree of aromatization and specific gravity of pitch and the number average molecular weight of the quinoline-soluble component are important for obtaining high-performance carbon fibers, and pitch compositions with these within specific ranges have good melt spinnability. , and by performing infusibility treatment and carbonization treatment after spinning,
The present invention was achieved by discovering the fact that it is possible to form carbon fibers with performance comparable to that of PAN-based carbon fibers.
すなわち、本発明は、光学的に等方性のピツチ
を水素化媒溶又は水素ガスにて水素化したのち、
450〜550℃で熱処理したキノリン可溶性成分を30
〜70重量%含むピツチであつて、20℃における比
重が1.29〜1.40であり、かつ芳香化度が0.45〜0.9
であり、前記キノリン可溶性成分の数平均分子量
が700〜1700であつて、その1H−NMRにおいて、
溶媒を除く全検出水素に対するテトラメチルシラ
ン(TMS)基準のメミカルシフトが5〜7ppmの
水素HA及び3〜4ppmの水素HBの割合が、それ
ぞれHA=4.4〜10%、HB=2.5〜7.5%であること
を特徴とする溶融紡糸性のすぐれた炭素繊維製造
用ピツチ組成物である。 That is, in the present invention, after hydrogenating an optically isotropic pitch with a hydrogenation solvent or hydrogen gas,
30% of quinoline soluble components heat treated at 450-550℃
Pitch containing ~70% by weight, with a specific gravity of 1.29-1.40 at 20°C and a degree of aromatization of 0.45-0.9
and the number average molecular weight of the quinoline soluble component is 700 to 1700, and in its 1 H-NMR,
The proportions of hydrogen H A with a mechanical shift of 5 to 7 ppm and hydrogen H B of 3 to 4 ppm based on tetramethylsilane (TMS) relative to all detected hydrogen excluding the solvent are H A = 4.4 to 10% and H B = 2.5 to 2.5 ppm, respectively. This is a pitch composition for producing carbon fibers with excellent melt spinnability, characterized by a concentration of 7.5%.
一般に、高性能の炭素繊維を製造しようとする
場合、紡糸用ピツチは、紡糸段階で配向化し得る
程度の分子配向性とフイラメント化し得る汚糸性
及び流動性を兼ね備える必要がある。従来のメソ
フエースピツチは分子配向性という見地から熱処
理等により高分子化したものであるが、これはす
でに述べたように紡糸時の流動性、汚糸性に問題
があり、注意深く紡糸しても紡糸速度は約400
m/分が限度である。また、かかるメソフエース
ピツチを溶融紡糸すると、その高度な配向性の故
に、炭素繊維前駆体ピツチ繊維中に巨大な葉状ド
レメインを準備しがちであり、炭化処理後の最終
繊維構造のラジアル化、ひいては繊維の縦割れ等
による性能低下を招き易い。 Generally, when producing high-performance carbon fibers, the spinning pitch needs to have both molecular orientation to the extent that it can be oriented during the spinning stage, as well as yarn properties and fluidity that can be formed into filaments. Conventional mesophase pitches are made into polymers through heat treatment from the viewpoint of molecular orientation, but as mentioned above, this has problems with fluidity and dirtiness during spinning, and even with careful spinning, The spinning speed is about 400
m/min is the limit. Furthermore, when such mesophasic pitch is melt-spun, due to its highly oriented properties, giant leaf-like domains tend to be prepared in the carbon fiber precursor pitch fibers, leading to radialization of the final fiber structure after carbonization. Performance is likely to deteriorate due to vertical cracking of the fibers, etc.
本発明者らは、この問題について研究の結果、
最終炭素繊維の内部構造及び性能は、紡糸に供す
るピツチの化学構造及び性質によつて大きく左右
されること、そして、従来のメソフエースピツチ
よりも分子配向性をある程度低下させることが有
効であることを知見した。しかし、この場合、ピ
ツチの分子配向性は、紡糸段階である程度回復可
能であり、且つ紡糸段階では引続く炭化処理で高
度に配向した構造を出現させ得るような潜在的配
向能を形成させるようなものでなければならな
い。 As a result of research on this problem, the inventors found that
The internal structure and performance of the final carbon fiber are greatly influenced by the chemical structure and properties of the pitch used for spinning, and it is effective to reduce the molecular orientation to a certain degree compared to conventional mesophase pitch. I found out. However, in this case, the molecular orientation of the pitch can be recovered to some extent during the spinning stage, and the spinning stage is capable of forming a latent orientation ability that allows a highly oriented structure to appear in the subsequent carbonization process. It has to be something.
本発明のピツチ組成物は、このような要求を満
たすもので、溶融紡糸時の紡糸性(流動性、汚糸
性)が良好で1000m/分以上の高速でも円滑な紡
糸が可能であり、且つ紡糸後の炭化処理段階に於
いて、上述のような理想的な構造を発現し得るも
のである。 The pitch composition of the present invention satisfies these requirements, has good spinnability (fluidity, threadability) during melt spinning, allows smooth spinning even at high speeds of 1000 m/min or more, and In the carbonization step after spinning, the ideal structure as described above can be developed.
本発明のピツチ組成物は、キノリン可溶性成分
を30〜70重量%含有する。キノリン可溶性成分が
30重量%未満では、軟化点が高く紡糸性が悪く、
また生成する炭素繊維の構造がラジアル状を呈し
易い。 The pitch composition of the present invention contains 30 to 70% by weight of quinoline soluble components. quinoline soluble component
If it is less than 30% by weight, the softening point is high and spinnability is poor.
Further, the structure of the carbon fibers produced tends to have a radial shape.
更に、本発明のピツチ組成物は、次の(イ)〜(ハ)の
性質を有する。即ち(イ)該ピツチ組成物中のキノリ
ン可溶性成分の数平均分子量が700〜1700、好ま
しくは800〜1500で、(ロ)該ピツチの比重(20℃に
おける)が1.29〜1.40、好ましくは1.30〜1.35で
あり、(ハ)芳香化度が0.45〜0.9の範囲内にあるこ
とが必要である。 Furthermore, the pitch composition of the present invention has the following properties (a) to (c). That is, (a) the number average molecular weight of the quinoline-soluble component in the pitchi composition is 700 to 1,700, preferably 800 to 1,500, and (b) the specific gravity (at 20°C) of the pitchi is 1.29 to 1.40, preferably 1.30 to 1.35, and (iii) the degree of aromatization must be within the range of 0.45 to 0.9.
従来のメソフエースピツチは、キノリン可溶性
成分とキノリン不溶性成分との混合物であり、こ
のため両者が相分離を生じ易く良好な紡糸性を維
持し難い。これに対し、上記の条件を満たすもの
は組成物中に含むことのあるキノリン不溶性成分
とキノリン可溶性成分との相溶性が良好で、相当
量のキノリン不溶性成分を含む組成物でも良好な
紡糸性を維持する。しかも、本発明のピツチ組成
物は、多環縮合化合物が高い芳香性を保ちつつ核
が部分水添された構造を有するため、該化合物の
平面性が適度に歪められており、巨大な葉状ドメ
インの生成を防止すると共に、少くとも紡糸後の
ピツチ繊維中に潜在的配向性を付与し、引続く炭
化処理に於て脱水素による平面性の回復とともに
すぐれた配向性、結晶性を発現し得る。また、前
述した平面性の歪が分子のモビリテイ増加につな
がり、紡糸においてすぐれた流動性を与える。 Conventional mesophase pitch is a mixture of a quinoline-soluble component and a quinoline-insoluble component, and therefore, the two tend to undergo phase separation, making it difficult to maintain good spinnability. On the other hand, those that meet the above conditions have good compatibility between the quinoline-insoluble component and the quinoline-soluble component that may be contained in the composition, and exhibit good spinnability even in compositions containing a considerable amount of quinoline-insoluble component. maintain. Moreover, since the pitch composition of the present invention has a structure in which the polycyclic condensed compound maintains high aromatic properties and has a partially hydrogenated nucleus, the planarity of the compound is moderately distorted, and it has large foliate domains. At the same time, it imparts latent orientation to at least the spun fibers after spinning, and in the subsequent carbonization treatment, flatness is restored by dehydrogenation and excellent orientation and crystallinity can be developed. . In addition, the above-mentioned distortion of planarity leads to increased molecular mobility and provides excellent fluidity during spinning.
しかるに、キノリン可溶性成分の数平均分子量
が700未満では、キノリン不溶性成分との相分離
を生じ易くなり、また、紡糸したピツチ繊維の不
融化処理に於て繊維が溶断し易くなつたり、また
炭化処理において低分子量物の脱落により欠陥を
生じ易い等の問題がある。一方、数平均分子量が
1700を超えるとピツチ組成物全体の軟化点が高く
なり過ぎ円滑な紡糸が困難となる。また、ピツチ
組成物の比重及び芳香化度の何れかでも上記範囲
を外れると、炭素繊維において巨大な葉状ドメイ
ンを発生しがちで高性能の炭素繊維とすることは
出来ず、また、紡糸時の流動性にも問題が生じ
る。 However, if the number average molecular weight of the quinoline-soluble component is less than 700, phase separation from the quinoline-insoluble component tends to occur, and the fibers tend to melt and break during the infusibility treatment of spun pitch fibers, or the fibers tend to be easily cut during the carbonization treatment. However, there are problems such as the tendency for defects to occur due to shedding of low molecular weight substances. On the other hand, the number average molecular weight
If it exceeds 1700, the softening point of the pitch composition as a whole becomes too high, making smooth spinning difficult. Furthermore, if either the specific gravity or the degree of aromatization of the pitch composition is outside the above range, huge leaf-like domains tend to occur in the carbon fiber, making it impossible to obtain a high-performance carbon fiber. There are also liquidity issues.
本発明のピツチ組成物は、さらに次の(ニ)の条件
を満たすことが必要であり、(ホ)の条件を満たすこ
とが好ましい。 The pitch composition of the present invention is further required to satisfy the following condition (d), and preferably satisfies the condition (e).
(ニ) キノリン可溶性成分は、1H−NMRに於て、
溶媒を除く全検出水素に対するテトラメチルシ
ラン(TMS)基準のケミカルシフト5〜7ppm
の水素HA、3〜4ppmの水素HBの割合が、そ
れぞれHA=4.5〜10%、HB=2.5〜7.5%にある
こと。このHA及びHBが前記の範囲内にあると
いうことは多環縮合化合物中の芳香核が部分水
添されており、化合物の平面性が歪んであるこ
とを意味する。(d) In 1 H-NMR, the quinoline soluble component is
Chemical shift based on tetramethylsilane (TMS) relative to all detected hydrogen excluding solvent: 5 to 7 ppm
The proportions of hydrogen HA of 3 to 4 ppm and hydrogen HB of 3 to 4 ppm are HA = 4.5 to 10% and HB = 2.5 to 7.5%, respectively. The fact that H A and H B are within the above range means that the aromatic nucleus in the polycyclic condensed compound is partially hydrogenated, and the planarity of the compound is distorted.
(ホ) ピツチ組成物のH/C(水素/炭素比)が0.5
〜0.65の範囲内にあること。これは、前述の水
添構造を示すと共に、高い芳香族性を保つてい
ることを示す。(e) H/C (hydrogen/carbon ratio) of the pituti composition is 0.5
Must be within the range of ~0.65. This indicates that it exhibits the above-mentioned hydrogenated structure and maintains high aromaticity.
即ち、これらの条件を満たすものは、縮合環数
4〜6の構造単位が2〜10個程度側鎖でいながつ
ており、各構造単位の芳香核は、部分水添され、
分子の平面構造は歪んだものとなつている。 That is, a product that satisfies these conditions has about 2 to 10 structural units with 4 to 6 condensed rings connected by side chains, and the aromatic nucleus of each structural unit is partially hydrogenated.
The planar structure of molecules is distorted.
次に、本発明でいう数平均分子量、芳香化度、
1H−NMR、H/C等の測定法について説明す
る。 Next, the number average molecular weight, aromatization degree, as used in the present invention,
1 Explain measurement methods such as H-NMR and H/C.
(1) 数平均分子量 ピリジンを溶媒としてVPOを使用して測定。(1) Number average molecular weight Measured using VPO with pyridine as solvent.
VPOは、蒸気圧オスモメーターとして
Knauner Dempfdruck Ostomerを用い、溶媒
としてピリジン、標準物質としてペンジルを使
用。 VPO as vapor pressure osmometer
Using a Knauner Dempfdruck Ostomer, pyridine was used as the solvent and pendyl was used as the standard.
(2) 芳香化度
KBr錠剤法で測定したIRより、下記式によ
り算出する。(2) Degree of aromatization Calculated from the IR measured by the KBr tablet method using the following formula.
芳香化度=3050cm-1強度/(3050cm-1強度+
2925cm-1強度)
なお、IR測定装置は、島津製作所製IR−
27G型を使用。Aromatization degree = 3050cm -1 intensity / (3050cm -1 intensity +
2925cm -1 intensity) The IR measurement device is an IR-1 manufactured by Shimadzu Corporation.
Uses 27G type.
(3) 1H−NMR
測定装置として日本電子製PS−100型スペク
トロメーターを用い、ケミカルシフトはTMS
を内標準としてδ値で表わす。(3) A JEOL PS-100 spectrometer was used as the 1 H-NMR measurement device, and the chemical shift was measured using TMS.
is expressed as a δ value using as an internal standard.
NMRスペクトルは溶媒として重ピリジンを
用いて測定。 NMR spectra were measured using deuterated pyridine as a solvent.
(4) H/C
TIS M−3813に従つて測定した元素分析よ
り次式に従つて算出する。(4) H/C Calculated according to the following formula from elemental analysis measured according to TIS M-3813.
H/C=(H分析値/1)(C分析値/12)
次に、上述の如き本発明のピツチ組成物の製造
法について説明する。H/C=(H analysis value/1) (C analysis value/12) Next, a method for producing the pitch composition of the present invention as described above will be explained.
原料ピツチとしては、コールタール、コールタ
ールピツチ、石炭液化物などの石炭系重質油、石
炭の常圧残留油、減圧蒸溜残油及びこれらの残油
の熱処理によつて副生するタールやピツチ、オイ
ルサンド、ビチユーメンなどの石油系重質油を用
いることができるが、コーンタールピツチが本発
明のピツチ組成物を製造し易いので好ましい。 Raw material pitches include coal tar, coal tar pitch, coal-based heavy oil such as coal liquefied products, atmospheric residual oil of coal, vacuum distillation residual oil, and tar and pitch by-produced by heat treatment of these residual oils. Although petroleum-based heavy oils such as , oil sand, and bitumen can be used, corn tar pitch is preferred because it facilitates the production of the pitch composition of the present invention.
本発明のピツチ組成物は、前記市販原料ピツチ
を精製後、特定の水素化溶媒下で加熱する第1段
処理と、前記溶媒を除去したのち、あるいは除去
しつつ高温に加熱する第2段処理とを施すことに
よつて製造される。 The pitch composition of the present invention comprises a first stage treatment in which the commercially available raw material pitch is purified and then heated in a specific hydrogenation solvent, and a second stage treatment in which the pitch is heated to a high temperature after or while removing the solvent. It is manufactured by applying
第1段処理で使用する水素化溶媒としては、テ
トラヒドロキノリン(以下THQと略称する)が
最適であるが、キノリンとTHQとの混合物を使
用してもよく、また、触媒(コバルト−モリブデ
ン系、酸化鉄系)の存在下で水素とともにキノリ
ンを使用することもでき、ナフタレン油、アント
ラセン油、クレオソート油、吸収油などを水素ガ
スと共に使用することも可能である。水素化溶媒
としてTHQを用いる場合は、原料ピツチ100重量
部当りTHQ30〜100重量部を加え300〜500℃、好
ましくは340〜450℃で10〜60分間加熱する。この
ように処理した生成物は、次の第2段処理に付さ
れる。 Tetrahydroquinoline (hereinafter abbreviated as THQ) is optimal as the hydrogenation solvent used in the first stage treatment, but a mixture of quinoline and THQ may also be used. It is also possible to use quinoline with hydrogen in the presence of iron oxides, and it is also possible to use naphthalene oil, anthracene oil, creosote oil, absorption oil, etc. with hydrogen gas. When THQ is used as the hydrogenation solvent, 30 to 100 parts by weight of THQ is added per 100 parts by weight of the raw material pitch and heated at 300 to 500°C, preferably 340 to 450°C for 10 to 60 minutes. The product thus treated is subjected to the next second stage treatment.
第2段処理では、THQ処理ピツチは減圧下、
例えば圧力50mmHg以下で、450〜550℃で5〜60
分間保持する。この場合、このような減圧処理の
代りにTHQを除去したのち常圧下で450〜550℃
にて5〜60分間保持してこのような2段処理に於
て、原料ピツチの組成や性質に応じて処理条件を
上記範囲内で適宜選定することによつて、本発明
のピツチ組成物とすることができる。 In the second stage treatment, the THQ treatment pitch is under reduced pressure.
For example, 5 to 60 at 450 to 550℃ at a pressure of 50 mmHg or less
Hold for a minute. In this case, instead of such a vacuum treatment, THQ is removed and then heated at 450 to 550℃ under normal pressure.
In this two-stage treatment, the pitch composition of the present invention can be treated by appropriately selecting the treatment conditions within the above range depending on the composition and properties of the raw pitch. can do.
なお、本発明者らの研究によれば、本発明の良
好な紡糸用ピツチ組成物を製造するには、前記熱
処理(第2段処理)前のピツチとして、実質的に
100%キノリン可溶性であつて、その20℃におけ
る比重が、1.25〜1.31であり、質量スペクトル分
析(MS)で測定した構造単位体平均分子量が
200〜400である縮合環数2〜6の多環芳香族縮合
体から成るものを用いるのが好適である。このピ
ツチは第1段処理(水素化溶媒処理)によつて芳
香核が部分水添され分子の平面性が歪んだ構造を
形成しているが、この基本構造は第2段処理(熱
処理)でも失われることがなく、第2段処理によ
る側鎖の結合によつて上述した種々の特徴と利点
を有する本発明のピツチ組成物となる。 According to the research conducted by the present inventors, in order to produce a good spinning pitch composition of the present invention, the pitch before the heat treatment (second stage treatment) must be substantially
It is 100% quinoline soluble, its specific gravity at 20℃ is 1.25-1.31, and the average molecular weight of the structural unit measured by mass spectrometry (MS) is
It is preferable to use a polycyclic aromatic condensate having 2 to 6 condensed rings, which is 200 to 400. In this pitch, the aromatic nucleus is partially hydrogenated in the first stage treatment (hydrogenated solvent treatment), forming a structure in which the planarity of the molecule is distorted, but this basic structure is maintained even in the second stage treatment (heat treatment). The addition of side chains during the second stage treatment results in pitch compositions of the invention having the various features and advantages described above.
以上述べたような本発明のピツチ組成物は、紡
糸温度において適宜な粘弾的特性を有し、溶融紡
糸性がきわめて良好である。 The pitch composition of the present invention as described above has appropriate viscoelastic properties at the spinning temperature and has extremely good melt spinnability.
溶融紡糸は、それ自体公知を方法で行うことが
できる。例えば本発明のピツチ組成物を孔径0.1
〜0.8mmの紡糸孔をもつ口金から軟化点より50〜
100℃高い温度で押出し、紡糸口金から吐出した
フイラメントを紡糸(巻取)速度300〜1500m/
分で巻取ることにより容易に繊維化することがで
きる。得られたピツチ繊維は、次いで酸素の存在
下に0.5〜3℃/分の昇温速度で250〜350℃まで
加熱し、5〜30分間維持することによつて不融化
処理し、これを更に、不活性ガス中で2〜5℃/
分の昇温速度で1000〜1500℃まで加熱し、この温
度に10〜30分間維持することによつて炭化処理を
行う。 Melt spinning can be carried out by methods known per se. For example, the pitch composition of the present invention has a pore size of 0.1
~50~ from the softening point from a spinneret with a 0.8mm spinning hole
The filament is extruded at a temperature 100℃ higher and discharged from the spinneret at a spinning (winding) speed of 300 to 1500 m/s.
It can be easily made into fibers by winding it up in minutes. The obtained pitch fibers are then heated to 250 to 350°C in the presence of oxygen at a heating rate of 0.5 to 3°C/min and maintained for 5 to 30 minutes to make them infusible. , 2-5℃/in inert gas
Carbonization treatment is carried out by heating to 1000-1500°C at a temperature increase rate of 10 minutes and maintaining this temperature for 10-30 minutes.
本発明のピツチ組成物は、この炭化処理の過程
において完全なメソフエースとなり、充分に配向
し且つ巨大なドメインを含まない緻密な構造の炭
素繊維を形成する。 The pitch composition of the present invention becomes a complete mesophase during this carbonization process, forming carbon fibers with a dense structure that is fully oriented and does not contain large domains.
得られら炭素繊維は200Kg/mm2以上の高強度と
10ton/mm2以上のモジユラスを有し、きわめて性
能のすぐれたものとなる。 The obtained carbon fiber has a high strength of 200Kg/mm2 or more.
It has a modulus of 10 ton/mm 2 or more, and has extremely high performance.
次に、実施例及び比較例により本発明を更に詳
細に説明する。 Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.
なお、各実施例中の炭素繊維の繊維径(糸径)、
引張強度、伸び率、モジユラスはJIS R7601「炭
素繊維試験方法」に従つて測定した。 In addition, the fiber diameter (thread diameter) of the carbon fiber in each example,
Tensile strength, elongation, and modulus were measured according to JIS R7601 "Carbon Fiber Test Method."
なお、繊維径はヘリウム−ネオンレーザーを使
用して測定した。 Note that the fiber diameter was measured using a helium-neon laser.
実施例 1
市販コールタール中ピツチ134gとテトラハイ
ドロキノリン(THQと称す。)402gを電磁誘導
回転撹拌装置を備えたSUS316製1lオートクレー
プに仕込み、窒素で充分置換後、内圧を0Kg/cm2
Gとし、密閉後、撹拌しながら430℃まで昇温し、
430℃に達した後、さらに15分間維持した。しか
る後、室温まで冷却し、撹拌を止め、内容物を取
り出した。該混合物を水流アスピレーター減圧下
No.4定性紙、次いでG−4グラスフイルターで
吸引過することにより、不溶物を除去した。か
くして得らえた母液を、290℃、10mmTorrで減圧
蒸留し、未反応THQ及び反応して生じたキノリ
ンより主として成る溶媒を留去し、THQ処理ピ
ツチを得た。しかる後、該ピツチを300ml耐熱ガ
ラス製三口フラツコに仕込み、N2気流中10Torr
に保持し、465℃に加熱した。低沸点物の留出を
伴いながら内温はすみやかに上昇した。内温が一
定となつた後、15分間加熱を続け冷却した。Example 1 134 g of pitch in commercially available coal tar and 402 g of tetrahydroquinoline (referred to as THQ) were placed in a 1-liter autoclave made of SUS316 equipped with an electromagnetic induction rotary stirring device, and after being sufficiently purged with nitrogen, the internal pressure was reduced to 0 kg/cm 2
G, and after sealing, raise the temperature to 430℃ while stirring,
After reaching 430°C, it was maintained for an additional 15 minutes. Thereafter, the mixture was cooled to room temperature, stirring was stopped, and the contents were taken out. The mixture was passed through a water aspirator under reduced pressure.
Insoluble matter was removed by suctioning through No. 4 qualitative paper and then through a G-4 glass filter. The mother liquor thus obtained was distilled under reduced pressure at 290° C. and 10 mmTorr to remove a solvent mainly consisting of unreacted THQ and quinoline produced by the reaction, to obtain THQ-treated pits. After that, the pitch was placed in a 300 ml heat-resistant glass three-necked flask and heated to 10 Torr in a N2 gas flow.
and heated to 465°C. The internal temperature rose rapidly with the distillation of low-boiling substances. After the internal temperature became constant, heating was continued for 15 minutes and then cooled.
得られた紡糸用ピツチを分析するとともに、定
速降下プランジヤーを有するシリンダーに入れ
370℃で1000m/分の速度で紡糸巻取りを行ない
ピツチ繊維とした。該ピツチ繊維を空気気流中で
200℃から300℃の間を2℃/分の昇温速度で熱処
理後、さらに300℃で15分間熱処理することによ
り不融化繊維と、引続きN2気流中で1500℃、15
分間炭化(焼成)処理して炭素繊維とした後、常
法により機械物性を測定した。 The resulting spinning pitch was analyzed and placed in a cylinder with a constant-speed descending plunger.
The yarn was spun and wound at 370° C. at a speed of 1000 m/min to obtain pitch fiber. The pitch fiber is placed in an air stream.
After heat treatment at a heating rate of 2°C/min between 200°C and 300°C, the fibers are made infusible by further heat treatment at 300°C for 15 minutes, and then at 1500°C in a N2 stream for 15 minutes.
After carbonization (firing) treatment was performed for a minute to form carbon fibers, mechanical properties were measured using conventional methods.
紡糸用ピツチのJIS K−2425に依るキノリン可
溶性成分の含有率は58.0重量%であり、ピリジン
を溶媒としてVPOを使用して測定した該キノリ
ン可溶性成分の数平均分子量は950であつた。又、
該ピツチの20℃に於ける比重は、13.22であり、
KBr錠剤法で測定したIRより下記式、
芳香化度
=3050cm-1強度/〔(3050cm-1強度)
+(2925cm-1強度)〕
で求めた芳香化度は0.60であつた。又、キノリン
可溶性成分について重ピリジンを溶媒として測定
した1H−NMRより求めたHA、HBは各々6.2%、
5.8%であつた。又、JIS M−8813に従つて測定
した元素分析より次式、
H/C=(H分析値/1)/(C分析値/12)
に従つて求めたH/Cは、0.54であつた。これら
のデータは、該ピツチは高度に発達した多環縮合
骨格と、芳香性を有しつつ、なお、効果的に水素
が導入され、分子平面性が適度に歪んでいる事を
示している。このため該ピツチは優れた流動特性
を持ち、且つ、紡糸過程で少くとも配向の下地を
形成し、且つ焼成時に縦割れにつながる巨大な葉
状ドメインの形成を防止するものと思われる。
又、該ピツチの分子平面性の歪は、炭化(焼成)
過程で脱水素が生じることにより容易に修復され
る。 The content of the quinoline-soluble component in the spinning pitch according to JIS K-2425 was 58.0% by weight, and the number average molecular weight of the quinoline-soluble component was 950 as measured using VPO with pyridine as a solvent. or,
The specific gravity of the pitch at 20°C is 13.22,
The degree of aromatization was determined to be 0.60 from the IR measured by the KBr tablet method using the following formula: degree of aromatization = 3050 cm -1 intensity/[(3050 cm -1 intensity) + (2925 cm -1 intensity)]. In addition, H A and H B determined by 1 H-NMR of quinoline-soluble components using deuterated pyridine as a solvent were each 6.2%,
It was 5.8%. In addition, from the elemental analysis measured in accordance with JIS M-8813, H/C was determined to be 0.54 according to the following formula: H/C = (H analysis value/1)/(C analysis value/12). . These data indicate that the pitch has a highly developed polycyclic condensed skeleton and aromatic properties, yet hydrogen is effectively introduced and the molecular planarity is moderately distorted. Therefore, it is believed that the pitch has excellent flow properties, forms at least an orientation base during the spinning process, and prevents the formation of giant lobed domains that lead to longitudinal cracking during firing.
In addition, the distortion of the molecular planarity of the pitch is caused by carbonization (calcination).
It is easily repaired by dehydrogenation occurring during the process.
また、得られた炭素繊維は糸径10μで、強度
245Kg/mm2、モジユラス17Ton/mm2を示した。 In addition, the obtained carbon fiber has a thread diameter of 10μ and a strength of
245Kg/mm 2 and modulus 17Ton/mm 2 .
比較例 1
実施例1で使用したのと同じ市販コールタール
中ピツチ100gを撹拌機付きガラス製三口フラス
コに仕込み、窒素気流中、常圧、400℃、24時間
撹拌下熱処理後取り出し、該熱処理ピツチ1重量
部に対し65mlの脱水エチレンジアミン中で、該ピ
ツチと等重量部の金属リチウムにより80〜90℃で
還元後、常法により中和し水洗過を繰返し水添
コールタールピツチを得た。該水添ピツチをN2
気流中、常圧、400℃で1時間撹拌下熱処理し紡
糸用ピツチを調製した。該紡糸用ピツチを実施例
1に準じ分析するとともに炭素繊維とし、機械物
性を測定した。Comparative Example 1 100 g of the same commercially available coal tar pitch used in Example 1 was placed in a glass three-necked flask equipped with a stirrer, heat treated in a nitrogen stream at normal pressure at 400°C for 24 hours with stirring, and then taken out. After reduction at 80 to 90° C. with metal lithium in an amount equal to the weight of the pitch in 65 ml of dehydrated ethylene diamine per 1 part by weight, hydrogenated coal tar pitch was obtained by neutralizing in a conventional manner and washing with water repeatedly. The hydrogenated pitch is N2
A spinning pitch was prepared by heat treatment at 400° C. for 1 hour under stirring in an air stream at normal pressure. The spinning pitch was analyzed according to Example 1, and the mechanical properties were measured using carbon fiber.
その結果、該紡糸ピツチは99%のキノリン可溶
性成分を含有しており、ピリジンを溶媒として
VPOで測定した該キノリン可溶性成分の数平均
分子量は1300であつた。又、該ピツチの比重は
1.280であり、芳香化度は0.43であつた。又、キ
ノリン可溶性成分について重ピリジンを溶媒とし
て測定した1H−NMRより求めたHA、HBは各々
3.7%、11.2%でありβ及びγ水素も18.3%及び
10.5%とかなり多量に存在した。又、H/Cは
0.75であつた。 As a result, the spinning pitch contained 99% of quinoline soluble components, and when pyridine was used as a solvent,
The number average molecular weight of the quinoline soluble component measured by VPO was 1300. Also, the specific gravity of the pitch is
1.280, and the degree of aromatization was 0.43. In addition, H A and H B determined by 1 H-NMR of quinoline-soluble components using deuterated pyridine as a solvent are respectively
3.7% and 11.2%, and β and γ hydrogen are also 18.3% and
It was present in a fairly large amount at 10.5%. Also, H/C is
It was 0.75.
これらのデータは、該ピツチは高度に発達した
芳香族多環縮合体より成るが、側鎖もかなり含有
している事を示す。(又、分子平面性は良好なも
のと考えられる。)かかるピツチは焼成時に側鎖
の切断、離脱が生じやすいと考えられ炭素繊維の
欠陥が増大する惧れが高い。 These data indicate that the pitches are composed of highly developed aromatic polycyclic condensates, but also contain significant side chains. (Moreover, the molecular planarity is considered to be good.) Such pitches are thought to be likely to cause side chains to be cut and detached during firing, and there is a high possibility that defects in the carbon fibers will increase.
得られた炭素繊維は糸径9.5μで粘度148Kg/mm2、
モジユラス10Ton/mm2であつた。 The obtained carbon fiber has a thread diameter of 9.5μ and a viscosity of 148Kg/mm 2 .
The modulus was 10Ton/ mm2 .
比較例 2
FCCデカントオイルより得られる石油系ピツ
チ400gを撹拌機付きガラス製三口フラスコに仕
込み、窒素気流中、常圧、400℃、1時間撹拌下
で熱処理後取り出し、粉砕後、該熱処理ピツチと
等重量のテトラヒドロフラン(THF)中に入れ、
室温で窒素気流中で1時間撹拌した。しかる後、
該溶液をNo.4定性紙と金巾を用いN2加圧過
機で過し、不溶物を除去した。かくして得られ
た液にTHFに対し4倍量のトルエンを窒素気
流中、撹拌下添加し、さらにその状態で1時間撹
拌を続けた。生成した沈澱をG−4グラスフイル
ターで過することにより収集し、しかる後常法
により乾燥した。該溶剤分別ピツチを三口フラス
コに仕込み、窒素気流中、常圧、440℃、15分間
撹拌下熱処理し紡糸ピツチを調製した。該紡糸用
ピツチを実施例1に準じ分析するとともに炭素繊
維とし、機械物性を測定した。Comparative Example 2 400 g of petroleum pitch obtained from FCC decant oil was placed in a three-neck glass flask equipped with a stirrer, heat treated in a nitrogen stream at normal pressure, 400°C, and stirred for 1 hour, then taken out, crushed, and mixed with the heat treated pitch. in equal weight of tetrahydrofuran (THF),
The mixture was stirred for 1 hour at room temperature under a nitrogen stream. After that,
The solution was filtered through a N 2 pressurizer using No. 4 qualitative paper and a metal cloth to remove insoluble matter. To the thus obtained solution, toluene in an amount four times the amount of THF was added under stirring in a nitrogen stream, and the stirring was continued for 1 hour. The formed precipitate was collected by passing through a G-4 glass filter, and then dried by a conventional method. The solvent fractionation pitch was placed in a three-necked flask and heat-treated at 440° C. under nitrogen flow at normal pressure for 15 minutes with stirring to prepare a spinning pitch. The spinning pitch was analyzed according to Example 1, and the mechanical properties were measured using carbon fiber.
その結果、該紡糸ピツチは、50%のキノリン可
溶性成分を含有しており、ピリジンを溶媒として
VPOで測定した該キノリン可溶性成分の数平均
分子量は650であつた。該ピツチの比重は1.309で
あり、芳香化度は0.51であつた。又、キノリン可
溶性成分について重ピリジンを溶媒として測定し
た1H−NMRより求めたHA、HBは各々4.1%、7.6
%であり、H/Cは0.61であつた。 As a result, the spinning pit contains 50% quinoline soluble components and uses pyridine as a solvent.
The number average molecular weight of the quinoline soluble component measured by VPO was 650. The pitch had a specific gravity of 1.309 and a degree of aromatization of 0.51. In addition, H A and H B determined by 1 H-NMR of quinoline-soluble components using deuterated pyridine as a solvent were 4.1% and 7.6, respectively.
%, and H/C was 0.61.
これらのデータは、該ピツチは高度に発達した
芳香族多環縮合体より成り、分子平面が優れてい
ることを示す。 These data indicate that the pitch is composed of a highly developed aromatic polycyclic condensate and has an excellent molecular plane.
かかるピツチは高度に発達したメソフエースの
為に炭素繊維中に巨大な葉状ドメインを準備しや
すくなり、糸に縦割を生じやすくなると考えられ
る。 It is thought that such pitches tend to prepare huge leaf-like domains in the carbon fiber due to the highly developed mesophase, and tend to cause longitudinal cracks in the yarn.
得られた炭素繊維は糸径9.8μで強度150〜100
Kg/mm2、モジユラス8〜15Ton/mm2の範囲にパラ
ツイており、縦割れを生じた糸も認められた。 The obtained carbon fiber has a thread diameter of 9.8μ and a strength of 150 to 100.
Kg/mm 2 and modulus in the range of 8 to 15 Ton/mm 2 , and some yarns were observed to have longitudinal cracks.
比較例 3
比較例2で使用したと同じ石油系ピツチ200g
を撹拌機付きガラス製三口フラスコに仕込み、窒
素をバブルしつつ、常圧、400℃、24時間撹拌下
で熱処理し、紡糸用ピツチを調製した。Comparative Example 3 200g of the same petroleum-based pitch used in Comparative Example 2
The mixture was placed in a glass three-necked flask equipped with a stirrer, and heated under stirring at 400°C under nitrogen for 24 hours at normal pressure to prepare a spinning pitch.
該紡糸用ピツチを実施例1に準じ分析するとと
もに炭素繊維とし、機械物性を測定しようと試み
た。 The spinning pitch was analyzed in accordance with Example 1, and an attempt was made to measure the mechanical properties using carbon fiber.
その結果、該紡糸ピツチは38%のキノリン可溶
性成分を含有しており、ピリジンを溶媒として
VPOで測定した、該キノリン可溶性成分の数平
均分子量は600であつた。該ピツチの比重は1.345
であり、芳香化度は0.65であつた。又、キノリン
可溶性成分について重ピリジンを溶媒として測定
した1H−NMRより求めたHA、HBは各々1.8%、
3.4%であり、H/Cは0.51であつた。 As a result, the spinning pitch contained 38% quinoline soluble components and
The number average molecular weight of the quinoline soluble component was 600 as measured by VPO. The specific gravity of the pitch is 1.345
The degree of aromatization was 0.65. In addition, H A and H B determined by 1 H-NMR of quinoline-soluble components using deuterated pyridine as a solvent were each 1.8%,
It was 3.4%, and H/C was 0.51.
これらのデータは、該ピツチは高度に発達した
芳香族多環縮合体より成り、分子平面性が優れて
いることを示す。 These data indicate that the pitch is composed of a highly developed aromatic polycyclic condensate and has excellent molecular planarity.
かかるピツチは、高度に発達したメソフエース
の為に炭素繊維中に巨大な葉状ドメインを準備し
やすくなり、糸に縦割れを生じやすくなると考え
られる。 It is thought that such pitches tend to prepare huge leaf-like domains in the carbon fiber due to the highly developed mesophase, and tend to cause longitudinal cracks in the yarn.
実施例1に準じた紡糸を実施したところ、該ピ
ツチの可紡性は悪く、600m/分での巻取りは不
可能であつた。巻取速度を300m/分に低下させ
ることにより、巻取りが辛うじて実施可能である
ことが解つた。この為、繊維径を維持する様に、
プランジヤーの降下速度を調整し後は実施例1に
準じ炭素繊維を作成した。 When spinning was carried out according to Example 1, the spinnability of the pitch was poor and winding at 600 m/min was impossible. It was found that winding was barely possible by reducing the winding speed to 300 m/min. For this reason, in order to maintain the fiber diameter,
After adjusting the descending speed of the plunger, carbon fibers were produced in the same manner as in Example 1.
得られた炭素繊維は糸径10.3μで強度80〜145
Kg/mm2、モジルラスは7〜14Ton/mm2の範囲にバ
ラツイており、縦割れを生じた糸が認められた。 The obtained carbon fiber has a thread diameter of 10.3μ and a strength of 80 to 145.
Kg/mm 2 and modulus lath varied in the range of 7 to 14Ton/mm 2 , and some yarns were observed to have longitudinal cracks.
Claims (1)
素ガスにて水素化したのち450〜550℃で熱処理し
た、キノリン可溶性成分を30〜70重量%含むピツ
チであつて、20℃における比重が1.29〜1.40であ
り、かつ芳香化度が0.45〜0.9であり、前記キノ
リン可溶性成分の数平均分子量が700〜1700であ
つて、その1H−NMRにおいて、溶媒を除く全検
出水素に対するテトラメチルシラン(TMS)基
準のケミカルシフトが5〜7ppmの水素H及び3
〜4ppmの水素Hの割合が、それぞれHA=4.4〜
10%、HB=2.5〜7.5%であることを特徴とする溶
融紡糸性のすぐれた炭素繊維製造用ピツチ組成
物。 2 全組成物のH/Cの値が0.5〜0.65である特
許請求の範囲第1項記載のピツチ組成物。 3 キノリン可溶性成分を50〜70重量%含む特許
請求の範囲第1項又は第2項記載のピツチ組成
物。[Scope of Claims] 1 Pitch containing 30 to 70% by weight of a quinoline-soluble component, which is obtained by hydrogenating an optically isotropic pitch using a hydrogenation solvent or hydrogen gas and then heat treating it at 450 to 550°C. The specific gravity at 20°C is 1.29 to 1.40, the degree of aromatization is 0.45 to 0.9, the number average molecular weight of the quinoline-soluble component is 700 to 1700, and the 1 H-NMR shows that the solvent is excluded. Hydrogen H and 3 with a chemical shift of 5 to 7 ppm based on tetramethylsilane (TMS) relative to all detected hydrogen
The proportion of hydrogen H of ~4ppm is H A =4.4~
10%, and H B =2.5 to 7.5%. A pitch composition for producing carbon fibers with excellent melt spinnability. 2. The pitch composition according to claim 1, wherein the H/C value of the entire composition is 0.5 to 0.65. 3. The pitch composition according to claim 1 or 2, which contains 50 to 70% by weight of a quinoline-soluble component.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14703782A JPS5936725A (en) | 1982-08-24 | 1982-08-24 | Pitch composition for preparing carbon fiber |
US06/525,702 US4590055A (en) | 1982-08-24 | 1983-08-23 | Pitch-based carbon fibers and pitch compositions and precursor fibers therefor |
FR8313618A FR2532322B1 (en) | 1982-08-24 | 1983-08-23 | PITCH COMPOSITIONS, PROCESSES FOR THE PREPARATION OF SUCH COMPOSITIONS, PIT FILAMENT, PROCESS FOR THE PREPARATION OF THE SAME, CARBON FIBER BASED ON PIT AND PROCESS FOR THE PREPARATION OF THE SAME |
GB08322788A GB2129825B (en) | 1982-08-24 | 1983-08-24 | Pitch-based carbon fibers and pitch compositions and precursor fibers therefor |
DE19833330575 DE3330575A1 (en) | 1982-08-24 | 1983-08-24 | CARBON FIBERS BASED ON PECH, COMPOSITION AND FIBER PREPRODUCT HERE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14703782A JPS5936725A (en) | 1982-08-24 | 1982-08-24 | Pitch composition for preparing carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5936725A JPS5936725A (en) | 1984-02-29 |
JPH0413396B2 true JPH0413396B2 (en) | 1992-03-09 |
Family
ID=15421092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14703782A Granted JPS5936725A (en) | 1982-08-24 | 1982-08-24 | Pitch composition for preparing carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5936725A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2533487B2 (en) * | 1986-04-18 | 1996-09-11 | 三菱化学株式会社 | Carbon fiber manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5455625A (en) * | 1977-10-03 | 1979-05-02 | Union Carbide Corp | Low molecular weight meso phase pitch |
JPS5657881A (en) * | 1979-09-28 | 1981-05-20 | Union Carbide Corp | Manufacture of intermediate phase pitch and carbon fiber |
JPS57100186A (en) * | 1980-12-15 | 1982-06-22 | Fuji Standard Res Kk | Latently anisotropic pitch |
JPS5841914A (en) * | 1981-08-29 | 1983-03-11 | Mitsui Cokes Kogyo Kk | Preparation of high-strength and high-modulus carbon fiber |
-
1982
- 1982-08-24 JP JP14703782A patent/JPS5936725A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5455625A (en) * | 1977-10-03 | 1979-05-02 | Union Carbide Corp | Low molecular weight meso phase pitch |
JPS5657881A (en) * | 1979-09-28 | 1981-05-20 | Union Carbide Corp | Manufacture of intermediate phase pitch and carbon fiber |
JPS57100186A (en) * | 1980-12-15 | 1982-06-22 | Fuji Standard Res Kk | Latently anisotropic pitch |
JPS5841914A (en) * | 1981-08-29 | 1983-03-11 | Mitsui Cokes Kogyo Kk | Preparation of high-strength and high-modulus carbon fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS5936725A (en) | 1984-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4590055A (en) | Pitch-based carbon fibers and pitch compositions and precursor fibers therefor | |
US4427530A (en) | Aromatic pitch derived from a middle fraction of a cat cracker bottom | |
JPH0133568B2 (en) | ||
US5182010A (en) | Mesophase pitch for use in the making of carbon materials | |
JPS58214531A (en) | Preparation of pitch for producing pitch type carbon fiber | |
US5968435A (en) | Process for manufacturing pitch-type carbon fiber | |
JPS59196390A (en) | Preparation of pitch for carbon fiber | |
JPS602352B2 (en) | Production method of Primesoface carbonaceous material | |
JPH05132675A (en) | Production of pitch | |
JPH0413396B2 (en) | ||
JP2917486B2 (en) | Mesoface pitch for carbon materials | |
JPH0516475B2 (en) | ||
JP2931593B2 (en) | Mesoface pitch for carbon materials | |
JPS58101191A (en) | Preparation of mesophase pitch and carbon fiber from said pitch | |
EP0378187A2 (en) | Pitch for carbon fibers, process for production of said pitch, and process for production of carbon fibers using said pitch | |
JPH036248B2 (en) | ||
JPS59136383A (en) | Preparation of pitch for producing carbon fiber | |
JPH06272118A (en) | Pitch-based active carbon fiber and its production | |
JPH027351B2 (en) | ||
JPH05132676A (en) | Production of pitch | |
JPS61287961A (en) | Precursor pitch for carbon fiber | |
JPS5936724A (en) | Pitch composition of raw material for carbon fiber | |
JPH054999B2 (en) | ||
JPH0437874B2 (en) | ||
JPS6152244B2 (en) |