JPS58214531A - Preparation of pitch for producing pitch type carbon fiber - Google Patents
Preparation of pitch for producing pitch type carbon fiberInfo
- Publication number
- JPS58214531A JPS58214531A JP9819482A JP9819482A JPS58214531A JP S58214531 A JPS58214531 A JP S58214531A JP 9819482 A JP9819482 A JP 9819482A JP 9819482 A JP9819482 A JP 9819482A JP S58214531 A JPS58214531 A JP S58214531A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- oil
- spinning
- hydrogenated
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Working-Up Tar And Pitch (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はコールタールピッチやナフサタールピッチ等の
石炭系9石油系ピッチを原料として、軽度の水素化処理
を行う第1工程と、さらに減圧下あるいは常圧下、45
0℃以上の温度で処理する第2工稈よりなる紡糸性の優
れた高依度ピ、チ系炭素繊##製造用ピッチの@製方法
に関するもので。DETAILED DESCRIPTION OF THE INVENTION The present invention consists of a first step in which a coal-based petroleum pitch such as coal tar pitch or naphtha tar pitch is used as a raw material, and is subjected to a mild hydrogenation treatment, and then a hydrogenation process under reduced pressure or normal pressure.
This invention relates to a method for producing pitch for producing high-density carbon fiber ## with excellent spinnability, which is made of a second culm treated at a temperature of 0° C. or higher.
特E第1工稈での軽度水素化処理法を改良したものであ
る。This is an improved version of the mild hydrotreating method used in the special E No. 1 culm.
従来、炭素繊維は耐熱性、断熱性、m薬品性。Conventionally, carbon fiber has heat resistance, insulation properties, and chemical resistance.
剛性、導電性が優れていると共に軽量であるという特性
を利用して、断熱材、シール材、電機材料部品、Wt造
部材、摩擦材料、伏素電極などに広く使用されている。Utilizing its characteristics of excellent rigidity, electrical conductivity, and light weight, it is widely used in heat insulating materials, sealing materials, electrical equipment parts, Wt structural members, friction materials, aluminum electrodes, and the like.
炭素繊維は主としてアクリロニトリルやセルロースなど
の繊維を焼成することにより製造されているが、これら
の原料はコストが高い上に炭化収率が低いという欠点が
ある。他方、多量に入手し得る各稀ピッチは石炭1石油
工業の副産物であり。Carbon fibers are mainly produced by firing fibers such as acrylonitrile and cellulose, but these raw materials have the disadvantages of high cost and low carbonization yield. On the other hand, each rare pitch available in large quantities is a by-product of the coal-oil industry.
これを原料として炭素繊維を製造する方法が提案されて
いるが、軽化点、粘度などの点で紡糸が困難な上に、得
られる炭素繊維の品質が低いという欠点があり、工業的
に爽施するには末だ解決すべき問題点が多く残されてい
るのが実状である。A method of manufacturing carbon fiber using this raw material has been proposed, but it is difficult to spin due to lightening point, viscosity, etc., and the quality of the carbon fiber obtained is low. The reality is that there are still many problems that need to be resolved.
これらの問題を解決するために、これまで特定の縮合多
環芳香族化合物を水素化処理又は熱処理して得たピッチ
状物質を用いる方法(特公昭45−28015号公報、
特公昭49−8654号公報)9石油系タールやピッチ
をルイス酸系触媒を除去して第2の熱処理を施して得た
ものを用いる方法(特公昭55−7555号公報)、M
圧下に所定のメゾフェース含量をもつメソフェースピッ
チを形成させ、これを原料として炭素繊維を製造する方
法(特開昭54−11350号公報、特公昭54−18
10号公報)、特定の組成、特定の性質をもつメソフェ
ースピッチを用いる方法(特開昭54−55625号公
報、米国特許第4787.541号明細書)などが提案
されているがこれらの方法によってもアクリジニトリル
を原料としたものに匹敵する性質をもつ炭素繊維を得る
ことができないため、現在に至るまで高性能グレードの
炭素繊維をピッチ状物質から得る実用可能な方法は知ら
れていなかった。In order to solve these problems, there has been a method using a pitch-like substance obtained by hydrogenating or heat treating a specific condensed polycyclic aromatic compound (Japanese Patent Publication No. 45-28015,
(Japanese Patent Publication No. 49-8654) 9 A method using petroleum tar or pitch obtained by removing the Lewis acid catalyst and subjecting it to a second heat treatment (Japanese Patent Publication No. 55-7555), M
A method for producing carbon fibers by forming mesoface pitch with a predetermined mesoface content by rolling and using this as a raw material (Japanese Patent Application Laid-open No. 11350/1983, Japanese Patent Publication No. 54-18
10), a method using mesophase pitch having a specific composition and specific properties (Japanese Patent Application Laid-Open No. 54-55625, US Pat. No. 4,787,541), etc., but these methods have not been effective. However, it is not possible to obtain carbon fibers with properties comparable to those made from acridinitrile, so to date there is no known practical method for obtaining high-performance grade carbon fibers from pitch-like materials. Ta.
本発明者らはメソフェースピッチから高品質のピッチ系
炭素繊維を製造するためには紡糸性の優れたピッチの製
造が不可欠であると考えている。The present inventors believe that in order to produce high-quality pitch-based carbon fiber from mesoface pitch, it is essential to produce pitch with excellent spinnability.
その型出は、ピッチではポリアクリロニトリルからの炭
素繊維と異なり、紡糸時にピッチを構成する分子を繊維
軸方向に平行に配列させなければならず、それ以後の不
融化、炭化、あるいは黒鉛死処即時においての不整な分
子の配列矯正はかなり困難である。すなわち1分子の配
列は紡糸時にほとんど決定されるとの考えによるもので
ある。この考えのもとに、紡糸性のすぐれたピッチの製
造方法として、先に、ブリメソフェース度素質を原料と
したピッチ系炭素繊紺の製造方法を提案した(特願昭5
6−117470)。この中で、 プリメソフェースと
いうのはメソフェースの前駆体であり、キノリンに可溶
な成分で光学的等方性であるが、これを紡糸して繊維状
になした後1次化処理によって初めて光学的異方性に変
化するものを指している。そして、このブリメソフェー
スの製造方法としてピッチ類をテトフヒドロキノリンと
380〜500℃で処理するか、あるいは、ナフタリン
等の芳香族膨化水素と、水素加圧下で450℃以上で処
理する第1工程とその処理物を減圧下又は常圧下450
鳳以上で処理する第2工稈よりなる方法を提案し母(特
願昭56−117470.および、昭和57年5月12
1出阿)。これらの方法において、第1工稈はピーチ中
の高分子量成分の熱分解反応とそれによって生ずるラジ
オ〃の水添による安定化を行い、実質的に低分子量化さ
せることである。そのためにはピッチに対して良溶媒で
あり、かつ、水素供与性であることを必要とする。ちな
みに、水素供与剤として知られているテトラリンは溶剤
ではあるが、ピッチに対しては良溶剤とはいえず、その
ためこれによってビ雫チを処理するとピッチの重合生成
物であるコークスが容易に生成する。上述のテトフヒド
ロキノリンはキノリンの水添によって容易Y−製造でき
、しかもキノリンがピッチ類に対して良溶媒であること
から、第1工稈の処理剤として最適であった。しかし、
キノリンは合成によっても製造され得るが、大部分はコ
ールタール中の塩基性成分を分離9M製して製造されて
いる。Unlike carbon fibers made from polyacrylonitrile, pitch molding requires the molecules that make up pitch to be aligned parallel to the fiber axis during spinning, and subsequent infusibility, carbonization, or graphite death immediately It is quite difficult to correct the alignment of irregular molecules. In other words, it is based on the idea that the arrangement of one molecule is mostly determined during spinning. Based on this idea, we previously proposed a method for producing pitch-based carbon fiber navy blue using brimesophase as a raw material as a method for producing pitch with excellent spinnability.
6-117470). Among these, primesophase is a precursor of mesophase, and is a quinoline-soluble component that is optically isotropic. After spinning it into a fiber, it is first processed through primary treatment. It refers to something that changes to optical anisotropy. Then, as a method for producing this brimethophase, the first step is to treat pitch with tetofhydroquinoline at 380 to 500°C, or with aromatic swelling hydrogen such as naphthalene at 450°C or higher under hydrogen pressure. and the treated product under reduced pressure or normal pressure.
He proposed a method consisting of a second culm treated with a culm or higher (patent application 117470/1982) and published on May 12, 1983.
1 dea). In these methods, the first step is to carry out a thermal decomposition reaction of high molecular weight components in the peach and to stabilize the radio produced thereby by hydrogenation, thereby substantially reducing the molecular weight. For this purpose, it is necessary to be a good solvent for pitch and to have hydrogen donating properties. By the way, tetralin, which is known as a hydrogen donor, is a solvent, but it is not a good solvent for pitch, so when pitch is treated with it, coke, which is a polymerization product of pitch, is easily generated. do. The above-mentioned tetofhydroquinoline can be easily produced by hydrogenation of quinoline, and since quinoline is a good solvent for pitches, it was most suitable as a treatment agent for the first culm. but,
Although quinoline can be produced synthetically, it is mostly produced by separating basic components from coal tar.
着のため大量に確保することが困難であると共に高価で
ある欠点を有する。一方、ナフタリン等の芳香族法化水
素の場合は処理温度が450℃以上で水添反応がおこり
、この反応速度を早くするには。It has the disadvantage that it is difficult to obtain in large quantities due to the wear and tear, and it is also expensive. On the other hand, in the case of aromatic hydrogenated hydrogen such as naphthalene, the hydrogenation reaction occurs at a treatment temperature of 450° C. or higher, and this reaction rate must be increased.
さらに高温を必要とする欠点がある。これらの欠点を除
き、かつ、テトラヒドロキノリンと同様の効果をもつ溶
剤の検索を行った結果@ 2gJ以上の縮合多環芳香
族法化水素の混合物であるアントフ七ン油等のコールタ
ールの蒸留油、あるいは惨ナフサ熱分解時に副生する軽
油が有効であることを見い出し9本発明をなすに至った
。It also has the disadvantage of requiring high temperatures. After searching for a solvent that eliminates these drawbacks and has the same effect as tetrahydroquinoline, we found that distilled oil of coal tar, such as antoph7ine oil, which is a mixture of fused polycyclic aromatic hydrogenated compounds of 2 gJ or more. The present inventors have discovered that light oil, which is produced as a by-product during the thermal decomposition of naphtha, is effective.9 The present invention has been completed.
本発明はピッチ類を軽度水添処理する第1工稈とその処
理物を減圧下又は常圧下で高温、短時間処理する第2工
程によって紡糸用ピッチを調製するものであるが、特に
第1工程での軽度水添処理法に関するもので、以下詳細
Y−説明する。The present invention prepares pitch for spinning through a first culm in which pitches are subjected to a mild hydrogenation treatment and a second process in which the treated product is treated at high temperature for a short time under reduced pressure or normal pressure. This relates to a mild hydrogenation treatment method in the process, and will be explained in detail below.
原料重質歴青物は石次索9石油系のいずれでもよいが、
特に重質歴青物中の重質部分、すなわちピッチ類が好適
である。これらのピッチ類は石次系であればコールター
ルの蒸留残液であるコールタールピッチ、あるいは旧法
液化物9石油系であれば、ナフサ熱分解時の副生タール
の蒸留残渣。The raw material heavy bituminous material may be any of the Ishijisaku 9 petroleum products, but
In particular, the heavy parts of heavy bituminous materials, ie, pitches, are suitable. These pitches are coal tar pitch, which is the distillation residue of coal tar if it is an Ishiji type, or the distillation residue of the by-product tar during naphtha thermal decomposition if it is an old method liquefied 9 petroleum type.
橢質油の流動接触分解法(FCC法)F?−よって得□
〜れるタール状物質の分解タール、原油の蒸留残糊であ
るアスファルトやこれの熱分解等によって褥だピッチ等
が用いられる。これらのピッチ類は単独でよいが、混合
したものでもよい。Fluid catalytic cracking method (FCC method) F? −Therefore, it is advantageous□
Decomposed tar from tar-like substances produced by oil, asphalt, which is a residue from distillation of crude oil, and pitch produced by thermal decomposition of this are used. These pitches may be used alone or in combination.
溶剤として用いられる2環以上の縮合多環芳香族炭化水
素はコーμター〃の蒸留物であるアンシフセン油、クレ
オソート油、ナフタリン油、吸収油等であり、さらにナ
フサ熱分解時に副生する重油部分中の軽油留分である。The condensed polycyclic aromatic hydrocarbons with two or more rings used as solvents include ansifcene oil, which is a distillate of coater, creosote oil, naphthalene oil, and absorption oil, as well as heavy oil, which is a by-product during naphtha thermal decomposition. This is the light oil fraction in the fraction.
ピッチ類と溶剤との処理には次の2つの方法がある。す
なわち、第1の方法は溶剤をあらかじめ水添処理し、こ
の水素化溶剤とピッチ類とを自生圧下、400〜500
℃で処置のである。第2の方法はピッチ類に溶剤を加え
、さらに触媒として鉄系化合物、又はコバルト−モリブ
デン−アルミナやニッケルーモリブデン−アルミナを添
加し、水声ガス加圧下で行うものである。There are two methods for treating pitches and solvents: That is, in the first method, the solvent is hydrogenated in advance, and the hydrogenated solvent and pitches are heated under an autogenous pressure of 400 to 500
Treat at ℃. The second method is to add a solvent to pitches, further add an iron-based compound, cobalt-molybdenum-alumina or nickel-molybdenum-alumina as a catalyst, and carry out the process under pressure of water gas.
第1の方法
溶剤の水添処理は触媒存在下、水素ガス圧50〜200
Kp/国2300〜400℃で行う9反応流度は触媒に
よって異なる。例えば、触媒としてコバルト−モリブデ
ン−アルミナの市販脱硫触媒を用いた場合。The first method is hydrogenation treatment of the solvent in the presence of a catalyst at a hydrogen gas pressure of 50 to 200
Kp/country 9 Reaction flow rate carried out at 2300-400°C varies depending on the catalyst. For example, when a commercially available cobalt-molybdenum-alumina desulfurization catalyst is used as the catalyst.
約320℃で水添反応がおこるが9反応速度を考慮すれ
ば350〜380℃程度がよし1゜380℃では約30
分を経過すると水素吸収量は少くなる。水素消費量は1
〜3重景重子−る。また、触媒として鉄系化合物のうち
、酸化鉄(F@t’s )を用いると、水添反応は約3
80℃以上でおこる。400℃ではかなり短時間で水素
吸収は終了する。ニッケル−モリブデンーア/L/lす
触媒を用いると約500℃から水添反応がおこる。The hydrogenation reaction occurs at about 320℃, but considering the reaction rate, it is better to be at about 350 to 380℃.
As time passes, the amount of hydrogen absorbed decreases. Hydrogen consumption is 1
~Shigeko Sanju-ru. In addition, when iron oxide (F@t's) among iron-based compounds is used as a catalyst, the hydrogenation reaction is approximately 3
Occurs at temperatures above 80°C. At 400°C, hydrogen absorption ends in a fairly short time. When a nickel-molybdenum/L/l catalyst is used, the hydrogenation reaction occurs from about 500°C.
本発明で用いる水素化溶剤は上記の水添反応による水素
消費量が溶剤1#に対して1〜3重量−のものが好適で
ある。The hydrogenation solvent used in the present invention is preferably one in which the amount of hydrogen consumed in the hydrogenation reaction is 1 to 3 by weight per 1 # of solvent.
このようにして調製した水素化溶剤なビ、チ類100M
承部に対して100〜300重量加える。これを密閉容
器1例えばオートクレーブに入れ、内部の空気を窒素ガ
ス等の不活性ガス或は水素で置換し。100M of the hydrogenated solvents prepared in this way
Add 100 to 300 weight to the bearing part. This is placed in a closed container 1, for example, an autoclave, and the air inside is replaced with an inert gas such as nitrogen gas or hydrogen.
ついで攪拌しながら400〜500℃に加熱する。こ都
らの温度に保持する時間は60分以内であれば;よい。Then, it is heated to 400-500°C while stirring. It is good if the time to maintain this temperature is within 60 minutes.
ついで、処理物は濾過、遠心分離法等によ啼て固形物を
除去する。この除去繰作は原料ピッーナ類をあらかじめ
固形物を除去精製したものを用いれば必らずしも必要と
はしない。固形物を除去した処理物はそのままか、或は
蒸留等によって溶剤を回収した後の残渣を第2工稈の原
料とする。Then, the treated product is filtered, centrifuged, etc. to remove solid matter. This removal process is not necessarily necessary if the raw material Piena is purified by removing solid matter in advance. The treated product from which the solid matter has been removed is used as it is, or the residue after recovering the solvent by distillation or the like is used as the raw material for the second culm.
回収した溶剤は再び水添処理して再使用する。The recovered solvent is again hydrogenated and reused.
第2の方法
この方法は第1の方法が水素化溶剤を用い、溶剤から放
出される水素によってピッチの水添処理を行うのに対し
て、水素化溶剤あるいは未水素化溶剤を用い、水素加圧
下でピッチを処理することにより、溶剤の水素化とピッ
チの水添処理を同時に行うものである。すなわち、ピッ
チ100重量部に対して、溶剤50〜100重量加え、
水素化用触媒としてコバ〃トーモリブデンーア〃ミナ等
の水添#!1.硫用固体用固体酸触媒は鉄系化合物をピ
ッチ類畦対して5〜10重景チ重量、水素圧50〜20
0即/α21360〜5001cで処理する。処理時間
は60分以内で十分である。処理物は濾過、遠心分離法
によって固形物、触媒を除去する。ついで、これをその
ままか、或は蒸留によって溶剤を回収した後の残渣を第
2工程の原料とする。回収した溶剤は水素化されている
ので再使用するか、第1方法の溶剤として使用する。2nd method This method uses a hydrogenated solvent or an unhydrogenated solvent, and hydrogenates the pitch using hydrogen released from the solvent. By treating the pitch under pressure, hydrogenation of the solvent and hydrogenation of the pitch are performed simultaneously. That is, to 100 parts by weight of pitch, add 50 to 100 parts by weight of solvent,
Hydrogenation of molybdenum-amina etc. as a catalyst for hydrogenation #! 1. The solid acid catalyst for sulfur is an iron-based compound with a pitch of 5 to 10 times the weight and a hydrogen pressure of 50 to 20.
Process with 0 immediate/α21360-5001c. A treatment time of 60 minutes or less is sufficient. Solids and catalysts are removed from the treated product by filtration and centrifugation. Next, this is used as it is, or the residue after recovering the solvent by distillation is used as a raw material for the second step. Since the recovered solvent is hydrogenated, it can be reused or used as a solvent in the first method.
この方法において、溶剤の量は50重量部以下回収操作
時の経済性に問題がある。触媒は鉄系化合物が好ましい
、特に酸化鉄がよいが、鉄鉱石の粉末やボーキサイト、
或は赤泥などが使用できる。In this method, the amount of solvent is less than 50 parts by weight, which poses a problem in terms of economy during the recovery operation. The catalyst is preferably an iron-based compound, especially iron oxide, but iron ore powder, bauxite,
Alternatively, red mud can be used.
コバルト−モリブデン−アルミナのような固体酸触媒は
400℃附近の温度で処理するときはよいが。Solid acid catalysts such as cobalt-molybdenum-alumina are good when processed at temperatures around 400°C.
約500℃の高温での処理にはあまり適当でない。It is not very suitable for processing at high temperatures of about 500°C.
それはピッチ類の分解を促進させるが、それと共に触媒
上にコークスか生成しやすく、コークスが生成するとよ
く知られているように触媒活性が低下するためである。This is because although it accelerates the decomposition of pitches, it also tends to generate coke on the catalyst, and as is well known, when coke is generated, the catalyst activity decreases.
以上述べた第1あるいは第2の方法によって処理された
ピッチ類は次の第2工程の処理を行う。The pitches treated by the first or second method described above are subjected to the following second step.
゛第2工程は第1工稈での処理物を450℃以上の温度
、好しくは450〜530℃の温度で60分以内の高温
、かつ短時間で処理する。この処理は常圧下でも減圧下
でもよい。常圧下で行う場合は窒素ガス等の不活性ガス
や水蒸気を吹き込み、処理物の攪拌と軽質油分の除去を
行わせてもよい。減圧下では30朋Hp以下で行うのが
好ましし1゜この第2工稈の処理によって、軽質油分の
除去が行われると共に残液ピッチは分解と重合反応が進
行し、紡糸に適したピッチとなる。紡糸性に優れたピッ
チをm製するためには温度1時間を選択するとともに軽
質油分の効果的な除去を必要とする。温度と時間は第1
工程での処理条件が関与する。第1工程での処理温度が
400℃と低い場合には重合反応が急速におこるため、
温度と時間の選択範囲は狭くなる。また、軽質油分の除
去が不十分であると彷糸時に分離して紡糸性が低下する
。``In the second step, the processed material in the first culm is treated at a high temperature of 450° C. or higher, preferably at a temperature of 450 to 530° C., for a short period of time within 60 minutes. This treatment may be carried out under normal pressure or reduced pressure. When carrying out under normal pressure, an inert gas such as nitrogen gas or water vapor may be blown in to stir the treated material and remove light oil components. It is preferable to carry out the process under reduced pressure at a pressure of 30 Hp or less.1゜Through this treatment of the second culm, the light oil content is removed, and the residual pitch undergoes decomposition and polymerization reaction, resulting in a pitch suitable for spinning. becomes. In order to produce pitch with excellent spinnability, it is necessary to select a temperature of 1 hour and to effectively remove light oil components. Temperature and time are the first
The processing conditions in the process are involved. If the treatment temperature in the first step is as low as 400°C, the polymerization reaction will occur rapidly.
The selection range for temperature and time becomes narrower. Furthermore, if light oil components are insufficiently removed, they will separate during yarn wandering and the spinnability will deteriorate.
この第21粋の処理によって得られるピッチは紡糸性に
優れたものであり1通常、軟化点300℃以下、固定炭
素横90−前後のものである。そしてプリメソフェース
或はそれとキノリンネ溶分としてのメソフェースを含む
ものである。メソフェースの含有量は0〜90チの範囲
であれば紡糸可能であるが、約70%以下がとくに紡糸
性に優れている。The pitch obtained by this 21st process has excellent spinnability and usually has a softening point of 300° C. or less and a fixed carbon width of about 90°. It contains primesophase or mesophase as a quinoline-soluble component. Spinning is possible if the content of mesophase is in the range of 0 to 90%, but particularly excellent spinnability is obtained when the mesophase content is about 70% or less.
紡糸は溶融紡糸、吹出し紡糸のいずれも可能である。溶
融紡糸を行うときは0.3〜0.5朋のノズル口径をも
つ紡糸器にピッチを入れ、その軟化点より約70〜14
0℃高い温度に加熱し、ピッチ上部より加圧して8糸す
る。巻取速度は1000m/min、 @たはそれ以上
が可能である。紡糸した繊維状ピーチは空気中約SOO
,Cで酸化、不融化処理を施した後、不活性ガス中で1
000〜1500℃まで加熱して炭化する。そして必要
ならば2000℃以上に加熱して黒鉛化する。Spinning can be either melt spinning or blow spinning. When performing melt spinning, a pitch is placed in a spinner with a nozzle diameter of 0.3 to 0.5 mm, and the pitch is approximately 70 to 14 mm above the softening point.
Heat to a temperature 0°C higher, apply pressure from the top of the pitch, and thread 8 threads. The winding speed can be 1000 m/min or more. The spun fibrous peach is about SOO in the air.
After oxidation and infusibility treatment with , C, 1
Carbonize by heating to 000-1500°C. Then, if necessary, it is heated to 2000° C. or higher to graphitize it.
紡糸した繊維状ピッチの偏光顕微鏡観察による組織は紡
糸用ピッチがプリメソフェースのみの場合は光学的等方
性であるが、メソフェースを含む場合はこのメソフェー
スは繊維軸方向に平行に分子が配列した光学的異方性部
分と、光学的等方性め1プリメソフエースの混在したも
のである。この状況は不融化処理でも変化しないが約6
00℃以上の炭化処理によって繊維全体が光学的異方性
となる。それに伴って、 1000tl’の炭化処理
で得られ肉繊維は径20μm以下1通常はa、oltm
で引張強度200KF/闘2以上、伸び率1.2〜1.
79!、弾性率12へ17 L/龍2の次素繊維が紡糸
用ピッチに対して約90チ前後の収率で得られる。さら
に、高温で焼成すると2強度1弾性率共に増加し、 2
800℃で黒鉛化処理すると、引張強度300Kf/m
m2以上9弾性率50【/耐2以上となる。The structure of spun fibrous pitch observed under a polarized light microscope is optically isotropic when the spinning pitch consists only of pre-mesophase, but when it contains mesophase, the molecules of this mesophase are arranged parallel to the fiber axis direction. It is a mixture of optically anisotropic parts and optically isotropic parts. This situation does not change even with infusibility treatment, but about 6
The entire fiber becomes optically anisotropic by carbonization treatment at 00°C or higher. Along with this, the meat fibers obtained by carbonization treatment of 1000 tl' have a diameter of 20 μm or less 1 Usually a, oltm
Tensile strength 200KF/2 or more, elongation rate 1.2-1.
79! , primary fibers with an elastic modulus of 12 to 17 L/2 are obtained at a yield of about 90 g based on the spinning pitch. Furthermore, when fired at high temperature, both strength and modulus of elasticity increase, and 2
When graphitized at 800℃, the tensile strength is 300Kf/m.
m2 or more 9 elastic modulus 50 / resistance 2 or more.
本発明は先願発明(特願昭56−117470)で用い
たテトラヒドロキノリンと全く同様の操作によって同じ
効果を与え、しかも、工業的に多量に入手可能で安価で
ある点は大きな利点である。The present invention has the great advantage of providing the same effect through the same operation as the tetrahydroquinoline used in the earlier invention (Japanese Patent Application No. 117,470/1983), and being industrially available in large quantities and at low cost.
)以下、実施例を挙げて本発明をさらに詳細に説明1す
る。) Hereinafter, the present invention will be explained in more detail with reference to Examples.
1参考例
工業的に製造されたアントツセン油を減圧蒸留し、7:
圧換算沸点約550℃以下の留分を採取した。1 Reference Example Industrially produced anthothusene oil was distilled under reduced pressure, and 7:
A fraction having a pressure-equivalent boiling point of about 550° C. or lower was collected.
この留分をガスクロマドグツフィーで分析した所ナフタ
リンからピレンまで検出され、そのうち。When this fraction was analyzed using a gas chromatograph, naphthalene to pyrene was detected.
主な成分はナフタリン、メチルナフタリン、アセナブテ
ン、アントヲ七ン(フェナントレン)、カルバシー〃、
メチルアントフセン、フルオレン。The main ingredients are naphthalene, methylnaphthalene, acenabutene, anthronine (phenanthrene), carbacy,
Methyl antofcene, fluorene.
フルオフンテン、ピレンであった。They were fluofunten and pirene.
このアントツセン油200#を500f111の内容積
のオートクレーブに入れ、触媒として、コバルト−モリ
ブデン−アルミナ5tを加え、水素初圧50rp7.z
加圧下で加熱した。内部圧は温度上昇と共に増加するが
、内容物の温度が約320℃に達すると圧力増加は止ま
昨、約525℃付近から低下し始めた。そのため、水素
ガス溜から水素を供給し。This antotsucene oil 200# was placed in an autoclave with an internal volume of 500 f111, 5 tons of cobalt-molybdenum-alumina was added as a catalyst, and the initial pressure of hydrogen was 50 rp7. z
Heat under pressure. The internal pressure increased as the temperature rose, but when the temperature of the contents reached approximately 320°C, the pressure stopped increasing and began to decrease from around 525°C. Therefore, hydrogen is supplied from a hydrogen gas reservoir.
100KG+/II2とした。この圧力を保持しなから
昇温を続け、内容物温度が380℃に達した後、この温
度で90分間保持した。時間経過後直ちに炉から取出し
、室温まで冷却した。オートクレーブ内のガス量と水素
濃度カーら残存水素量を求め、さらに水素ガス溜の圧力
降下量から水素消費量を求めた所ア゛コ)トフセン油1
fに対して1.53重量−であった。It was set to 100KG+/II2. While maintaining this pressure, the temperature continued to rise until the content temperature reached 380°C, and this temperature was maintained for 90 minutes. Immediately after the lapse of time, it was taken out of the furnace and cooled to room temperature. The amount of residual hydrogen was determined from the amount of gas in the autoclave and the hydrogen concentration, and the amount of hydrogen consumed was determined from the amount of pressure drop in the hydrogen gas reservoir.
It was 1.53 weight against f.
内隼物は濾過によって触媒を除き、水素化アントラ十ン
油を得た。これをガスクロマトグラフィーで分析し、原
料アントラセン油と比較した所、6個の新しい成分の存
在が認められた。このうち。The catalyst was removed from the Naihayamono by filtration to obtain hydrogenated anthracite oil. When this was analyzed by gas chromatography and compared with the raw material anthracene oil, the presence of six new components was recognized. this house.
1成分はテトラリンであったが他の成分は不明で沸点約
240℃に1成分、約250℃付近に2成分。One component was tetralin, but the other components are unknown; one component has a boiling point of about 240°C and two components have a boiling point of about 250°C.
フルオレン(沸点298℃)とアントラセン(沸点34
0℃)の間の沸点を持つ成分、力〜パゾー/I/(沸点
555℃)とフルオランテン(沸点384℃)の間の沸
点を持つ成分修鼠った。これらの成分のピーク面積は反
応条件によって変ることから、水素化された芳香族炭化
水素であると推定された。Fluorene (boiling point 298°C) and anthracene (boiling point 34°C)
A component with a boiling point between Pazo/I/ (boiling point 555°C) and fluoranthene (boiling point 384°C) was selected. Since the peak areas of these components varied depending on the reaction conditions, they were presumed to be hydrogenated aromatic hydrocarbons.
上記と同様にして、触媒としてニッケルーモリブデン−
アルミナまたは赤泥を用い、at々の条件で水素化処理
を行った。ニッケルーモリブデンーアーミナの場合、水
素圧の減少は約3oo cから認ヤ治れ、約330℃以
上ではそれが急速となった。In the same manner as above, nickel-molybdenum was used as a catalyst.
Hydrogenation treatment was carried out using alumina or red mud under various conditions. In the case of nickel-molybdenum-amina, the decrease in hydrogen pressure became noticeable from about 30° C. and became rapid above about 330° C.
赤部の場合は約375℃から水素圧の減少が認められ、
400℃になるとそれが急速となった。これらの触媒を
用いて水素化処理しても生成物中の成分の変化はコバル
ト−モリブデン−アルミナの場合と同様であった。水素
圧は501f/α2以上で水素化反応は起こるが、圧力
が増加するにつれて、水素化条件が同一であれば水素消
11量は増加した。In the case of the red part, a decrease in hydrogen pressure was observed from about 375℃,
When the temperature reached 400°C, it became rapid. Even when hydrotreating using these catalysts, the changes in the components in the product were similar to those in the case of cobalt-molybdenum-alumina. The hydrogenation reaction occurs when the hydrogen pressure is 501f/α2 or more, but as the pressure increases, the amount of hydrogen consumed increases under the same hydrogenation conditions.
上記の水素化反応はタレオソート油、吸収油。The above hydrogenation reaction involves taleosote oil and absorption oil.
ナフタリン油あるいはデフ予熱分解時に副生ずる重油中
のメチlv9 エチル基を持つモノ、ジ置換べ4 ンゼ
ン、ナフタリンおよびメチル、エチル基を持つモノ、ジ
置換ナフタリンの混合物である軽油についても同様であ
る。The same applies to naphthalene oil or light oil, which is a mixture of methyl- and di-substituted benzenes and naphthalenes having ethyl groups, and mono- and di-substituted naphthalenes having methyl and ethyl groups in heavy oils produced as by-products during defroster preheating decomposition.
アントツセン油を用いて9種々の条件で水素化処理を行
い、そのときのアントラセン油1tに対する水素消費量
およびガスクロマトグラフ(−で求めたテトラリンとナ
フタリンのピーク面積比をテトラリン生成量として。ま
とめて表1に示した。Hydrogenation was performed using anthracene oil under 9 different conditions, and the hydrogen consumption per 1 ton of anthracene oil and the peak area ratio of tetralin and naphthalene determined by - on the gas chromatograph were calculated as the amount of tetralin produced. Shown in 1.
このテトラリン生成量と水素消費量は図1に示したよう
にLX@関係が成り立つ。したがってテトラリン生成量
がわかると水素消費量を知ることができるので、以下、
実施例においてピッチの水素検量は図1の関係から求め
た。The amount of tetralin produced and the amount of hydrogen consumed have an LX@ relationship as shown in FIG. Therefore, if you know the amount of tetralin produced, you can know the amount of hydrogen consumed, so below,
In the examples, the hydrogen calibration of the pitch was determined from the relationship shown in FIG.
表 1
注1)CoMoはコバルト−モリブデン、NiMoはニ
ッケルーモリブデン。Table 1 Note 1) CoMo is cobalt-molybdenum, NiMo is nickel-molybdenum.
実施例 1゛
表2に示した性状を持つ2fI!!類のコ、−ルターμ
ピッチを原料として用いた。これらのピッチ約200〜
500 Fを21の内容積のオートクレーブに入れ。Example 1 2fI with the properties shown in Table 2! ! - Luther μ
Pitch was used as the raw material. These pitches are about 200~
500 F into an autoclave with an internal volume of 21.
あらかじめ水素化処理したアントラセン油を300〜4
00を加えた後、オートクレーブ内部をアルボ9で置換
した。これを、かくはんしながら、平均典温速度2.5
℃/minで400℃以上に加熱処理した。Pre-hydrogenated anthracene oil from 300 to 4
After adding 00, the inside of the autoclave was replaced with Arbo9. While stirring this, the average temperature rate is 2.5
Heat treatment was performed at 400°C or higher at a rate of °C/min.
所定温度で所定時間保持した後、直ちにオートクレーブ
を炉から取出し、室温まで冷却した。生成したガスはガ
ス分析計により分析し、水素ガス量を求めた。処理物は
遠心沈澱器により固形物を沈降させ、上澄は定性濾紙に
よる減圧濾過した。固形物に付着しているピッチ分を採
取するために。After maintaining the predetermined temperature for a predetermined time, the autoclave was immediately taken out of the furnace and cooled to room temperature. The generated gas was analyzed using a gas analyzer to determine the amount of hydrogen gas. Solid matter was precipitated from the treated product using a centrifugal precipitator, and the supernatant was filtered under reduced pressure using qualitative filter paper. To collect pitch attached to solid materials.
新しいアントラセン油を固形物に加え、十分洗浄し、つ
いでベンゼンを加えアントラセン油を除去した後乾燥し
た。ろ液はIQWRlRHpの減圧下、内容物が290
cに達□するまで蒸留を行い、アントラセン油を回収し
た。この蒸留残渣ピッチを次の紡糸用ピッチ製造原料と
した。なお、オートクレーブで処理した後の処理物を少
量採取し、ガスクロマトグラフィーで分析し、テトラリ
ンとナフタリンのピーク面積比を求めた。ついで、原料
に用いた水素化アントラセン油のテトラリンとナフタリ
ンのビーク面積比の差から9図1F−よって水素消費量
を求めた。ついで、この水素f4*最力1ら生成ガス中
の水素量を差、引き、この陳をピッチの水素消費量とし
た。Fresh anthracene oil was added to the solid, which was thoroughly washed, then benzene was added to remove the anthracene oil, and then dried. The filtrate is under reduced pressure of IQWRlRHp, and the content is 290%
Distillation was carried out until c □ was reached, and anthracene oil was recovered. This distillation residue pitch was used as a raw material for producing pitch for subsequent spinning. Incidentally, a small amount of the treated product after the autoclave treatment was collected and analyzed by gas chromatography to determine the peak area ratio of tetralin and naphthalene. Next, the hydrogen consumption amount was determined from the difference in the peak area ratio of tetralin and naphthalene in the hydrogenated anthracene oil used as the raw material. Next, the amount of hydrogen in the generated gas was subtracted from this hydrogen f4*maximum 1, and this value was taken as the hydrogen consumption amount of the pitch.
上記の方法にしたがって、#々の条件で処理した結果を
まとめて表3に示した。Table 3 summarizes the results of processing under various conditions according to the above method.
表 2
表3の残渣ピッチを用いて1次のようにして紡糸用ピッ
チを調製した。Table 2 Using the residual pitch in Table 3, pitch for spinning was prepared in the following manner.
残渣ピッチ約1001を3ツロガラス製円筒容器(容量
300m/)に入れ、あらかじめ約490℃に加熱した
炉の上部に設置して予熱した。この予熱によってピッチ
を熔融し、約300℃になるまで)′惨った。これに、
ガラス管を容器底部まで差込み。Approximately 1,001 pieces of residual pitch were placed in a cylindrical container (capacity: 300 m/cm) made of 300 ml glass, and the container was placed in the upper part of a furnace that had been preheated to approximately 490° C. for preheating. This preheating melted the pitch until it reached approximately 300°C). to this,
Insert the glass tube to the bottom of the container.
、tt純度窒素ガスを1〜2 //min吹き込んだ。, tt purity nitrogen gas was blown for 1 to 2 minutes.
つい1、炉の中に投入し、ピッチの温度が470℃に達
した後、この温度で所定時間保持した。時間経過後tU
IKちに容器を炉から取出し、室温まで冷却した。なお
、この処理中、窒素ガスは流しつづけ。First, the pitch was placed in a furnace, and after the temperature of the pitch reached 470° C., it was maintained at this temperature for a predetermined period of time. After time tU
The container was immediately removed from the oven and cooled to room temperature. During this process, nitrogen gas continued to flow.
閘出する油分はトラップに採取した。また、約助0℃か
ら470℃に達する時間は約±→−分であり1.た5I
0
さらに、減圧下で行う場合は5ツロ円筒容器の留出する
油分の取出口にトラップを介して真空ボンデにつなぎ、
30闘Hp以下9通常は10朋Htの減圧下で上記と同
様の操作を行う。The spilled oil was collected in a trap. Also, the time to reach 470°C from about 0°C is about ±→- minutes, which is 1. 5I
0 Furthermore, when performing under reduced pressure, connect the distilled oil outlet of the 5-ton cylinder container to a vacuum bonder via a trap.
The same operation as above is carried out under a reduced pressure of 30 to Hp or less.9 Normally, 10 to Ht is used.
上記の操作によって得たピッチを紡糸用ピッチとした。The pitch obtained by the above operation was used as spinning pitch.
種々の条件で処理して得たピッチの収率。Yield of pitch obtained by processing under various conditions.
注状を表4にまとめて示した。The notes are summarized in Table 4.
この紡糸用ピッチの紡糸は0.3朋または0.5酊の口
径を持つノズルを付した内杆20闘、長さ150III
の真ちゅう製紡糸器に紡糸ピッチを約102人ps0.
2
部より窒素ガスによって剥4” 1.0 KF/蜘2で
加重い ノズルより押出されるピッチをドラムに巻−−
る方法で行った。ドラムの巻取り速度を通常は1000
m/minとし、少くとも数分間は糸切れなく゛巻き
取ることかで鎗だものを紡糸性は答易である担の評価を
した。巻取り速度が1000 m/min以下のもの、
あるいは1000 m/minであっても、しばしば糸
切れが生ずる場合は困難との評価をした。The spinning pitch of this spinning pitch is 20 inner rods with a nozzle having a diameter of 0.3 mm or 0.5 mm, and a length of 150 mm.
The spinning pitch was about 102 people ps0.
The pitch extruded from the nozzle is rolled onto a drum.
I did it using the following method. The winding speed of the drum is usually set to 1000.
m/min, and the spinability of the spear was easily evaluated by winding the yarn without breaking for at least several minutes. Those with a winding speed of 1000 m/min or less,
Alternatively, even if the speed was 1000 m/min, if thread breakage frequently occurred, it was evaluated as difficult.
の結果を表4に示している。さらに、この紡糸した繊維
状ピッチを空気中、室温より200℃まで5℃/min
、 300℃まで2℃/minで昇温し、15分間保持
して不融化処理した。ついで、アルゴン気流中。The results are shown in Table 4. Furthermore, this spun fibrous pitch was heated at 5°C/min from room temperature to 200°C in air.
The temperature was raised to 300°C at a rate of 2°C/min and held for 15 minutes to perform infusibility treatment. Then, in an argon stream.
25℃/winの昇温速度で1000℃まで加熱し、1
5分間保持して法化処理し、炭素繊維を得た。この炭素
繊維の繊維径および引張強度(繊維10本の平均It)
も合せて表4E示している。Heating to 1000℃ at a temperature increase rate of 25℃/win,
The carbon fibers were obtained by holding for 5 minutes and performing a legalization treatment. Fiber diameter and tensile strength of this carbon fiber (average It of 10 fibers)
These are also shown in Table 4E.
実施例 2
実施例1と同様のコールタールピッチA、Bおよびナフ
サターμを10tmHIiの減圧下、内容物が290℃
まで減圧蒸留を行った残渣ピッチ(以下。Example 2 The same coal tar pitches A, B and naphsatar μ as in Example 1 were mixed under a reduced pressure of 10 tmHIi at a temperature of 290°C.
Residue pitch after vacuum distillation (below).
↑7サターμピッチ)を原料ピッチとした。ナフー喰タ
ールピッチは軟化点113℃、ペン−12ン不溶分着、
キノリンネ溶分量共に0,54 wt %のものである
。↑7 Sutter μ pitch) was used as the raw material pitch. Nafu Kui tar pitch has a softening point of 113℃, pen-12in insoluble separation,
Both amounts of quinoline dissolved therein were 0.54 wt%.
これらのピッチ約4007Fを2jのオートクレーブに
入れ、声考例で用いたアンドブセン油、ナフ’M分解時
副生する重油中の軽油およびアントツセン油の水素化処
理油(表1中の実M番号9)のいずれかを約2002加
え、さらに触媒として赤泥。These pitches of about 4007F were put into a 2J autoclave, and the andobutsen oil used in the voice example, the light oil in the heavy oil by-produced during Naf'M decomposition, and the hydrogenated oil of antotsusen oil (actual M number 9 in Table 1) were added. ) and red mud as a catalyst.
コバルト−モリブデン−アルミナ、またはニッケルーモ
リブデン−アルミナを約2Of加えた。ついで、水素初
圧759/z2の加圧下、かくはんしながら、実施例1
と同様にして、360〜460℃まで加熱し、10〜6
0分間保持した。時間経過後直ちにオートクレーブを炉
より取出し、室温まで冷却した。このようにして得た処
理物は実施例1と同様の操作によって紡糸用ピッチを調
製した。原料ピ、チを種々の条件で処理した結果をまと
めて表5に、また、紡糸用ピッチの性状およびこのピッ
チを実施例1と同様にして次素繊維を製造した結果を表
6に示した。Approximately 2 Of cobalt-molybdenum-alumina or nickel-molybdenum-alumina was added. Then, while stirring under a pressure of hydrogen initial pressure 759/z2, Example 1
Heat to 360-460℃ in the same manner as above, and heat to 10-6℃.
It was held for 0 minutes. Immediately after the time elapsed, the autoclave was taken out of the furnace and cooled to room temperature. From the thus obtained treated product, pitch for spinning was prepared in the same manner as in Example 1. Table 5 summarizes the results of processing the raw materials Pi and Chi under various conditions, and Table 6 shows the properties of the spinning pitch and the results of producing subelementary fibers using this pitch in the same manner as in Example 1. .
表6の番号12.15の紡糸用ピッチは原料ピッチの処
理温度が400℃以下のものであるが、このピッチの紡
糸性は400℃以上で処理したものより劣る。水素消費
量には大きな差はないことから、紡糸性の優れたピッチ
を製造するためには原料ピッチの水素消費量を多くする
ことだけでなくeao。The spinning pitch numbered 12.15 in Table 6 is one in which the raw pitch is treated at a temperature of 400°C or lower, but the spinnability of this pitch is inferior to that treated at a temperature of 400°C or higher. Since there is no big difference in hydrogen consumption, in order to produce pitch with excellent spinnability, it is necessary not only to increase the hydrogen consumption of raw material pitch but also to increase the amount of hydrogen consumed by raw material pitch.
C以上のピッチの熱分解反応を起させる必要があるとい
える。原料ピッチの処理において、触媒として活性の高
いコバルト−モリブデン−アルミナやニッケルーモリブ
デン−アルミナを用いた場合。It can be said that it is necessary to cause a thermal decomposition reaction of a pitch of C or higher. In the treatment of raw material pitch, when highly active cobalt-molybdenum-alumina or nickel-molybdenum-alumina is used as a catalyst.
原料ピッチに溶剤を加えないと、約420 t:以上の
処理で、l!l¥剤不溶分であるコークス分が多量に生
成するが、溶剤を加えた場合は表5に示しているように
、460℃でも固形分量は表1のキノリンネ溶分量より
わずかに多い程度であり、コークス分の生成はほとんど
ないといえる。原料ピッチをテトラヒドロキノリンある
いはキノリンで処理する先願発明(特願昭56−117
470 ) ’の場合は活性の高い触媒を用いて上記の
ような高温で処理することはできない。それは脱窒素反
応が起り、テトラヒドロキノリンあるいはキノリンの損
失が大きくなるためである。この点1本発明の場合はl
I9窒素反応は非常に少ないので、活性の高い触媒の使
用が一可能となった。さらに、活性の高い触媒が使用で
きることは、水素消費量の増加を答易に行える利点があ
る。これは紡糸した繊維状ピッチを空気で酸化不融化す
る際、酸化増量が増大し、不融化が答易になる。If no solvent is added to the raw pitch, approximately 420 t: l! A large amount of coke, which is insoluble in the ¥3, is produced, but when a solvent is added, as shown in Table 5, even at 460°C, the solid content is only slightly larger than the amount of quinolinine dissolved in Table 1. , it can be said that almost no coke is produced. Prior invention of treating raw material pitch with tetrahydroquinoline or quinoline (Patent application 117/1982)
470)', it is not possible to use a highly active catalyst and treat at high temperatures as described above. This is because a denitrification reaction occurs and the loss of tetrahydroquinoline or quinoline increases. Regarding this point 1, in the case of the present invention, l
Since the I9 nitrogen reaction was very low, it became possible to use highly active catalysts. Furthermore, the ability to use a highly active catalyst has the advantage of easily increasing hydrogen consumption. This is because when spun fibrous pitch is oxidized and infusible with air, the oxidation weight increase increases and infusibility becomes easier.
図1はアントラセン油を水素化処理したときの水素消費
量とテトラリン生成量の関係を示したものである。
特許出願人工業技術院長石板誠−
図1
水素消費量 (wt%)
手続補正書(方式)
%式%
1、事件の表示 昭和57年特許願第98194号2
、発明の名称 ピッチ系炭素繊維製造用ピッチの調整
方法3、補正をする者
事件との関係 特許出願人
東京都千代田区霞が関1丁目3番1号
(114)工業技術院長 石 坂 誠 −昭和57年9
月9日
(発送日:昭和57年9月28日)FIG. 1 shows the relationship between hydrogen consumption and tetralin production when anthracene oil is hydrotreated. Patent applicant Makoto Ishiita, Director of the Agency of Industrial Science and Technology - Figure 1 Hydrogen consumption (wt%) Procedural amendment (method) % formula % 1. Indication of the case Patent Application No. 98194 of 1981 2
, Title of the invention: Method for adjusting pitch for manufacturing pitch-based carbon fibers 3, Relationship with the case of the person making the amendment Patent applicant: 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114) Director of the Agency of Industrial Science and Technology Makoto Ishizaka - 1972 Year 9
September 9th (Shipping date: September 28th, 1982)
Claims (1)
素化処理した重質歴青物を450で以上の温度で減圧下
あるいは常圧下で処理する第2工程によって紡糸用ピッ
チを製造し、このピッチを紡糸し、不融化処理した後、
炭化処理してピッチ系炭素繊維を1111!造する方法
において、第11稈での水素化処理を重質歴青物100
重景部子対して、水素化した2環以上の縮合多環芳香族
化合物の混合物を100〜300 p承部加え、自生圧
下、400〜500℃の温度で処理することを特徴とす
るピッチ系炭素繊維Ijlll造用ピッチの調製方法。 2、水素化した2環以上の縮合多環芳香族化合物の混合
物が2環以上の縮合多環芳香族化合物の混合物を触媒存
在下、水素化した際、水素消費量が1〜3重景重子−る
特許請求の範囲第1項記載の方法。 3、ffi質歴前歴青物素化処理する第1工程と水素化
処理した重質歴青物を450℃以上の温度で減圧下ある
いは常圧下で処理する第2工程によって紡糸用ピッチを
製造し、このピッチを紡糸し、不融化処理した後9炭化
処理してピッチ系炭素繊維を製造する方法において、第
1工稈での水素化処理を重質歴青物100重景部子対し
て、水素化した素環以上の縮合多環芳香族化合物の混合
物または素環以上の縮合多環芳香族化合物の混合物を5
0−1−100重量部加え、さらに水素添加用触媒の存
在下* 50Q/傭2 以上の水素加圧下で360〜
500℃の温度で処理することを特徴とするピッチ系次
素繊#製造用ピッチの調製方法。 4.2環以上の縮合多環芳香族化合物の混合物がコール
タールの蒸留油であるアントラ七ン油。 クレオソート油、吸収油、ナフタリン油およびナフサ熱
分解時に副生ずる軽油である特許請求の範囲第2項およ
び第3項記載の方法。 5、水素添加用触媒として、ニッケルーモリブデン−ア
ルミナ、コバ〃トーモリグデンーアルミすおよび鉄系化
合物である特許請求の範囲第2および第5項記載の方法
。[Claims] 1. A method for spinning by the first step of treating the FIJ pre-bituminous material and the second step of treating the hydrogenated heavy bituminous material at a temperature of 450° C. or higher under reduced pressure or normal pressure. After producing pitch, spinning this pitch, and infusible treatment,
Carbonized pitch-based carbon fiber 1111! In the method of producing heavy bituminous materials, hydrogenation treatment in the 11th culm
A pitch system characterized by adding 100 to 300 p of a hydrogenated mixture of fused polycyclic aromatic compounds having two or more rings to the base and treating it under autogenous pressure at a temperature of 400 to 500°C. Method for preparing pitch for carbon fiber Ijll manufacturing. 2. When the hydrogenated mixture of fused polycyclic aromatic compounds with 2 or more rings is hydrogenated in the presence of a catalyst, the hydrogen consumption amount is 1 to 3 double cyclones. - The method according to claim 1. 3. Pitch for spinning is produced by the first step of treating the ffi pre-bituminous material and the second step of treating the hydrogenated heavy bituminous material at a temperature of 450° C. or higher under reduced pressure or normal pressure. In the method of manufacturing pitch-based carbon fiber by spinning pitch, infusible treatment, and then carbonization treatment, the hydrogenation treatment in the first culm was performed on 100 heavy bituminous materials. A mixture of fused polycyclic aromatic compounds with more than one ring or a mixture of fused polycyclic aromatic compounds with more than one ring
Add 0-1-100 parts by weight and further in the presence of a hydrogenation catalyst* 360~
A method for preparing pitch for producing pitch-based secondary fiber #, characterized by processing at a temperature of 500°C. 4. Anthra7 oil, which is a distilled oil of coal tar, which is a mixture of fused polycyclic aromatic compounds having two or more rings. The method according to claims 2 and 3, which is creosote oil, absorption oil, naphthalene oil, and light oil produced as a by-product during naphtha thermal decomposition. 5. The method according to claims 2 and 5, wherein the hydrogenation catalyst is a nickel-molybdenum-alumina, copper-molybdenum-aluminum, or iron-based compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9819482A JPS58214531A (en) | 1982-06-08 | 1982-06-08 | Preparation of pitch for producing pitch type carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9819482A JPS58214531A (en) | 1982-06-08 | 1982-06-08 | Preparation of pitch for producing pitch type carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58214531A true JPS58214531A (en) | 1983-12-13 |
Family
ID=14213190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9819482A Pending JPS58214531A (en) | 1982-06-08 | 1982-06-08 | Preparation of pitch for producing pitch type carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58214531A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5953717A (en) * | 1982-09-16 | 1984-03-28 | Agency Of Ind Science & Technol | Pitch-based carbon fiber having high strength and modulus and its manufacture |
JPS59124988A (en) * | 1982-12-29 | 1984-07-19 | Osaka Gas Co Ltd | Preparation of pitch |
JPS60238387A (en) * | 1984-05-10 | 1985-11-27 | Idemitsu Kosan Co Ltd | Production of pitch for carbonaceous material |
JPS618136A (en) * | 1984-06-22 | 1986-01-14 | Nippon Steel Chem Co Ltd | Catalyst for hydrotreating pitch |
US4600496A (en) * | 1983-05-26 | 1986-07-15 | Phillips Petroleum Company | Pitch conversion |
US4705618A (en) * | 1984-10-29 | 1987-11-10 | Maruzen Petrochemical Co., Ltd. | Process for the preparation of an intermediate pitch for manufacturing carbon products |
US4789456A (en) * | 1986-05-26 | 1988-12-06 | Agency Of Industrial Science And Technology | Process for preparing mesophase pitches |
US4909923A (en) * | 1984-06-22 | 1990-03-20 | Nippon Steel Chemical Co., Ltd. | Method for hydrogenation of coal tar pitch |
US4925547A (en) * | 1988-08-25 | 1990-05-15 | Maruzen Petrochemical Co., Ltd. | Process for producing pitch for the manufacture of high-performance carbon fibers together with pitch for the manufacture of general-purpose carbon fibers |
US5091072A (en) * | 1987-06-18 | 1992-02-25 | Maruzen Petrochemical Co., Ltd. | Process for preparing pitches |
CN103205271A (en) * | 2012-01-12 | 2013-07-17 | 易高环保能源研究院有限公司 | Method for hydrogenation of high temperature coal tar to produce mesophase pitch |
-
1982
- 1982-06-08 JP JP9819482A patent/JPS58214531A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5953717A (en) * | 1982-09-16 | 1984-03-28 | Agency Of Ind Science & Technol | Pitch-based carbon fiber having high strength and modulus and its manufacture |
JPS6327447B2 (en) * | 1982-09-16 | 1988-06-03 | Kogyo Gijutsu Incho | |
JPS59124988A (en) * | 1982-12-29 | 1984-07-19 | Osaka Gas Co Ltd | Preparation of pitch |
JPH0320434B2 (en) * | 1982-12-29 | 1991-03-19 | Osaka Gas Co Ltd | |
US4600496A (en) * | 1983-05-26 | 1986-07-15 | Phillips Petroleum Company | Pitch conversion |
JPH0315954B2 (en) * | 1984-05-10 | 1991-03-04 | Idemitsu Kosan Co | |
JPS60238387A (en) * | 1984-05-10 | 1985-11-27 | Idemitsu Kosan Co Ltd | Production of pitch for carbonaceous material |
JPS618136A (en) * | 1984-06-22 | 1986-01-14 | Nippon Steel Chem Co Ltd | Catalyst for hydrotreating pitch |
US4909923A (en) * | 1984-06-22 | 1990-03-20 | Nippon Steel Chemical Co., Ltd. | Method for hydrogenation of coal tar pitch |
US4705618A (en) * | 1984-10-29 | 1987-11-10 | Maruzen Petrochemical Co., Ltd. | Process for the preparation of an intermediate pitch for manufacturing carbon products |
US4789456A (en) * | 1986-05-26 | 1988-12-06 | Agency Of Industrial Science And Technology | Process for preparing mesophase pitches |
US5091072A (en) * | 1987-06-18 | 1992-02-25 | Maruzen Petrochemical Co., Ltd. | Process for preparing pitches |
US4925547A (en) * | 1988-08-25 | 1990-05-15 | Maruzen Petrochemical Co., Ltd. | Process for producing pitch for the manufacture of high-performance carbon fibers together with pitch for the manufacture of general-purpose carbon fibers |
CN103205271A (en) * | 2012-01-12 | 2013-07-17 | 易高环保能源研究院有限公司 | Method for hydrogenation of high temperature coal tar to produce mesophase pitch |
US9994775B2 (en) | 2012-01-12 | 2018-06-12 | Eco Environmental Energy Research Institute Limited | Process for producing mesophase pitch by hydrogenation of high-temperature coal tar |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4590055A (en) | Pitch-based carbon fibers and pitch compositions and precursor fibers therefor | |
SU1590047A3 (en) | Method of producing mesophase pitch | |
JPH048472B2 (en) | ||
JPH0252954B2 (en) | ||
JPS58214531A (en) | Preparation of pitch for producing pitch type carbon fiber | |
EP0063053A2 (en) | Starting pitches for carbon fibers | |
US5968435A (en) | Process for manufacturing pitch-type carbon fiber | |
JPS6335195B2 (en) | ||
US4758326A (en) | Method of producing precursor pitches for carbon fibers | |
JPS602352B2 (en) | Production method of Primesoface carbonaceous material | |
JPH045710B2 (en) | ||
US4759839A (en) | Process for producing pitch useful as raw material for carbon fibers | |
JPS6257679B2 (en) | ||
JPH0148312B2 (en) | ||
JPS6030366B2 (en) | Manufacturing method for high-strength, high-modulus carbon fiber | |
JPH0148314B2 (en) | ||
JPH027351B2 (en) | ||
JPS6312689A (en) | Production of precursor pitch for carbon fiber | |
JP2931593B2 (en) | Mesoface pitch for carbon materials | |
JPS6223084B2 (en) | ||
KR100305372B1 (en) | Isotropic pitch for producing carbon fiber and its manufacturing method | |
JPS58191223A (en) | Manufacture of carbonaceous fiber material | |
US4882139A (en) | Improved production of carbon fibers | |
JPS61215692A (en) | Mesophase pitch suitable for high-performance carbon fiber and its production | |
JP2689978B2 (en) | Carbon fiber production method |