JPH0148314B2 - - Google Patents

Info

Publication number
JPH0148314B2
JPH0148314B2 JP56062426A JP6242681A JPH0148314B2 JP H0148314 B2 JPH0148314 B2 JP H0148314B2 JP 56062426 A JP56062426 A JP 56062426A JP 6242681 A JP6242681 A JP 6242681A JP H0148314 B2 JPH0148314 B2 JP H0148314B2
Authority
JP
Japan
Prior art keywords
pitch
raw material
heat
oil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56062426A
Other languages
Japanese (ja)
Other versions
JPS57179286A (en
Inventor
Seiichi Kamimura
Shunichi Yamamoto
Takao Hirose
Hiroaki Takashima
Osamu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP6242681A priority Critical patent/JPS57179286A/en
Publication of JPS57179286A publication Critical patent/JPS57179286A/en
Publication of JPH0148314B2 publication Critical patent/JPH0148314B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素繊維製造用原料としての優れた性
能を有するピツチの製造方法に関する。 現在、炭素繊維は主にポリアクリロニトリルを
原料として製造されている。しかしながらポリア
クリロニトリルを原料とした場合、原料が高価で
あり、また加熱炭化時において繊維状の原形がく
ずれ易く、さらに炭化収率も悪いという欠点があ
る。 近年、この点に着目してピツチを原料として炭
素繊維を製造する方法が数多く報告されている。
ピツチを原料として用いた場合、原料が安価であ
り、また炭化収率が通常85〜95%と高いため、安
価に炭素繊維を製造できることが期待される。し
かしながら、ピツチを原料として得られる炭素繊
維は、ポリアクリロニトリル系炭素繊維に比べ弾
性率は高いものの、強度が劣るという問題があ
る。従つて、もしこの問題点を解決し、また弾性
率をさらに向上し得ることができれば、ピツチか
ら安価に高強度かつ高弾性率の炭素繊維を製造す
ることが可能となる。 最近になつて、市販の石油ピツチを熱処理し
て、メソ相(mesophase)と呼ばれる光学的異方
性の液晶を含有するピツチを得、このメソ相を含
有するピツチを前駆体ピツチ(以後、溶融紡糸時
におけるピツチを前駆体ピツチと呼ぶ)として用
い、この前駆体ピツチを溶融紡糸した後、不融化
し、次いで炭化あるいは更に黒鉛化することによ
り、弾性率および強度が向上した炭素繊維が得ら
れることが報告された(特開昭49−19127号)。 しかしながら、ピツチが液晶を形成し得るか否
かは種々の要因により決まるものであり、また液
晶の構造や軟化点、粘度等の物性は原料ピツチに
大きく依存するものである。前記特開昭49−
19127号はメソ相を含有するピツチ(以後、メソ
相ピツチと略記する)の調製法に関するものであ
つて、良質のメソ相ピツチを形成するための原料
ピツチについては何ら言及していない。前記した
ように、良質のメソ相ピツチは原料ピツチに大き
く依存するものであり、最適な原料ピツチを見出
すことができれば弾性率および強度がさらに優れ
た炭素繊維を製造することが可能となる。それ
故、この最適の原料ピツチを見出すことが当該技
術分野の重要な課題である。 例えば、コールタールピツチはカーボンブラツ
ク状のキノリンに不溶で不融性の物質を含有して
おり、これらは前駆体ピツチの不均一性の原因と
なり紡糸性を悪くさせるばかりか、炭素繊維の強
度および弾性率に悪影響を及ぼす。 一方、市販の石油ピツチやその他の合成ピツチ
の多くは、キノリンに不溶で不融性の物質をほと
んど含有していないが、これらのピツチを加熱処
理して前駆体ピツチを調製する段階で、キノリン
に不溶な高分子量成分が生成する。すなわち、こ
れらのピツチを熱処理すると熱分解と重縮合反応
が併発し、低分子量成分は徐々に高分子量化し、
キノリンに不溶の高分子量成分となり、また同時
に高分子量成分はさらに高分子量化する。これに
伴つてピツチの軟化点も上昇する。このキノリン
不溶分がコールタール中のカーボンブラツク状物
質に類似の物質であれば、前述の如く紡糸以降の
工程で悪影響を及ぼす。また、前記のカーボンブ
ラツク状物質とは異なる物質であつたとしても、
多量のキノリン不溶分の存在と高い軟化点は溶融
紡糸の段階で悪影響を及ぼす。すなわち、前駆体
ピツチを溶融紡糸するためには、前駆体ピツチが
紡糸可能な粘度になるまで紡糸温度を上げること
が必要であつて、前駆体ピツチの軟化点が余りに
も高過ぎれば、紡糸温度も当然高くせざるを得
ず、その結果、キノリン不溶分は一層高分子量化
すると共に、ピツチの熱分解が起こり軽質ガスが
発生し、均一な前駆体ピツチとはなり得ず、紡糸
することが事実上不可能となる。 このように前駆体ピツチは、比較的低い軟化点
と紡糸するために適当な粘度を持つていなければ
ならない。また、紡糸時さらには炭化時に揮発性
成分を実質的に含有するものであつてはならな
い。 このため、生成したキノリン不溶分を加圧過
や溶剤分別等の手段により除去することにより炭
素繊維製造用前駆体ピツチを調製することが行わ
れている(特開昭47−9804号、同50−142820号、
同55−1342号、同55−5954号)。しかしながら、
これらの手段を用いた場合には処理装置の複雑化
および処理費用の増大を招き、経済的観点から好
ましいものではない。 もし、原料ピツチとして優れた性能を有するピ
ツチを用いることにより、メソ相化の加熱段階で
キノリン不溶分となる高分子量成分を生成させな
いことができれば最も好ましいものである。 本発明者らは、これらの課題について鋭意研究
した結果、本発明を完成したものである。すなわ
ち、本発明者らは、前駆体ピツチを調製する段階
で高分子量成分の生成を抑制し、最適な粘度を有
し、また炭化初期の段階では芳香族平面が秩序だ
つて配列をし易い組成を持つことができる性能の
優れた原料ピツチを見出だしたものである。換言
すれば、本発明は軟化点が比較的低く保持され、
かつメソ相を容易に形成するような原料ピツチの
製造方法を提供するものである。 以下に本発明を詳述する。 本発明は原料ピツチを加熱処理して得られる前
駆体ピツチを溶融紡糸した後、不融化処理および
炭化あるいは更に黒鉛化処理して炭素繊維を製造
するに当たり、該原料ピツチが(1)石油類を流動接
触分解した際に得られる沸点200℃以上の重質油
100容量部に対し、(2)原料ピツチを加熱処理した
際に生成する沸点範囲が160〜400℃の範囲内の留
分を水素化触媒の存在下に水素と接触させ、該留
分中に含有される芳香族系炭化水素の芳香族核を
10〜70%核水素化して得られる水素化油10〜200
容量部を添加し、温度370〜480℃、圧力2〜5
Kg/cm2・Gにて熱処理して得られるものであるこ
とを特徴とする炭素繊維用原料ピツチの製造方法
に関する。 本発明により得られる原料ピツチを用いてメソ
相化反応を行わせしめた場合、キノリン不溶分の
生成が抑制されるばかりか、ピツチが改質され、
最終製品である炭素繊維が高弾性率で、かつ高強
度となり得たことは全く予期され得ないものであ
つた。 これに対し、コールタールピツチ、市販の石油
ピツチあるいは合成ピツチを特開昭49−19127号
の方法に従つて加熱処理し、メソ相化を行つたと
ころ、生成ピツチの軟化点が340℃以上のもの、
固形物が沈積したもの、あるいは固形物が沈積し
ないまでもキノリン不溶分が70%以上にも達した
もの等、多くの場合、溶融紡糸が事実上不可能で
あつた。また溶融紡糸を行い得た場合でもさらに
不融化、炭化および黒鉛化処理して得た炭素繊維
の強度は120〜200Kg/mm2、弾性率は12〜20ton/
mm2程度であつた。また高軟化点のものを紡糸した
場合には、紡糸物中に熱分解ガス発生に起因する
空孔が存在していた。 本発明において原料ピツチの成分(1)として用い
られる、石油類を流動接触分解した際に得られる
沸点200℃以上の重質油とは、灯油、軽油あるい
は常圧残油等の石油類を天然あるいは合成のシリ
カ―アルミナ触媒あるいはゼオライト触媒の存在
下に450〜550℃、常圧〜20Kg/cm2Gにて流動接触
分解することにより、ガソリン等の軽質油を製造
する際に副生する実質的に沸点範囲が200〜550
℃、好ましくは300〜550℃の範囲内の重質油であ
る。 本発明において原料ピツチの成分(2)として用い
られる水素化油とは、原料ピツチを加熱処理した
際に生成する沸点範囲が実質的に160〜400℃、好
ましくは170〜350℃の範囲内の留分を、水素化触
媒の存在下に水素と接触させ、該留分中に含有さ
れる芳香族系炭化水素の芳香族核を部分的に核水
素化したものである。 このとき使用する水素化触媒は通常の水素化反
応に用いられる触媒でよく、例えばボーキサイ
ト、活性炭素、珪藻土、ゼオライト、シリカ、チ
タニヤ、ジリコニア、アルミナあるいはシリカゲ
ル等の無機固体を担体として用い、銅などの周期
律表IB族金属、クロム、モリブデンなどの周期
律表B族金属、コバルト、ニツケル、パラジウ
ムあるいは白金などの周期律表族金属を金属の
形で、または酸化物あるいは硫化物の形で前記担
体に担持させたもの等が用いられる。 水素化条件は、使用する触媒の種類により異な
るものであるが通常、温度が120〜450℃、好まし
くは150〜350℃、圧力が20〜100Kg/cm2・G、好
ましくは30〜70Kg/cm2・Gで行われる。また回分
式で行つた場合の、水素化処理時間は0.5〜3時
間が適当である。連続式で行つた場合には空間速
度(LHSV)0.5〜3.0が選ばれる。 水素化条件の例を挙げれば、2wt%のラネー・
ニツケルを触媒として用い回分式で行つた場合に
は、圧力40〜50Kg/cm2・G、温度160〜170℃、処
理時間1〜1.5時間が好ましく採用され、ニツケ
ル・モリブデン系触媒を用いて連続式で行つた場
合には、圧力30〜50Kg/cm2・G、温度330℃程度、
空間速度(LHSV)1.5程度が好ましく採用され
る。 水素化反応により、留分中に含有される芳香族
系炭化水素の芳香族核を部分的に核水素化を行う
が、この時の核水素率が10〜70%、好ましくは15
〜50%、最も好ましくは15〜35%となるようにす
ることが必要である。なお、核水素化率は下式に
よつて定義されるものであり、また下式中の芳香
族環炭素数とはASTM D−2140−66で示される
ものである。 核水素化率=(水素化処理前の芳香族環炭素数)−(
水素化処理後の芳香族環炭素数)/水素化処理前の芳香
族環炭素数 本発明の原料ピツチの装造方法は成分(1)の重質
油と成分(2)の水素化油を特定の割合で混合し、か
つ特定の条件下で加熱処理することにより得られ
る。 成分(1)の重質油と成分(2)の水素化油の混合割合
は成分(1):成分(2)が容量比で1:0.1〜2、好ま
しくは、1:0.2〜1.5であることが必要である。
加熱処理温度としては370〜480℃、好ましくは
390〜460℃の範囲内の温度で行う。加熱処理温度
が370℃よりも低いと反応の進行が遅く、長時間
要するため不経済である。また480℃よりも高い
温度で熱処理を行うとコーキング等の問題が生
じ、好ましくない。加熱処理時間は、加熱処理温
度との兼ね合いで決められるものであり、低温の
場合は長時間、高温の場合は短時間行う。通常は
15分〜20時間、好ましくは30分〜10時間の範囲内
の処理時間を採用することができる。圧力に関し
ては任意の圧力下で実施し得るが、原料中の有効
成分が未反応のまま実質的に系外に留出しない圧
力が好ましく、具体的には2〜50Kg/cm2・G、好
ましくは5〜30Kg/cm2・Gが採用される。 熱処理を行つた後、必要であれば蒸留等の操作
により軽質分を除去することも好ましく採用され
る。 第1図により本発明を説明すれば、ライン1よ
り本発明の原料ピツチの成分(1)である重質油が導
入され、ライン3より成分(2)である水素化油が導
かれ、成分(1)と成分(2)が所定の割合に混合された
後所定の条件下に加熱処理が施され原料ピツチが
調製される。調製された原料ピツチは次に特定の
条件下に加熱処理される。この時に生成する沸点
範囲が160〜400℃の範囲内の留分はライン2から
抜き出され部分核水素化処理が施された後、ライ
ン3により原料ピツチの成分として戻される。 本発明を実施するに際し、最初の段階では本発
明の原料ピツチの成分(2)は存在しないが、本発明
の成分(2)の代わりに他の油を代用するかあるいは
用いずに加熱処理を行い、このとき生成する沸点
範囲が実質的に160〜400℃の範囲内の留分を部分
核水素化した水素化油を、次の段階から本発明の
原料ピツチの成分(2)として置き換えていくことに
より本発明を達成することができる。 最初の段階で本発明の成分(2)の代わりに他の油
を代用する場合、代用される油としては例えば、
石油類を水蒸気分解した際に得られる沸点範囲が
160〜400℃の範囲内の留分を部分核水素化した水
素化油、石油類を流動接触分解した際に得られる
沸点範囲が160〜400℃の範囲内の留分を部分核水
素化した水素化油、本発明の原料ピツチの成分(1)
として用いられる重質油を380〜480℃で加熱処理
した際に生成する沸点範囲が160〜400℃の範囲内
の留分を部分核水素化した水素化油、石油類を水
蒸気分解した際に得られる沸点が200℃以上の重
質油を380℃〜480℃で加熱処理した際に生成する
沸点範囲が160〜400℃の範囲内の留分を部分核水
素化した水素化油、ナフタリン、インデン、アン
トラセン、フエナンスレス等の2環もしくは3環
の芳香族系炭化水素の核水素化物、あるいはこれ
らに類似の油を好ましい油として例示することが
できる。 かくして得られる本発明よりなる原料ピツチを
用いることにより、加熱処理してメソ相化を行つ
た際、キノリン不溶分である高分子量成分の生成
が抑制されると同時にピツチの軟化点の上昇を防
ぐことができ、さらに芳香族平面が秩序だつて配
列し易い組成を持つた良好な前駆体ピツチとな
る。この結果、弾性率および強度がきわめて優れ
た炭素繊維を得ることができる。 本発明により得られる原料ピツチを用いて炭素
繊維を製造する方法は公知の方法を採用すること
ができる。すなわち、原料ピツチを加熱処理して
メソ相化を行い、得られる前駆体ピツチを溶融紡
糸した後、不融化処理および炭化あるいはさらに
黒鉛化処理を行つて炭素繊維を製造する。 原料ピツチを加熱処理し、メソ相化を行つて前
駆体ピツチを得る段階での反応は、通常、温度
340〜450℃、好ましくは370〜420℃で常圧あるい
は減圧下に窒素等の不活性ガスを通気することに
よつて行われる。この時の加熱処理時間は、温
度、不活性ガスの通気量等の条件により任意に行
い得るものであるが通常、1〜50時間、好ましく
は3〜20時間で行う。不活性ガスの通気量は0.7
〜5.0scfh/1bピツチが好ましい。 前駆体ピツチを溶融紡糸する方法としては押出
法、遠心法、霧吹法等の公知の方法を用いること
ができる。 溶融紡糸されて得られるピツチ繊維は、次に酸
化性ガス雰囲気下で不融化処理が施される。酸化
性ガスとしては、通常、酸素、オゾン、空気、窒
素酸化物、ハロゲン、亜硫酸ガス等の酸化性ガス
を1種あるいは2種以上用いる。この不融化処理
は、被処理体である溶融紡糸されたピツチ繊維が
軟化変形しない温度条件下で実施される。例えば
20〜360℃、好ましくは20〜300℃の温度が採用さ
れる。また処理時間は通常、5分〜10時間であ
る。 不融化処理されたピツチ繊維は、次に不活性ガ
ス雰囲気下で炭化あるいは更に黒鉛化を行い、炭
素繊維を得る。炭化は通常、温度800〜2500℃で
行う。一般には炭化に要する処理時間は0.5分〜
10時間である。さらに黒鉛化を行う場合には、温
度2500〜3500℃で、、通常1秒〜1時間行う。 また、不融化、炭化あるいは黒鉛化処理の際、
必要であれば収縮や変形等を防止する目的で被処
理体に若干の荷重あるいは張力をかけておくこと
もできる。 以下に実施例をあげ本発明を具体的に説明する
が、本発明はこれらに制限されるものではない。 実施例 1 アラビア系原油の減圧残油(VGO)の脱硫油
をシリカ―アルミナ系触媒を用いて500℃にて流
動接触分解して第1表に示す性状を有する重質油
(A)を得た。この重質油(A)を圧力15Kg/cm2・G、温
度420℃にて3時間熱処理した。この熱処理油(B)
を250℃/1mmHgにて蒸留し、軽質分を留去さ
せ、軟化点92℃のピツチ()を得た。 一方、アラビア系原油の減圧残油(VGO)の
脱硫油をシリカ―アルミナ系触媒を用いて500℃
にて流動接触分解して得られた沸点範囲200〜350
℃の留分(C)(その性状を第2表に示す)をニツケ
ル―モリブデン系触媒(NM―502)を用いて圧
力35Kg/cm2・G、温度332℃、空間速度(LHSV)
1.5で水素と接触させて、部分核水素化を行なわ
せ、水素化油(D)を得た。このときの核水素化率は
32%であつた。 次に、重質油(A)70容量部に、水素化油(D)30容量
部を混合し、圧力15Kg/cm2・G、温度430℃にて
3時間熱処理した。この熱処理油を250℃/1mm
Hgで軽質分を留出させ、軟化点63℃のピツチ
()を得た。 このピツチ()30gに対し、窒素を500ml/
分で通気しながら撹拌し、温度400℃で10時間熱
処理を行ない、この熱処理過程で留出する沸点範
囲160〜400℃の留分(E)を採取した。その性状を第
3表に示す。 この留分(E)にラネー・ニツケルを2wt%懸濁さ
せて、温度169℃、水素圧力40〜50Kg/cm2・Gに
て1.5時間部分核水素化を行なわせ、水素化油(F)
を得た。この時の核水素化率は35%であつた。
The present invention relates to a method for producing pitch, which has excellent performance as a raw material for producing carbon fibers. Currently, carbon fiber is mainly manufactured using polyacrylonitrile as a raw material. However, when polyacrylonitrile is used as a raw material, there are disadvantages in that the raw material is expensive, the original fibrous shape is easily destroyed during heating and carbonization, and the carbonization yield is also poor. In recent years, focusing on this point, many methods have been reported for producing carbon fibers using pitch as a raw material.
When pitch is used as a raw material, it is expected that carbon fibers can be produced at low cost because the raw material is inexpensive and the carbonization yield is usually as high as 85 to 95%. However, carbon fibers obtained using pitch as a raw material have a higher modulus of elasticity than polyacrylonitrile carbon fibers, but have a problem in that they are inferior in strength. Therefore, if this problem could be solved and the modulus of elasticity could be further improved, it would be possible to produce carbon fibers with high strength and high modulus at low cost from pitch. Recently, commercially available petroleum pits have been heat-treated to obtain pitches containing optically anisotropic liquid crystals called mesophases, and pitches containing this mesophases have been converted into precursor pits (hereinafter referred to as molten). Carbon fibers with improved elastic modulus and strength can be obtained by melt-spinning this precursor pitch, making it infusible, and then carbonizing or graphitizing it. It was reported (Japanese Unexamined Patent Publication No. 19127-1983). However, whether or not a pitch can form a liquid crystal is determined by various factors, and the physical properties such as the structure, softening point, and viscosity of the liquid crystal greatly depend on the raw material pitch. Said Japanese Unexamined Patent Application Publication No. 1973-
No. 19127 relates to a method for preparing pitch containing mesophase (hereinafter abbreviated as mesophase pitch), but does not mention anything about the raw material pitch for forming high quality mesophase pitch. As mentioned above, a high-quality mesophase pitch largely depends on the raw material pitch, and if an optimal raw material pitch can be found, it will be possible to produce carbon fibers with even better elastic modulus and strength. Therefore, finding this optimal raw material pitch is an important challenge in this technical field. For example, coal tar pitch contains substances that are insoluble and infusible in carbon black-like quinoline, and these not only cause non-uniformity of the precursor pitch and deteriorate spinnability, but also reduce the strength and strength of carbon fibers. Adversely affects elastic modulus. On the other hand, many commercially available petroleum pitches and other synthetic pitches contain almost no substances that are insoluble and infusible in quinoline. Insoluble high molecular weight components are produced. In other words, when these pitches are heat-treated, thermal decomposition and polycondensation reactions occur simultaneously, and the low molecular weight components gradually increase in molecular weight.
It becomes a high molecular weight component that is insoluble in quinoline, and at the same time, the high molecular weight component further increases in molecular weight. Along with this, the softening point of pitch also increases. If this quinoline insoluble matter is similar to the carbon black-like substance in coal tar, it will have an adverse effect on the steps after spinning as described above. Furthermore, even if the substance is different from the carbon black-like substance mentioned above,
The presence of a large amount of quinoline insolubles and a high softening point have an adverse effect on the melt spinning stage. In other words, in order to melt-spun a precursor pitch, it is necessary to raise the spinning temperature until the precursor pitch reaches a viscosity that allows spinning, and if the softening point of the precursor pitch is too high, the spinning temperature may As a result, the molecular weight of the insoluble portion of quinoline becomes even higher, and the pitch is thermally decomposed and light gas is generated, making it impossible to form a uniform precursor pitch and making it difficult to spin. It becomes virtually impossible. Thus, the precursor pitch must have a relatively low softening point and a suitable viscosity for spinning. Furthermore, it must not substantially contain volatile components during spinning or carbonization. For this reason, precursor pitch for carbon fiber production is prepared by removing the generated quinoline insoluble matter by means such as pressurization and solvent separation (Japanese Patent Application Laid-Open No. 47-9804, 50 −142820,
55-1342, 55-5954). however,
When these means are used, the processing equipment becomes complicated and the processing cost increases, which is not preferable from an economic point of view. It would be most preferable if a pitch having excellent performance could be used as the raw material pitch to prevent the formation of high molecular weight components that would become quinoline-insoluble components during the heating step of mesophase formation. The present inventors have completed the present invention as a result of intensive research into these problems. That is, the present inventors suppressed the formation of high molecular weight components at the stage of preparing the precursor pitch, had an optimal viscosity, and created a composition in which the aromatic planes were easily arranged in an orderly manner at the early stage of carbonization. We have discovered a raw material pitch that has excellent performance. In other words, the present invention keeps the softening point relatively low;
The present invention also provides a method for producing a raw material pitch that easily forms a mesophase. The present invention will be explained in detail below. In the present invention, a precursor pitch obtained by heating a raw material pitch is melt-spun, and then infusible and carbonized or graphitized to produce carbon fiber. Heavy oil with a boiling point of 200℃ or higher obtained during fluid catalytic cracking
For 100 parts by volume, (2) a fraction with a boiling point range of 160 to 400°C produced when the raw material pitch is heat-treated is brought into contact with hydrogen in the presence of a hydrogenation catalyst; The aromatic nucleus of the aromatic hydrocarbon contained in
Hydrogenated oil 10-200 obtained by 10-70% nuclear hydrogenation
Add part by volume, temperature 370~480℃, pressure 2~5
The present invention relates to a method for producing a raw material pitch for carbon fiber, characterized in that it is obtained by heat treatment at Kg/cm 2 ·G. When the mesophase reaction is carried out using the raw material pitch obtained by the present invention, not only the production of quinoline-insoluble components is suppressed, but also the pitch is modified,
It was completely unexpected that the final product, carbon fiber, could have a high modulus of elasticity and high strength. On the other hand, when coal tar pitch, commercially available petroleum pitch, or synthetic pitch was heat-treated to form a mesophase according to the method of JP-A-49-19127, the resulting pitch had a softening point of 340°C or higher. thing,
In many cases, melt spinning was virtually impossible, such as in cases where solids were deposited, or even if solids were not deposited, the quinoline insoluble content reached 70% or more. Even if melt spinning is possible, the strength of the carbon fiber obtained by further infusibility, carbonization, and graphitization is 120 to 200 Kg/mm 2 and the elastic modulus is 12 to 20 tons/mm.
It was about mm2 . Furthermore, when a material with a high softening point was spun, pores were present in the spun material due to the generation of thermal decomposition gas. In the present invention, the heavy oil with a boiling point of 200℃ or higher obtained by fluid catalytic cracking of petroleum, which is used as component (1) of the raw material pitch, refers to the heavy oil obtained from natural petroleum such as kerosene, light oil, or atmospheric residual oil. Alternatively, by fluid catalytic cracking in the presence of a synthetic silica-alumina catalyst or zeolite catalyst at 450 to 550°C and normal pressure to 20 kg/cm 2 G, the substance that is produced as a by-product when producing light oil such as gasoline can be The boiling point range is 200-550
℃, preferably heavy oil within the range of 300-550℃. In the present invention, the hydrogenated oil used as component (2) of the raw material pitch is one whose boiling point range is substantially within the range of 160 to 400°C, preferably 170 to 350°C when the raw material pitch is heat-treated. The fraction is brought into contact with hydrogen in the presence of a hydrogenation catalyst to partially hydrogenate the aromatic nuclei of aromatic hydrocarbons contained in the fraction. The hydrogenation catalyst used at this time may be a catalyst used in a normal hydrogenation reaction, for example, an inorganic solid such as bauxite, activated carbon, diatomaceous earth, zeolite, silica, titania, zirconia, alumina or silica gel is used as a carrier, copper etc. metals of group IB of the periodic table, metals of group B of the periodic table such as chromium, molybdenum, metals of group B of the periodic table such as cobalt, nickel, palladium or platinum in the form of metals or in the form of oxides or sulfides. Those supported on a carrier are used. Hydrogenation conditions vary depending on the type of catalyst used, but usually the temperature is 120 to 450°C, preferably 150 to 350°C, and the pressure is 20 to 100 Kg/cm 2 G, preferably 30 to 70 Kg/cm. 2・G takes place. Further, when the hydrogenation treatment is carried out in a batch manner, the appropriate hydrogenation treatment time is 0.5 to 3 hours. When carried out in a continuous manner, a space velocity (LHSV) of 0.5 to 3.0 is selected. To give an example of hydrogenation conditions, 2wt% Raney
When the process is carried out batchwise using nickel as a catalyst, the pressure is preferably 40 to 50 kg/cm 2 G, the temperature is 160 to 170°C, and the treatment time is 1 to 1.5 hours. When using the formula, the pressure is 30 to 50 kg/cm 2 G, the temperature is about 330°C,
A space velocity (LHSV) of about 1.5 is preferably adopted. The aromatic nuclei of aromatic hydrocarbons contained in the fraction are partially hydrogenated by the hydrogenation reaction, but the nuclear hydrogen percentage at this time is 10 to 70%, preferably 15%.
~50%, most preferably 15-35%. Incidentally, the nuclear hydrogenation rate is defined by the following formula, and the number of aromatic ring carbon atoms in the following formula is as indicated by ASTM D-2140-66. Nuclear hydrogenation rate = (number of aromatic ring carbons before hydrogenation treatment) - (
(Number of aromatic ring carbon atoms after hydrogenation treatment)/Number of aromatic ring carbon atoms before hydrogenation treatment The method for preparing the raw material pit of the present invention is to combine heavy oil as component (1) and hydrogenated oil as component (2). It is obtained by mixing in a specific ratio and heat-treating under specific conditions. The mixing ratio of component (1) heavy oil and component (2) hydrogenated oil is component (1):component (2) in a volume ratio of 1:0.1 to 2, preferably 1:0.2 to 1.5. It is necessary.
The heat treatment temperature is 370-480℃, preferably
Perform at a temperature within the range of 390-460°C. If the heat treatment temperature is lower than 370°C, the reaction progresses slowly and takes a long time, which is uneconomical. Further, heat treatment at a temperature higher than 480° C. causes problems such as caulking, which is not preferable. The heat treatment time is determined in consideration of the heat treatment temperature; when the temperature is low, the heat treatment is performed for a long time, and when the temperature is high, the heat treatment is performed for a short time. Normally
Processing times within the range of 15 minutes to 20 hours, preferably 30 minutes to 10 hours can be employed. Regarding the pressure, the reaction can be carried out under any desired pressure, but the pressure is preferably such that the active ingredients in the raw materials do not substantially distill out of the system unreacted, specifically 2 to 50 Kg/cm 2 ·G, preferably 5 to 30Kg/cm 2・G is adopted. After the heat treatment, it is also preferable to remove light components by distillation or the like, if necessary. To explain the present invention with reference to FIG. 1, heavy oil, which is the component (1) of the raw material pitch of the present invention, is introduced from line 1, and hydrogenated oil, which is component (2), is introduced from line 3. After (1) and component (2) are mixed in a predetermined ratio, heat treatment is performed under predetermined conditions to prepare a raw material pitch. The prepared raw material pitch is then heat treated under specific conditions. The fraction produced at this time with a boiling point range of 160 to 400°C is extracted from line 2, subjected to partial nuclear hydrogenation treatment, and then returned through line 3 as a component of the raw material pitch. When carrying out the present invention, component (2) of the raw material pitch of the present invention is not present at the initial stage, but other oils may be substituted for component (2) of the present invention, or heat treatment may be performed without using component (2) of the present invention. At this time, the hydrogenated oil produced by partially hydrogenating the fraction with a boiling point range of substantially 160 to 400°C is substituted as component (2) of the raw material pitch of the present invention from the next step. The present invention can be achieved by following these steps. When other oils are substituted for component (2) of the present invention in the first step, the oils to be substituted include, for example:
The boiling point range obtained when petroleum is steam cracked is
Hydrogenated oil obtained by partial nuclear hydrogenation of a fraction within the range of 160 to 400℃, partial nuclear hydrogenation of a fraction with a boiling point range of 160 to 400℃ obtained when fluid catalytic cracking of petroleum is performed. Hydrogenated oil, component of the raw material pitch of the present invention (1)
Hydrogenated oil is produced by partially hydrogenating the fraction with a boiling point range of 160 to 400 degrees Celsius, which is produced when heavy oil used as oil is heat-treated at 380 to 480 degrees Celsius, and hydrogenated oil is produced when petroleum is steam cracked. Hydrogenated oil, naphthalene, which is produced by partial nuclear hydrogenation of the fraction with a boiling point range of 160 to 400 degrees Celsius that is produced when heavy oil with a boiling point of 200 degrees Celsius or higher is heat-treated at 380 degrees Celsius to 480 degrees Celsius. Preferred oils include nuclear hydrides of two- or three-ring aromatic hydrocarbons such as indene, anthracene, and phenanthreth, and oils similar to these. By using the raw material pitch of the present invention thus obtained, when heat-treated to form a mesophase, the production of high molecular weight components that are insoluble in quinoline is suppressed, and at the same time, the softening point of the pitch is prevented from increasing. Furthermore, it becomes a good precursor pitch having a composition in which the aromatic planes are easily arranged in an orderly manner. As a result, carbon fibers with extremely excellent elastic modulus and strength can be obtained. A known method can be used to produce carbon fiber using the raw material pitch obtained according to the present invention. That is, a raw material pitch is heat-treated to form a mesophase, the resulting precursor pitch is melt-spun, and then subjected to infusibility treatment and carbonization or further graphitization treatment to produce carbon fibers. The reaction at the stage of heat-treating the raw material pitch to convert it into a mesophase to obtain the precursor pitch is usually carried out at a temperature
It is carried out at 340 to 450°C, preferably 370 to 420°C, under normal pressure or reduced pressure and by bubbling inert gas such as nitrogen. The heat treatment time at this time can be arbitrarily performed depending on conditions such as temperature and amount of inert gas ventilation, but it is usually performed for 1 to 50 hours, preferably 3 to 20 hours. Inert gas ventilation rate is 0.7
~5.0 scfh/1b pitch is preferred. As a method for melt-spinning the precursor pitch, known methods such as an extrusion method, a centrifugation method, and an atomization method can be used. The pitch fiber obtained by melt spinning is then subjected to an infusible treatment in an oxidizing gas atmosphere. As the oxidizing gas, one or more of oxidizing gases such as oxygen, ozone, air, nitrogen oxide, halogen, and sulfur dioxide gas are usually used. This infusibility treatment is carried out under temperature conditions that do not soften or deform the melt-spun pitch fibers to be treated. for example
Temperatures of 20-360°C, preferably 20-300°C are employed. Further, the treatment time is usually 5 minutes to 10 hours. The infusible pitch fibers are then carbonized or further graphitized in an inert gas atmosphere to obtain carbon fibers. Carbonization is usually carried out at a temperature of 800-2500°C. Generally, the processing time required for carbonization is 0.5 minutes ~
It is 10 hours. Further, when graphitization is performed, it is carried out at a temperature of 2500 to 3500°C, usually for 1 second to 1 hour. In addition, during infusibility, carbonization or graphitization treatment,
If necessary, a slight load or tension may be applied to the object to be processed in order to prevent shrinkage, deformation, etc. The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. Example 1 Heavy oil having the properties shown in Table 1 was produced by fluid catalytic cracking of vacuum residue (VGO) desulfurized oil of Arabian crude oil at 500°C using a silica-alumina catalyst.
I got (A). This heavy oil (A) was heat treated at a pressure of 15 kg/cm 2 ·G and a temperature of 420° C. for 3 hours. This heat treated oil (B)
was distilled at 250°C/1 mmHg to remove light components, yielding pitch () with a softening point of 92°C. On the other hand, desulfurized oil from vacuum residual oil (VGO) of Arabian crude oil was heated to 500℃ using a silica-alumina catalyst.
Boiling point range 200-350 obtained by fluid catalytic cracking at
℃ fraction (C) (its properties are shown in Table 2) was heated using a nickel-molybdenum catalyst (NM-502) at a pressure of 35 Kg/cm 2 G, a temperature of 332℃, and a space velocity (LHSV).
Partial nuclear hydrogenation was performed by contacting with hydrogen at step 1.5 to obtain hydrogenated oil (D). At this time, the nuclear hydrogenation rate is
It was 32%. Next, 30 parts by volume of hydrogenated oil (D) were mixed with 70 parts by volume of heavy oil (A), and heat treated at a pressure of 15 kg/cm 2 ·G and a temperature of 430° C. for 3 hours. This heat treated oil is heated to 250℃/1mm.
Light components were distilled off using Hg to obtain Pitch () with a softening point of 63°C. Add 500ml/nitrogen to 30g of this pitch ()
The mixture was stirred with ventilation for 10 minutes, and heat treated at a temperature of 400°C for 10 hours, and a fraction (E) with a boiling point range of 160 to 400°C distilled out during this heat treatment process was collected. Its properties are shown in Table 3. 2wt% of Raney nickel was suspended in this fraction (E) and subjected to partial nuclear hydrogenation for 1.5 hours at a temperature of 169°C and a hydrogen pressure of 40 to 50 kg/cm 2 G, resulting in hydrogenated oil (F).
I got it. The nuclear hydrogenation rate at this time was 35%.

【表】【table】

【表】【table】

【表】【table】

【表】 重質油(A)70容量部に、水素化油(F)30容量部を混
合し、圧力20Kg/cm2・G、温度430℃にて3時間
熱処理を行なつた。この熱処理油を減圧蒸留して
軽質分を留去させ、軟化点62℃の原料ピツチを得
た。 次に、この原料ピツチ30gに対し、窒素を600
ml/分で通気しながら撹拌し、温度400℃で12時
間熱処理を行ない軟化点268℃、キノリン不溶分
13.7重量%、メソ相含量60%のピツチを得た。こ
のピツチをノズル径0.5mmφ、L/D=1の紡糸
器を用い322℃にて溶融紡糸を行ない、11〜16μ
のピツチ繊維をつくり、さらに下記に示す条件に
て不融化、炭化、黒鉛化処理して炭素繊維を得
た。 不融化、炭化および黒鉛化の処理条件は以下の
如くである。 Γ 不融化条件:空気雰囲気中で、200℃までは
2℃/分、280℃までは1℃/分の昇温速
度で加熱し、280℃で15分間保持。 Γ 炭化条件:窒素雰囲気中で10℃/分で昇温し
1000℃で30分間保持。 Γ 黒鉛化条件:アルゴン気流中で、50℃/分の
昇温速度で2500℃まで加熱処理。 得られた炭素繊維の引張強度は285Kg/mm2、ヤ
ング率は41ton/mm2であつた。 比較例 1 実施例1で得られたピツチ()を、原料ピツ
チとして用い、実施例1と同様の方法で熱処理を
行ない、軟化点303℃、キノリン不溶分21.1重量
%、メソ相含量85%のピツチを得た。このピツチ
を実施例1で用いた紡糸器により361℃で溶融紡
糸し、16〜20μのピツチ繊維をつくり、実施例1
と同様の方法で不融化、炭化および黒鉛化処理し
て炭素繊維を得た。 この炭素繊維の引張強度は132Kg/mm2、弾性率
は19ton/mm2であつた。
[Table] 70 parts by volume of heavy oil (A) and 30 parts by volume of hydrogenated oil (F) were mixed and heat treated at a pressure of 20 kg/cm 2 ·G and a temperature of 430°C for 3 hours. This heat-treated oil was distilled under reduced pressure to remove light components to obtain raw material pitch with a softening point of 62°C. Next, add 600 g of nitrogen to 30 g of this raw material pitch.
Stir with ventilation at a rate of ml/min and heat treat at 400℃ for 12 hours. Softening point: 268℃, quinoline insoluble content.
A pitch was obtained with a mesophase content of 13.7% by weight and 60%. This pitch was melt-spun at 322°C using a spinning machine with a nozzle diameter of 0.5 mmφ and L/D = 1, and
Pitch fibers were prepared, and carbon fibers were obtained by infusibility, carbonization, and graphitization treatment under the conditions shown below. The processing conditions for infusibility, carbonization and graphitization are as follows. Γ Infusibility conditions: Heating in an air atmosphere at a heating rate of 2°C/min up to 200°C and 1°C/min up to 280°C, and held at 280°C for 15 minutes. Γ Carbonization conditions: Raised temperature at 10℃/min in nitrogen atmosphere.
Hold at 1000℃ for 30 minutes. Γ Graphitization conditions: Heat treatment in an argon stream at a heating rate of 50°C/min to 2500°C. The obtained carbon fiber had a tensile strength of 285 Kg/mm 2 and a Young's modulus of 41 ton/mm 2 . Comparative Example 1 Pitch () obtained in Example 1 was used as a raw material pitch and heat treated in the same manner as in Example 1 to obtain a material with a softening point of 303°C, a quinoline insoluble content of 21.1% by weight, and a mesophase content of 85%. I got Pituchi. This pitch was melt-spun at 361°C using the spinning machine used in Example 1 to produce pitch fibers of 16 to 20μ.
Carbon fibers were obtained by infusibility, carbonization and graphitization treatment in the same manner as above. This carbon fiber had a tensile strength of 132 Kg/mm 2 and an elastic modulus of 19 ton/mm 2 .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭素繊維製造工程を示すプロ
セスシートである。
FIG. 1 is a process sheet showing the carbon fiber manufacturing process of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 原料ピツチを加熱処理して得られる前駆体ピ
ツチを溶融紡糸した後、不融化処理および炭化あ
るいは更に黒鉛化処理して炭素繊維を製造するに
当たり、該原料ピツチが(1)石油類を流動接触分解
した際に得られる沸点200℃以上の重質油100容量
部に対し、(2)原料ピツチを加熱処理した際に生成
する沸点範囲が160〜400℃の範囲内の留分を水素
化触媒の存在下に水素と接触させ、該留分中に含
有される芳香族系炭化水素の芳香族核を10〜70%
核水素化して得られる水素化油10〜200容量部を
添加し、温度370〜480℃、圧力2〜50Kg/cm2・G
で熱処理して得られるものであることを特徴とす
る炭素繊維用原料ピツチの製造方法。
1. After melt-spinning a precursor pitch obtained by heating a raw material pitch, infusibility treatment and carbonization or further graphitization treatment to produce carbon fiber, the raw material pitch (1) is subjected to fluid contact with petroleum. For 100 parts by volume of heavy oil with a boiling point of 200°C or more obtained when cracked, (2) a fraction with a boiling point range of 160 to 400°C produced when the raw material pitch is heated is treated as a hydrogenation catalyst. The aromatic nuclei of the aromatic hydrocarbons contained in the fraction are reduced by 10 to 70% by contacting with hydrogen in the presence of
Add 10 to 200 parts by volume of hydrogenated oil obtained by nuclear hydrogenation, and heat at a temperature of 370 to 480°C and a pressure of 2 to 50 Kg/cm 2 G.
1. A method for producing a raw material pitch for carbon fiber, characterized in that the pitch is obtained by heat-treating the raw material pitch.
JP6242681A 1981-04-27 1981-04-27 Raw material pitch for carbon fiber Granted JPS57179286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6242681A JPS57179286A (en) 1981-04-27 1981-04-27 Raw material pitch for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6242681A JPS57179286A (en) 1981-04-27 1981-04-27 Raw material pitch for carbon fiber

Publications (2)

Publication Number Publication Date
JPS57179286A JPS57179286A (en) 1982-11-04
JPH0148314B2 true JPH0148314B2 (en) 1989-10-18

Family

ID=13199816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6242681A Granted JPS57179286A (en) 1981-04-27 1981-04-27 Raw material pitch for carbon fiber

Country Status (1)

Country Link
JP (1) JPS57179286A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588786A (en) * 1981-07-10 1983-01-18 Mitsubishi Oil Co Ltd Preparation of pitch as raw material for carbon fiber
JPS5829885A (en) * 1981-08-18 1983-02-22 Mitsubishi Oil Co Ltd Preparation of pitch used as raw material for carbon fiber
JPS5852386A (en) * 1981-09-24 1983-03-28 Mitsubishi Oil Co Ltd Preparation of raw material pitch for carbon fiber
JPS5876523A (en) * 1981-10-29 1983-05-09 Nippon Oil Co Ltd Preparation of pitch carbon fiber
JPS58115120A (en) * 1981-12-28 1983-07-08 Nippon Oil Co Ltd Preparation of pitch type carbon fiber
JPS59147081A (en) * 1983-02-14 1984-08-23 Nippon Oil Co Ltd Pitch as starting material of carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662428A (en) * 1979-10-29 1981-05-28 Nec Corp Oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662428A (en) * 1979-10-29 1981-05-28 Nec Corp Oscillator

Also Published As

Publication number Publication date
JPS57179286A (en) 1982-11-04

Similar Documents

Publication Publication Date Title
EP0063053B1 (en) Starting pitches for carbon fibers
US4575411A (en) Process for preparing precursor pitch for carbon fibers
US4521294A (en) Starting pitches for carbon fibers
US4474617A (en) Pitch for carbon fibers
US4460455A (en) Process for producing pitch for using as raw material for carbon fibers
EP0072573B1 (en) Process for producing pitch for use as raw material for carbon fibers and carbon fibers produced from the pitch
JPH0150272B2 (en)
JPH0148314B2 (en)
JPH0148312B2 (en)
US4391788A (en) Starting pitches for carbon fibers
US4579645A (en) Starting pitch for carbon fibers
JPH0144752B2 (en)
JPH0148313B2 (en)
JPH0150273B2 (en)
JPH0148315B2 (en)
EP0119015B1 (en) Starting pitches for carbon fibers
JPH0145516B2 (en)
JPH0150271B2 (en)
JPS6312689A (en) Production of precursor pitch for carbon fiber
JPH0144751B2 (en)
JPH0144753B2 (en)
JPS61287961A (en) Precursor pitch for carbon fiber
JPH0144750B2 (en)
JPS6348966B2 (en)
JPS6232178A (en) Preparation of pitch for carbonaceous material