JPH0144750B2 - - Google Patents

Info

Publication number
JPH0144750B2
JPH0144750B2 JP56054306A JP5430681A JPH0144750B2 JP H0144750 B2 JPH0144750 B2 JP H0144750B2 JP 56054306 A JP56054306 A JP 56054306A JP 5430681 A JP5430681 A JP 5430681A JP H0144750 B2 JPH0144750 B2 JP H0144750B2
Authority
JP
Japan
Prior art keywords
pitch
raw material
temperature
spinning
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56054306A
Other languages
Japanese (ja)
Other versions
JPS57168990A (en
Inventor
Seiichi Kamimura
Shunichi Yamamoto
Takao Hirose
Hiroaki Takashima
Osamu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP56054306A priority Critical patent/JPS57168990A/en
Publication of JPS57168990A publication Critical patent/JPS57168990A/en
Publication of JPH0144750B2 publication Critical patent/JPH0144750B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた性能を有する炭素繊維の製造方
法に関する。 現在、炭素繊維は主にポリアクリロニトリルを
原料として製造されている。しかしながらポリア
クリロニトリルを原料とした場合、原料が高価で
あり、また加熱炭化時において繊維状の原形がく
ずれ易く、さらに炭化収率も悪いという欠点があ
る。 近年、この点に着目してピツチを原料として炭
素繊維を製造する方法が数多く報告されている。
ピツチを原料として用いた場合、原料が安価であ
り、また炭化収率が通常85〜95%と高いため、安
価に炭素繊維を製造できることが期待される。し
かしながら、ピツチを原料として得られる炭素繊
維は、ポリアクリロニトリル系炭素繊維に比べ、
弾性率は高いものの、強度が劣るという問題があ
る。従つて、もしこの問題点を解決し、また弾性
率をさらに向上し得ることができれば、ピツチか
ら安価に高強度かつ高弾性率の炭素繊維を製造す
ることが可能となる。 最近になつて、市販の石油ピツチを熱処理し
て、メソ相(mesophase)と呼ばれる光学的異方
性の液晶を有するピツチを得、このメソ相を含有
するピツチを前駆体ピツチ(以後、溶融紡糸時に
おけるピツチを前駆体ピツチと呼ぶ)として用
い、この前駆体ピツチを溶融紡糸した後、不融化
し、次いで炭化あるいは更に黒鉛化することによ
り、弾性率および強度が向上した炭素繊維が得ら
れることが報告された(特開昭49−19127号)。 しかしながらピツチが液晶を形成し得るか否か
は種々の要因により決まるものであり、また液晶
の構造や軟化点、粘度等の物性は原料ピツチに大
きく依存するものである。前記特開昭49−19127
号はメソ相を含有するピツチ(以後メソ相ピツチ
と略記する)の調製法に関するものであつて、良
質のメソ相ピツチを形成するための原料ピツチに
ついては何ら言及していない。前記したように、
良質のメソ相ピツチは原料ピツチに大きく依存す
るものであり、最適な原料ピツチを見出すことが
できれば弾性率および強度がさらに優れた炭素繊
維を製造することが可能となる。それ故、この最
適の原料ピツチを見出すことが当該技術分野の重
要な課題である。 例えば、コールタールピツチはカーボンブラツ
ク状のキノリンに不溶で不融性の物質を含有して
おり、これらは前駆体ピツチの不均一性の原因と
なり紡糸性を悪くさせるばかりか、炭素繊維の強
度および弾性率に悪影響を及ぼす。 一方、市販の石油ピツチやその他の合成ピツチ
の多くは、キノリンに不溶で不融性の物質をほと
んど含有していないが、これらのピツチを加熱処
理して前駆体ピツチを調製する段階で、キノリン
に不溶な高分子量成分が生成する。すなわち、こ
れらのピツチを熱処理すると熱分解と重縮合反応
が併発し、低分子量成分は徐々に高分子量化し、
キノリンに不溶の高分子量成分となり、また同時
に高分子量成分はさらに高分子量化する。これに
伴つてピツチの軟化点も上昇する。このキノリン
不溶分がコールタール中のカーボンブラツク状物
質に類似の物質であれば、前述の如く紡糸以降の
工程で悪影響を及ぼす。また、前記のカーボンブ
ラツク状物質とは異なる物質であつたとしても、
多量のキノリン不溶分の存在と高い軟化点は溶融
紡糸の段階で悪影響を及ぼす。すなわち、前駆体
ピツチを溶融紡糸するためには、前駆体ピツチが
紡糸可能な粘度になるまで紡糸温度を上げること
が必要であつて、前駆体ピツチの軟化点が余りに
も高過ぎれば、紡糸温度も当然高くせざるを得
ず、その結果、キノリン不溶分は一層高分子量化
すると共に、ピツチの熱分解が起こり軽質ガスが
発生し、均一な前駆体ピツチとはなり得ず、紡糸
することが事実上不可能となる。 このように前駆体ピツチは、比較的低い軟化点
と紡糸するために適当な粘度を持つていなければ
ならない。また、紡糸時さらには炭化時に揮発性
成分を実質的に含有するものであつてはならな
い。 このため、生成したキノリン不溶分を加圧過
や溶剤分別等の手段により除去することにより炭
素繊維製造用前駆体ピツチを調製することが行わ
れている(特開昭47−9804号、同50−142820号、
同55−1342号、同55−5954号)。しかしながら、
これらの手段を用いた場合には処理装置の複雑化
および処理費用の増大を招き、経済的観点から好
ましいものではない。 もし、原料ピツチとして優れた性能を有するピ
ツチを用いることにより、メソ相化の加熱段階で
キノリン不溶分となる高分子量成分を生成させな
いことができれば最も好ましいものである。 本発明者らは、これらの課題について鋭意研究
した結果、本発明を完成したものである。すなわ
ち、本発明者らは、前駆体ピツチを調製する段階
で高分子量成分の生成を抑制し、最適な粘度を有
し、また炭化初期の段階では芳香族平面が秩序だ
つて配列をし易い組成を持つことができる性能の
優れた原料ピツチを見出したものである。換言す
れば、本発明は軟化点が比較的低く保持され、か
つメソ相を容易に形成するような原料ピツチから
の炭素繊維の製造方法を提供するものである。 すなわち、本発明は石油類を水蒸気分解した際
に得られる沸点200℃以上の重質油を20Kg/cm2
G以上の水素加圧下で、温度400〜500℃で熱処理
することにより得られる原料ピツチを温度340〜
450℃で加熱処理し、得られる前駆体ピツチを溶
融紡糸した後、不融化処理および炭化あるいはさ
らに黒鉛化処理して炭素繊維を製造する方法に関
し、本発明により高弾性率で、かつ高強度の炭素
繊維が得られる。 一方、重質油を水素存在下に熱処理して原料ピ
ツチを製造する方法として、特公昭45−28013号
の方法が知られている。しかしながら、特公昭45
−28013号の方法は触媒の存在下に重質油の水素
化を行うもので、触媒の使用に伴う触媒分離等の
操作の繁雑さや、触媒コストが高いなどの経済性
の面での不利益が避け難い。また得られる炭素繊
維も必ずしも高弾性率および高強度のものとは言
い難い。 本発明者らは、詳細に検討を行つた結果、高弾
性率かつ高強度の炭素繊維の原料としての最適な
ピツチは特定の重質油をきわめて限られた熱処理
条件下に水素化触媒を用いることなく行わねばな
らないことを見出したものである。すなわち、石
油類を水蒸気分解した際に得られる沸点200℃以
上の重質油を20Kg/cm2・G以上の水素加圧下で温
度400〜500℃で熱処理して得られる本発明に係る
原料ピツチを用いて、メソ相化反応を行わせしめ
た場合、キノリン不溶分の生成が抑制されるばか
りか、ピツチが改質され、最終製品である炭素繊
維が一層高弾性率で、かつ高強度となり得たこと
は全く予期され得ないものであつた。 これに対し、コールタールピツチ、市販の石油
ピツチあるいは合成ピツチを特開昭49−19127号
の方法に従つて加熱処理し、メソ相化を行つたと
そろ、生成ピツチの軟化点が340℃以上のもの、
固形物が沈積したもの、あるいは固形物が沈積し
ないまでもキノリン不溶分が70wt%以上に達し
たもの等、多くの場合、溶融紡糸が事実上不可能
であつた。また溶融紡糸を行い得た場合でも、さ
らに不融化・炭化および黒鉛化処理して得た炭素
繊維の強度は120〜200Kg/mm2、弾性率は12〜
20ton/mm2程度であつた。また高軟化点のものを
紡糸した場合には、紡糸物中に熱分解ガス発生に
起因する空孔が存在していた。 以下本発明を詳述する。 本発明において用いられる石油類を水蒸気分解
した際に得られる沸点200℃以上の重質油とは、
ナフサ、灯油あるいは軽油等の石油類を通常700
〜1200℃で水蒸気分解して、エチレン、プロピレ
ン等のオレフイン類を製造する際に副生する実質
的に沸点範囲が200〜450℃の重質油である。 本発明で使用する原料ピツチは、石油類を水蒸
気分解した際に得られる沸点200℃以上の重質油
を20Kg/cm2・G以上、例えば20〜350Kg/cm2・G、
好ましくは50〜300Kg/cm2・Gの水素加圧下で、
温度400〜500℃、好ましくは405〜450℃で熱処理
することにより得られる。 熱処理温度が400℃よりも低いと、得られるピ
ツチはメソ相化を行つた際、キノリン不溶分が多
量に生成するため溶融紡糸過程でのコーキング、
相分離、軟化点上昇等のトラブルが生じ易く、さ
らに得られる炭素繊維の性能も劣り好ましくな
い。また熱処理温度が500℃よりも高いと、原料
ピツチ製造の段階でコーキング等の問題が生じ、
実質上、原料ピツチ製造が困難となる。 熱処理を行つた後、必要であれば蒸留等の操作
により軽質分を除去することも好ましく採用され
る。 かくして得られる本発明に係る原料ピツチを用
いることにより、加熱処理してメソ相化を行つた
際、キノリン不溶分である高分子量成分の生成が
抑制されると同時にピツチの軟化点の上昇を防ぐ
ことができ、さらに芳香族平面が秩序だつて配列
し易い組成を持つた良好な前駆体ピツチとなる。
この結果、弾性率および強度がきわめて優れた炭
素繊維を得ることができる。 本発明に係る原料ピツチを用いて炭素繊維を製
造する方法は公知の方法を採用することができ
る。すなわち、原料ピツチを加熱処理してメソ相
化を行い、得られる前駆体ピツチを溶融紡糸した
後、不融化処理および炭化あるいはさらに黒鉛化
処理を行つて炭素繊維を製造する。 原料ピツチを加熱処理し、メソ相化を行つて前
駆体ピツチを得る段階での反応は、通常、温度
340〜450℃、好ましくは370〜420℃で、常圧ある
いは減圧下に窒素等の不活性ガスを通気すること
によつて行われる。この時の加熱処理時間は、温
度、不活性ガスの通気量等の条件により任意に行
い得るものであるが、通常、1〜50時間、好まし
くは3〜20時間で行う。不活性ガスの通気量は
0.7〜5.0scfh/1bピツチが好ましい。 前駆体ピツチを溶融紡糸する方法としては、押
出法、遠心法、霧吹法等の公知の方法を用いるこ
とができる。 溶融紡糸されて得られるピツチ繊維は、次に酸
化性ガス雰囲気下で不融化処理が施される。酸化
性ガスとしては、通常、酸素、オゾン、空気、窒
素酸化物、ハロゲン、亜硫酸ガス等の酸化性ガス
を1種あるいは2種以上用いる。この不融化処理
は、被処理体である溶融紡糸されたピツチ繊維が
軟化変形しない温度条件下で実施される。例えば
20〜360℃、好ましくは20〜300℃の温度が採用さ
れる。また処理時間は通常、5分〜10時間であ
る。 不融化処理されたピツチ繊維は、次に不活性ガ
ス雰囲気下で炭化あるいは更に黒鉛化を行い、炭
素繊維を得る。炭化は通常、温度800〜2500℃で
行う。一般には炭化に要する処理時間は0.5分〜
10時間である。さらに黒鉛化を行う場合には、温
度2500〜3500℃で、通常1秒〜1時間行う。 また、不融化、炭化あるいは黒鉛化処理の際、
必要であれば収縮や変形等を防止する目的で、被
処理体に若干の荷重あるいは張力をかけておくこ
ともできる。 以下に実施例をあげ本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。 実施例 1 ナフサを830℃で水蒸気分解した際に副生した
沸点200℃以上の重質油(性状を第1表に示す)
150mlを内容積300mlの撹拌機付きオートクレーブ
中で水素初圧100Kg/cm2・Gで、昇温速度3℃/
分にて430℃まで加熱し、430℃で3時間保持し
た。しかる後、加熱を停止し、室温まで冷却し
た。得られた液状生成物を250℃/1mmHgで蒸留
して軟質分を留出させ原料ピツチを得た。このピ
ツチの軟化点は68℃、キノリン不溶分は0%であ
り、収率は33wt%であつた。 次に、この原料ピツチ30gに対し、窒素を600
mm/分で通気しながら撹拌し、温度400℃で10時
間熱処理を行い、軟化点280℃、キノリン不溶分
32wt%、メソ相含量85%のピツチを、43%の収
率で得た。このピツチをノズル径0.3mmφ、L/
D=2の紡糸機を用い340℃で溶融紡糸し、13〜
16μのピツチ繊維をつくり、さらに下記に示す条
件にて不融化、炭化および黒鉛化処理して炭素繊
維を得た。 Γ不融化条件:空気雰囲気下で、200℃までは3
℃/分、300℃までは1℃/分の昇温速度で加
熱し、300℃で15分間保持。 Γ炭化条件:窒素雰囲気中で、5℃/分で昇温し
1000℃で30分間保持。 Γ黒鉛化条件:アルゴン気流中で、25℃/分の昇
温速度で、2500℃まで加熱処理。 得られた炭素繊維の引張強度は260Kg/mm2、ヤ
ング率は40ton/mm2であつた。 本発明の原料ピツチを用いて得られる炭素繊維
は、比較例1で示すように代表的な市販の石油ピ
ツチであるアツシユランド(Ashland)240を原
料ピツチとして用いた場合に比べ、高強度で、か
つ高弾性率であることが明らかである。
The present invention relates to a method for producing carbon fiber with excellent performance. Currently, carbon fiber is mainly manufactured using polyacrylonitrile as a raw material. However, when polyacrylonitrile is used as a raw material, there are disadvantages in that the raw material is expensive, the original fibrous shape is easily destroyed during heating and carbonization, and the carbonization yield is also poor. In recent years, focusing on this point, many methods have been reported for producing carbon fibers using pitch as a raw material.
When pitch is used as a raw material, it is expected that carbon fibers can be produced at low cost because the raw material is inexpensive and the carbonization yield is usually as high as 85 to 95%. However, compared to polyacrylonitrile-based carbon fiber, carbon fiber obtained from pitch is
Although it has a high elastic modulus, it has a problem of poor strength. Therefore, if this problem could be solved and the modulus of elasticity could be further improved, it would be possible to produce carbon fibers with high strength and high modulus at low cost from pitch. Recently, commercially available petroleum pitch is heat-treated to obtain pitch containing optically anisotropic liquid crystal called mesophase, and pitch containing this mesophase is used as precursor pitch (hereinafter referred to as melt-spinning pitch). Carbon fibers with improved elastic modulus and strength can be obtained by melt-spinning this precursor pitch, making it infusible, and then carbonizing or graphitizing it. was reported (Japanese Patent Application Laid-open No. 19127-1983). However, whether a pitch can form a liquid crystal is determined by various factors, and the structure, softening point, viscosity, and other physical properties of the liquid crystal greatly depend on the raw material pitch. Said Japanese Unexamined Patent Publication No. 49-19127
This issue relates to a method for preparing pitch containing mesophase (hereinafter abbreviated as mesophase pitch), but does not mention anything about the raw material pitch for forming high quality mesophase pitch. As mentioned above,
A high-quality mesophase pitch largely depends on the raw material pitch, and if an optimal raw material pitch can be found, it will be possible to produce carbon fibers with even better elastic modulus and strength. Therefore, finding this optimal raw material pitch is an important challenge in this technical field. For example, coal tar pitch contains substances that are insoluble and infusible in carbon black quinoline, and these not only cause non-uniformity of the precursor pitch and deteriorate spinnability, but also reduce the strength and strength of carbon fibers. Adversely affects elastic modulus. On the other hand, many commercially available petroleum pitches and other synthetic pitches contain almost no substances that are insoluble and infusible in quinoline. Insoluble high molecular weight components are produced. In other words, when these pitches are heat-treated, thermal decomposition and polycondensation reactions occur simultaneously, and the low molecular weight components gradually increase in molecular weight.
It becomes a high molecular weight component that is insoluble in quinoline, and at the same time, the high molecular weight component further increases in molecular weight. Along with this, the softening point of pitch also increases. If this quinoline insoluble matter is similar to the carbon black-like substance in coal tar, it will have an adverse effect on the steps after spinning as described above. Furthermore, even if the substance is different from the carbon black-like substance mentioned above,
The presence of a large amount of quinoline insolubles and a high softening point have an adverse effect on the melt spinning stage. In other words, in order to melt-spun a precursor pitch, it is necessary to raise the spinning temperature until the precursor pitch reaches a viscosity that allows spinning, and if the softening point of the precursor pitch is too high, the spinning temperature may As a result, the molecular weight of the insoluble portion of quinoline becomes even higher, and the pitch is thermally decomposed and light gas is generated, making it impossible to form a uniform precursor pitch and making it difficult to spin. It becomes virtually impossible. Thus, the precursor pitch must have a relatively low softening point and a suitable viscosity for spinning. Furthermore, it must not substantially contain volatile components during spinning or carbonization. For this reason, precursor pitch for producing carbon fibers is prepared by removing the generated quinoline insoluble matter by means such as pressure filtration or solvent fractionation (Japanese Patent Laid-Open No. 47-9804, No. 50 −142820,
55-1342, 55-5954). however,
When these means are used, the processing equipment becomes complicated and the processing cost increases, which is not preferable from an economic point of view. It would be most preferable if a pitch having excellent performance could be used as the raw material pitch to prevent the formation of high molecular weight components that would be insoluble in quinoline during the heating step of mesophase formation. The present inventors have completed the present invention as a result of intensive research into these problems. In other words, the present inventors suppressed the formation of high molecular weight components at the stage of preparing the precursor pitch, and created a composition that has an optimal viscosity and that facilitates orderly arrangement of aromatic planes at the initial stage of carbonization. We have discovered a raw material pitch with excellent performance. In other words, the present invention provides a method for producing carbon fiber from a raw material pitch in which the softening point is kept relatively low and the mesophase is easily formed. In other words, the present invention uses heavy oil with a boiling point of 200°C or higher obtained when petroleum is steam cracked at 20 kg/cm 2 .
The raw material pitch obtained by heat treatment at a temperature of 400 to 500℃ under hydrogen pressure of G or higher is heated to a temperature of 340 to 500℃.
The present invention relates to a method for producing carbon fibers by heat-treating at 450°C, melt-spinning the obtained precursor pitch, followed by infusibility treatment and carbonization, or further graphitization treatment. Carbon fiber is obtained. On the other hand, as a method for producing raw material pitch by heat-treating heavy oil in the presence of hydrogen, the method disclosed in Japanese Patent Publication No. 45-28013 is known. However,
The method of No. 28013 hydrogenates heavy oil in the presence of a catalyst, and it has disadvantages in terms of economy, such as the complexity of operations such as catalyst separation associated with the use of a catalyst, and the high cost of the catalyst. is difficult to avoid. Furthermore, the obtained carbon fibers cannot necessarily be said to have high elastic modulus and high strength. As a result of detailed studies, the present inventors found that the optimal pitch as a raw material for carbon fiber with high elastic modulus and high strength is to use a specific heavy oil under extremely limited heat treatment conditions using a hydrogenation catalyst. I discovered that I had to do it without any problems. That is, the raw material pitch according to the present invention is obtained by heat-treating heavy oil with a boiling point of 200°C or more obtained when steam cracking petroleum products at a temperature of 400 to 500°C under a hydrogen pressure of 20 kg/cm 2 ·G or more. When the mesophasization reaction is carried out using quinoline, not only the formation of quinoline-insoluble components is suppressed, but also the pitch is modified, and the final product, carbon fiber, can have a higher modulus of elasticity and higher strength. What happened was completely unexpected. On the other hand, when coal tar pitch, commercially available petroleum pitch, or synthetic pitch is heat-treated according to the method of JP-A-49-19127 to form a mesophase, the softening point of the produced pitch is 340°C or higher. things,
In many cases, melt spinning was virtually impossible, such as in cases where solids were deposited, or even if solids were not deposited, the quinoline insoluble content reached 70 wt% or more. Even if melt spinning is possible, the strength of the carbon fiber obtained by further infusibility, carbonization, and graphitization is 120 to 200 Kg/ mm2 , and the elastic modulus is 12 to 200 kg/mm2.
It was around 20ton/mm2. Furthermore, when a material with a high softening point was spun, pores were present in the spun material due to the generation of thermal decomposition gas. The present invention will be explained in detail below. The heavy oil with a boiling point of 200°C or higher obtained by steam cracking petroleum used in the present invention is:
Usually 700% of petroleum such as naphtha, kerosene or light oil
It is a heavy oil with a substantial boiling point range of 200 to 450°C that is produced as a by-product when steam decomposing at ~1200°C to produce olefins such as ethylene and propylene. The raw material pitch used in the present invention is heavy oil with a boiling point of 200°C or higher obtained by steam cracking of petroleum at a concentration of 20 kg/cm 2 ·G or more, for example 20 to 350 kg/cm 2 ·G,
Preferably under hydrogen pressure of 50 to 300 kg/cm 2 G,
It is obtained by heat treatment at a temperature of 400 to 500°C, preferably 405 to 450°C. If the heat treatment temperature is lower than 400°C, a large amount of quinoline insoluble matter will be generated in the resulting pitch during mesophase formation, resulting in coking and coking during the melt spinning process.
Problems such as phase separation and increase in softening point tend to occur, and furthermore, the performance of the obtained carbon fibers is also poor, which is not preferable. Also, if the heat treatment temperature is higher than 500℃, problems such as coking will occur during the raw material pitch manufacturing stage.
In fact, it becomes difficult to produce raw material pitches. After the heat treatment, it is also preferable to remove light components by distillation or the like, if necessary. By using the raw material pitch according to the present invention obtained in this way, when heat treatment is performed to form a mesophase, the formation of high molecular weight components that are insoluble in quinoline is suppressed, and at the same time, an increase in the softening point of pitch is prevented. Furthermore, it becomes a good precursor pitch having a composition in which the aromatic planes are easily arranged in an orderly manner.
As a result, carbon fibers with extremely excellent elastic modulus and strength can be obtained. A known method can be employed for manufacturing carbon fiber using the raw material pitch according to the present invention. That is, a raw material pitch is heat-treated to form a mesophase, the resulting precursor pitch is melt-spun, and then subjected to infusibility treatment and carbonization or further graphitization treatment to produce carbon fibers. The reaction at the stage of heating the raw material pitch and converting it into a mesophase to obtain the precursor pitch is usually carried out at a temperature
The reaction is carried out at a temperature of 340 to 450°C, preferably 370 to 420°C, by bubbling an inert gas such as nitrogen under normal pressure or reduced pressure. The heat treatment time at this time can be arbitrarily determined depending on conditions such as temperature and amount of inert gas aeration, but it is usually carried out for 1 to 50 hours, preferably 3 to 20 hours. The amount of inert gas ventilation is
A pitch of 0.7 to 5.0 scfh/1b is preferred. As a method for melt-spinning the precursor pitch, known methods such as an extrusion method, a centrifugation method, and an atomization method can be used. The pitch fiber obtained by melt spinning is then subjected to an infusible treatment in an oxidizing gas atmosphere. As the oxidizing gas, one or more of oxidizing gases such as oxygen, ozone, air, nitrogen oxide, halogen, and sulfur dioxide gas are usually used. This infusibility treatment is carried out under temperature conditions that do not soften or deform the melt-spun pitch fibers to be treated. for example
Temperatures of 20-360°C, preferably 20-300°C are employed. Further, the treatment time is usually 5 minutes to 10 hours. The infusible pitch fibers are then carbonized or further graphitized in an inert gas atmosphere to obtain carbon fibers. Carbonization is usually carried out at a temperature of 800-2500°C. Generally, the processing time required for carbonization is 0.5 minutes ~
It is 10 hours. Further, when graphitizing is carried out, it is carried out at a temperature of 2500 to 3500°C, usually for 1 second to 1 hour. In addition, during infusibility, carbonization or graphitization treatment,
If necessary, a slight load or tension may be applied to the object to be processed in order to prevent shrinkage, deformation, etc. The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. Example 1 Heavy oil with a boiling point of 200°C or higher produced as a by-product when naphtha was steam cracked at 830°C (properties are shown in Table 1)
150 ml was heated in an autoclave with an internal volume of 300 ml equipped with a stirrer at an initial hydrogen pressure of 100 Kg/cm 2 G and at a heating rate of 3°C/G.
The mixture was heated to 430°C for 3 hours and held at 430°C for 3 hours. Thereafter, heating was stopped and the mixture was cooled to room temperature. The obtained liquid product was distilled at 250° C./1 mmHg to remove soft components and obtain raw material pitch. The softening point of this pitch was 68°C, the quinoline insoluble content was 0%, and the yield was 33 wt%. Next, add 600 g of nitrogen to 30 g of this raw material pitch.
Stir with ventilation at a rate of mm/min, heat treat at 400℃ for 10 hours, softening point: 280℃, quinoline insoluble content
Pitch with a mesophase content of 32 wt% and 85% was obtained in a yield of 43%. Set this pitch to a nozzle diameter of 0.3mmφ, L/
Melt-spun at 340℃ using a spinning machine with D=2, and
Pitch fibers with a diameter of 16 μm were prepared, and further subjected to infusible, carbonized, and graphitized treatments under the conditions shown below to obtain carbon fibers. Γ Infusibility conditions: 3 up to 200℃ in air atmosphere
℃/min, heat at a rate of 1℃/min up to 300℃, and hold at 300℃ for 15 minutes. Γ Carbonization conditions: In a nitrogen atmosphere, temperature was increased at 5°C/min.
Hold at 1000℃ for 30 minutes. Γ Graphitization conditions: Heat treatment in an argon stream at a heating rate of 25°C/min to 2500°C. The obtained carbon fiber had a tensile strength of 260 Kg/mm 2 and a Young's modulus of 40 ton/mm 2 . As shown in Comparative Example 1, the carbon fiber obtained using the raw material pitch of the present invention has higher strength and It is clear that the elastic modulus is high.

【表】 比較例 1 実施例1において使用した本発明の原料ピツチ
の代わりに、市販の石油ピツチであるアツシユラ
ンド(Ashland)240LS(軟化点120℃)を用い
て、実施例1と同様な方法で熱処理を行つたとこ
ろ、メソ相含量50%のピツチを得た。このピツチ
を実施例1と同様の方法で溶融紡糸、不融化処
理、炭化および黒鉛化処理して炭素繊維を得た。 得られた炭素繊維の引張強度は137Kg/mm2、ヤ
ング率は23ton/mm2であつた。 比較例 2 実施例一と同一の重質油150mlを内容積300mlの
撹拌機付きオートクレーブ中で水素初圧100Kg/
cm2・Gで、昇温速度3℃/minで300℃まで加熱
し、300℃で3時間保持した。しかる後、加熱を
停止し、室温まで冷却した。 得られた液状生成物を250℃/1mmHgで蒸留し
て軟質分を留出させ原料ピツチを得た。このピツ
チの軟化点は88℃、キノリン不溶分は0%であ
り、収率は48wt%であつた。 次にこの原料ピツチ30gに対し、窒素を600
ml/分で通気しながら撹拌し、温度400℃で8時
間熱処理を行い、軟化点320℃、キノリン不溶分
50wt%、メソ相割合90%のピツチを42%の収率
で得た。このピツチを実施例1と同様の方法で溶
融紡糸、不融化処理、炭化および黒鉛化処理して
炭素繊維を得た。 得られた炭素繊維の引張強度は135Kg/mm2、ヤ
ング率は24ton/mm2であつた。
[Table] Comparative Example 1 In place of the raw material pitch of the present invention used in Example 1, Ashland 240LS (softening point 120°C), which is a commercially available petroleum pitcher, was used in the same manner as in Example 1. After heat treatment, a pitch with a mesophase content of 50% was obtained. This pitch was subjected to melt spinning, infusibility treatment, carbonization and graphitization treatment in the same manner as in Example 1 to obtain carbon fibers. The obtained carbon fiber had a tensile strength of 137 Kg/mm 2 and a Young's modulus of 23 ton/mm 2 . Comparative Example 2 150 ml of the same heavy oil as in Example 1 was heated to an initial hydrogen pressure of 100 Kg/in an autoclave with an internal volume of 300 ml and equipped with a stirrer.
cm 2 ·G, heated to 300°C at a heating rate of 3°C/min, and held at 300°C for 3 hours. Thereafter, heating was stopped and the mixture was cooled to room temperature. The obtained liquid product was distilled at 250° C./1 mmHg to remove soft components and obtain raw material pitch. The softening point of this pitch was 88°C, the quinoline insoluble content was 0%, and the yield was 48 wt%. Next, add 600 g of nitrogen to 30 g of this raw material pitch.
Stir with ventilation at a rate of ml/min, heat treat at 400℃ for 8 hours, softening point: 320℃, quinoline insoluble content
Pitch with a mesophase ratio of 90% and 50 wt% was obtained in a yield of 42%. This pitch was subjected to melt spinning, infusibility treatment, carbonization and graphitization treatment in the same manner as in Example 1 to obtain carbon fibers. The obtained carbon fiber had a tensile strength of 135 Kg/mm 2 and a Young's modulus of 24 ton/mm 2 .

Claims (1)

【特許請求の範囲】[Claims] 1 石油類を水蒸気分解した際に得られる沸点
200℃以上の重質油を20Kg/cm2・G以上の水素加
圧下で、温度400〜500℃で熱処理することにより
得られる原料ピツチを温度340〜450℃で加熱処理
し、得られる前駆体ピツチを溶融紡糸した後、不
融化処理および炭化あるいはさらに黒鉛化処理し
て炭素繊維を製造する方法。
1 Boiling point obtained when petroleum is steam decomposed
Precursor obtained by heat treating raw material pitch at a temperature of 340 to 450°C, obtained by heat treating heavy oil at a temperature of 200°C or higher at a temperature of 400 to 500°C under hydrogen pressure of 20 kg/ cm 2 G or higher. A method of manufacturing carbon fiber by melt-spinning pitch, followed by infusibility treatment, carbonization, or graphitization treatment.
JP56054306A 1981-04-13 1981-04-13 Raw pitch for carbon fiber Granted JPS57168990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56054306A JPS57168990A (en) 1981-04-13 1981-04-13 Raw pitch for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56054306A JPS57168990A (en) 1981-04-13 1981-04-13 Raw pitch for carbon fiber

Publications (2)

Publication Number Publication Date
JPS57168990A JPS57168990A (en) 1982-10-18
JPH0144750B2 true JPH0144750B2 (en) 1989-09-29

Family

ID=12966880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56054306A Granted JPS57168990A (en) 1981-04-13 1981-04-13 Raw pitch for carbon fiber

Country Status (1)

Country Link
JP (1) JPS57168990A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876523A (en) * 1981-10-29 1983-05-09 Nippon Oil Co Ltd Preparation of pitch carbon fiber
JPS58115120A (en) * 1981-12-28 1983-07-08 Nippon Oil Co Ltd Preparation of pitch type carbon fiber
CN116583566A (en) * 2021-01-06 2023-08-11 埃克森美孚技术与工程公司 Steam cracking process for converting crude oil into a bitumen composition that can be spun into carbon products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157679A (en) * 1979-05-29 1980-12-08 Hai Max:Kk Preparation of high-purity petroleum pitch or coke

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157679A (en) * 1979-05-29 1980-12-08 Hai Max:Kk Preparation of high-purity petroleum pitch or coke

Also Published As

Publication number Publication date
JPS57168990A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
US4460557A (en) Starting pitches for carbon fibers
JPS58220805A (en) Production of precursor pitch for carbon fiber
US4474617A (en) Pitch for carbon fibers
JPH0150272B2 (en)
US4391788A (en) Starting pitches for carbon fibers
JPH0144750B2 (en)
JPH0150269B2 (en)
JPH0148312B2 (en)
JPH0144751B2 (en)
JPH0150275B2 (en)
US4533535A (en) Starting pitches for carbon fibers
JPH0475273B2 (en)
JPH0150271B2 (en)
JPH0144753B2 (en)
JPH0150273B2 (en)
US4490239A (en) Pitch for carbon fibers
JPH0150274B2 (en)
JPH0145516B2 (en)
JPH0480075B2 (en)
JPH0144752B2 (en)
JPH0150270B2 (en)
JPH04309596A (en) Production of optically isotropic pitch
JPH0148315B2 (en)
JPH0148313B2 (en)
JPH054435B2 (en)