JPH0362197B2 - - Google Patents

Info

Publication number
JPH0362197B2
JPH0362197B2 JP24432383A JP24432383A JPH0362197B2 JP H0362197 B2 JPH0362197 B2 JP H0362197B2 JP 24432383 A JP24432383 A JP 24432383A JP 24432383 A JP24432383 A JP 24432383A JP H0362197 B2 JPH0362197 B2 JP H0362197B2
Authority
JP
Japan
Prior art keywords
pitch
heat treatment
mesophase
mmhg
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24432383A
Other languages
Japanese (ja)
Other versions
JPS60137988A (en
Inventor
Masakatsu Oota
Hiroshi Nishitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP24432383A priority Critical patent/JPS60137988A/en
Publication of JPS60137988A publication Critical patent/JPS60137988A/en
Publication of JPH0362197B2 publication Critical patent/JPH0362197B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Working-Up Tar And Pitch (AREA)

Description

【発明の詳細な説明】 本発明は炭素材、特に炭素繊維の製造に好適な
ピツチの製造方法に関する。 プラスチツクや金属の複合材料として知られて
いる炭素繊維は、従来ポリアクリロニトリルの繊
維を焼成して製造されてきたが、原料繊維が高価
である上に焼成時の炭化収率が低いという問題が
あつた。このため近年はピツチを原料とする炭素
繊維の製法が数多く提案されている。 しかしながら、ピツチを原料として炭素繊維を
製造する場合にはピツチ中のメソ相ピツチ含量が
実質的に100%のものを用いなければ高品質の炭
素繊維を得ることができない。即ち、メソ相ピツ
チ含量が40〜90%のものでは、メソ相ピツチと等
方性ピツチとの相溶性が悪いために均一な紡糸が
できず、製品の機械的強度も十分でない。したが
つて、良質のピツチを得るため、原料ピツチの性
状、熱処理条件やメソ相ピツチと等方性ピツチと
の分離方法等について各種の提案がなされている
が、いずれの方法においても紡糸性や性能生産性
などの点で一長一短を有し、未だ十分に満足すべ
き方法は見出されていない。 本発明はこのような従来の問題点を解消し、不
融化処理の時間を短縮できると共にメソ相含量が
高く、しかも、紡糸性や強度、弾性率などの性能
的にもすぐれた炭素繊維の製造に適した炭素材用
ピツチの製法を提供することを目的とするもので
ある。 すなわち本発明は、石油系残油を熱処理するこ
とによりピツチを製造するにあたり、石油系残油
中の軽質油分を除去した原料ピツチを、温度400
〜440℃、圧力5〜30mmHgの条件下で第一段熱処
理し、生成したピツチ中のメソ相ピツチを分離除
去した後、等法性ピツチを温度450〜500℃、圧力
0.1〜5mmHgの条件下で第二段熱処理して実質的
にメソ相100%のピツチを得ることを特徴とする
炭素材用ピツチの製法を提供するものである。 本発明の方法に用いる原料油は、石油系残油で
あるが、ここで石油系残油としては石油留分の接
触分解残油、ナフサ等の熱分解残油などの芳香族
炭化水素含量の高いものが好適に用いられる。 本発明の方法においては、このような石油系残
油を予め減圧蒸留して、沸点約400℃以下の軽質
油分を留去した残油を原料ピツチとして用いる。
なお、減圧蒸留するにあたり、予めフイルター等
により石油系残油中の灰分を除去しておくことが
好ましい。 次いで、上記原料ピツチを第一段熱処理する。
この第一断熱処理は温度400〜440℃、圧力5〜30
mmHg、好ましくは温度410〜430℃、圧力7〜20
mmHgの条件で行なわれる。なお、熱処理時間は
通常0.2〜10時間、好ましくは0.5〜5時間であ
る。この第一段熱処理によりメソ相ピツチ含有量
5〜50重量%である等法性ピツチとメソ相ピツチ
との混合物を得る。ここで第一段熱処理の温度が
400℃未満であると、反応が遅く熱処理に長時間
を要し、一方440℃を超えると揮発分の除去量が
多くなり収率が低下するので好ましくない。ま
た、第一段熱処理の圧力が5mmHg未満であると
揮発分の除去量が多くなり収率が低下し、一方30
mmHgを超えるとピツチ内の軽質分の含有量が増
加し、発泡が激しく静置による比重差分離が困難
となるので好ましくない。 なお、この第一段熱処理は、この第一段熱処理
により生成するピツチ中の等方性ピツチのトルエ
ン不溶分の含有量が10〜70重量%、より好ましく
は20〜60重量%となるように調整して行なうこと
が好ましい。この等方性ピツチのトルエン不溶分
の含有量の調整は、例えばこの含有量を大とする
には熱処理温度は高くすればよく、また、反応時
間は長くすればよい。このように等方性ピツチの
トルエン不溶分の含有量を第一段熱処理により調
整し、次いで後記の如くこの時点でメソ相ピツチ
を分離除去することにより収率の低下を招くこと
なく低品質のメソ相ピツチを除去することができ
る。したがつて、最終的に均質で紡糸性の良好な
メソ相ピツチを得ることが可能となる。 次に、このようにして生成したピツチ中のメソ
相ピツチを分離除去する。このメソ相ピツチを分
離除去する方法は特に制限はなく比重分離により
行なつてもよいし、或いはトルエン、キノリン等
の溶材を用いて行なつてもよいが、比重差分離に
より行なうことが好ましい。比重差分離は350〜
420℃の温度において静置あるいは緩やかな撹拌
下に行なわれる。このようにして反応器底部に重
いメソ相ピツチを集積させ、このメソ相ピツチを
全部除去する。 このようにして得られた等方性ピツチを第二段
熱処理する。この第二段熱処理はメソ相ピツチを
分離除去後の等方性ピツチを第一段熱処理より厳
しい条件で行なうものであり、通常温度450〜500
℃、圧力0.1〜5mmHg、好まくは温度460〜490
℃、圧力0.5〜3mmHgの条件で行なう。ここで第
二段熱処理の温度が450℃未満であると軽質分の
除去が困難となつて熱処理時間が長くなり、一方
500℃を超えるとコーキングが発生し反応速度の
制御が困難となるので好ましくない。また、第二
段熱処理の圧力が0.1mmHg未満であると収率が低
下し真空装置が大がかりなものとなり、一方5mm
Hgを超えると軽質分の含量が増え製品としての
性能が不十分となるので好ましくない。 このようにして得られるピツチはメソ相(光学
的異方性)が実質的に100%で、品質がきわめて
良好である。したがつて、本発明によつて得られ
るピツチは、炭素繊維の製造の他、炭素フイル
ム、フイラメント、ヤーンなどの各種炭素製品の
製造に有効に利用することができる。 本発明によつて得られた実質的にメソ相100%
のピツチからピツチ系炭素繊維を製造するには常
法によりまずこのピツチを紡糸し、次いで不融化
処理し、さらに焼成すればよい。 本発明によればメソ相含量が高く、実質的にメ
ソ相100%のピツチを得ることができる。したが
つて、第二段熱処理後にさらにメソ相ピツチと等
方性ピツチとの分離操作を行なう必要がなく、そ
のまま炭素製品の製造に用いることができる。ま
た製法上からは第二段熱処理を厳しい条件下で行
なうため、比較的ピツチの軟化点が高く、不融化
処理の時間を従来に比して大幅に短縮することが
できる。さらに、本発明では最初に生成するメソ
相ピツチに含まれる高分子量物を除去しており、
しかも熱処理を高真空状態で行なつているため低
分子量物も除かれている。したがつて、得られる
ピツチは分子量分布が狭く流動性が良好なので軟
化点は高くても紡糸性は良好である。また、この
ピツチから得られる炭素繊維は引張強度や弾性率
が高く非常にすぐれたものである。 したがつて、本発明は炭素材料、特に炭素繊維
の製造に有効に利用することができる。 次に、本発明を実施例により説明する。 実施例 1 重質軽油の接触分解装置から得られた接触分解
残油をフイルターにより灰分を除去し、次いで減
圧蒸留により軽質油分を留去した残油(常圧換算
沸点430℃以上)を原料ピツチとして用いた。こ
の原料ピツチ100gを10mmHgの真空下、420℃に
おいて第一段熱処理を1時間行なつた。生成した
ピツチ中のメソ相ピツチの含有量は8重量%であ
つた。なお、生成した等方性ピツチ中のトルエン
不溶分(JIS−K−2425に準拠)の含有量は35重
量%であつた。 生成したピツチはそのまま静置して比重差によ
り重いメソ相ピツチを反応器底部に集積させて8
gを抜き去つた。 次に、反応器上部に残つた等方性ピツチを1mm
Hg、460℃の条件下に第二段熱処理を12分間行な
い、実質的にメソ相100%のピツチ65g(収率65
%)を得た。このメソ相ピツチのキノリン不溶分
は26重量%であり、軟化点は320℃であつた。ま
た数平均分子量は1100であつた。 次いで、得られたメソ相ピツチを紡糸温度360
℃、紡糸速度700m/分において糸径7μの繊維に
紡糸した。紡糸工程中の糸切れはなかつた。得ら
れた繊維は室温から350℃まで100分間で昇温した
のみで不融化処理を完了した。次いでアルゴン雰
囲気下に1500℃で10分間焼成し炭素繊維を得た。
得られた炭素繊維の物性を第1表に示す。 実施例 2 実施例1において、第一段熱処理を15mmHg、
420℃の条件下で2時間行ない、メソ相ピツチの
分離除去量を20gとしたことおよび第二段熱処理
を3mmHg、480℃の条件下に7分間行なつたこと
以外は、実施例1と同様にして、実質的にメソ相
100%のピツチ60g(収率60%)を得た。このも
ののキノリン不溶分は30重量%であり、軟化点は
320℃であつた。また数平均分子量は、1150であ
つた。 次いで、このメソ相ピツチを実施例1と同様に
して、炭素繊維を得た。得られた炭素繊維の物性
を第1表に示す。 比較例 1 実施例1において、第一段熱処理を10mmHg、
420℃の条件下にて1時間行ない、メソ相ピツチ
の分離除去量を6gとしたことおよび第二段熱処
理を10mmHg、420℃の条件下にて、6時間行なつ
たこと以外は実施例1と同様にして実質的にメソ
相100%のピツチ65g(収率65%)を得た。この
もののキノリン不溶分は60重量%であり、軟化点
は280℃であつた。このピツチを350℃で紡糸し、
空気中で270℃において2時間不融化処理し、
1500℃で10分間焼成して炭素繊維を得た。得られ
た炭素繊維の物性を第1表に示す。 比較例 2 実施例1において、第一段熱処理を3mmHg、
430℃の条件下に1時間行ない、メソ相ピツチの
分離除去量を25gとしたことおよび第二段熱処理
を20mmHg、420℃の条件下に5時間行なつたこと
以外は実施例1と同様にしてメソ相ピツチ含有率
60%のピツチ20g(収率20%)を得た。このもの
のキノリン不溶分は65%であり、軟化点は290℃
であつた。このピツチを370℃において紡糸し、
空気中270℃において2時間不融化処理し、1500
℃で10分間焼成して炭素繊維を得た。得られた炭
素繊維の物性を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pitch suitable for producing carbon materials, particularly carbon fibers. Carbon fiber, which is known as a composite material for plastics and metals, has traditionally been produced by firing polyacrylonitrile fibers, but the raw material fibers are expensive and the carbonization yield during firing is low. Ta. For this reason, in recent years, many methods have been proposed for producing carbon fibers using pitch as a raw material. However, when producing carbon fibers using pitch as a raw material, high quality carbon fibers cannot be obtained unless the pitch contains substantially 100% mesophase pitch. That is, if the mesophase pitch content is 40 to 90%, uniform spinning cannot be achieved due to poor compatibility between the mesophase pitch and isotropic pitch, and the mechanical strength of the product is also insufficient. Therefore, in order to obtain high-quality pitches, various proposals have been made regarding the properties of raw pitches, heat treatment conditions, and methods for separating mesophase pitches and isotropic pitches, but none of these methods have problems with spinnability or This method has advantages and disadvantages in terms of performance and productivity, and no fully satisfactory method has yet been found. The present invention solves these conventional problems and enables the production of carbon fibers that can shorten the time for infusibility treatment, have a high mesophase content, and have excellent performance such as spinnability, strength, and elastic modulus. The purpose of this invention is to provide a method for manufacturing pitches for carbon materials suitable for. That is, in producing pitch by heat-treating petroleum-based residual oil, the present invention heats raw material pitch from which the light oil content in petroleum-based residual oil has been removed at a temperature of 400°C.
After performing the first heat treatment under the conditions of ~440℃ and pressure of 5 to 30 mmHg, and separating and removing the mesophase pitch in the generated pitch, the isotropic pitch was heated to temperature of 450 to 500℃ and pressure.
The present invention provides a method for producing a pitch for a carbon material, which is characterized by performing a second heat treatment under conditions of 0.1 to 5 mmHg to obtain a pitch containing substantially 100% mesophase. The raw material oil used in the method of the present invention is a petroleum-based residual oil, and examples of the petroleum-based residual oil include catalytic cracking residual oil of petroleum fractions, pyrolysis residual oil such as naphtha, etc. with a high aromatic hydrocarbon content. A high one is preferably used. In the method of the present invention, such petroleum-based residual oil is previously distilled under reduced pressure to remove light oil components with a boiling point of about 400°C or less, and the residual oil is used as a raw material pitch.
In addition, in carrying out the vacuum distillation, it is preferable to remove the ash content in the petroleum residual oil in advance using a filter or the like. Next, the raw material pitch is subjected to a first heat treatment.
This first insulation treatment is performed at a temperature of 400 to 440℃ and a pressure of 5 to 30℃.
mmHg, preferably temperature 410-430℃, pressure 7-20
It is performed under mmHg conditions. Note that the heat treatment time is usually 0.2 to 10 hours, preferably 0.5 to 5 hours. This first stage heat treatment yields a mixture of isotropic pitch and mesophase pitch having a mesophase pitch content of 5 to 50% by weight. Here, the temperature of the first stage heat treatment is
If the temperature is less than 400°C, the reaction will be slow and the heat treatment will take a long time, while if it exceeds 440°C, the amount of volatile matter removed will increase and the yield will decrease, which is not preferable. In addition, if the pressure in the first stage heat treatment is less than 5 mmHg, the amount of volatile matter removed will increase and the yield will decrease;
If it exceeds mmHg, the content of light components in the pitch will increase, and foaming will be severe, making it difficult to separate the difference in specific gravity by standing still, which is not preferable. In addition, this first stage heat treatment is carried out so that the content of toluene insoluble matter in the isotropic pitch produced by this first stage heat treatment is 10 to 70% by weight, more preferably 20 to 60% by weight. It is preferable to carry out the adjustment. The content of toluene-insoluble matter in the isotropic pitch can be adjusted, for example, by increasing the heat treatment temperature and by increasing the reaction time. In this way, the content of toluene-insoluble matter in the isotropic pitch is adjusted by the first heat treatment, and then, as described later, the mesophase pitch is separated and removed at this point, thereby reducing the amount of low quality without causing a decrease in yield. Mesophase pits can be removed. Therefore, it becomes possible to finally obtain a mesophase pitch that is homogeneous and has good spinnability. Next, the mesophase pitch in the pitch thus generated is separated and removed. The method for separating and removing this mesophase pitch is not particularly limited and may be carried out by specific gravity separation or by using a solvent such as toluene or quinoline, but it is preferably carried out by specific gravity separation. Specific gravity separation is 350~
It is carried out at a temperature of 420°C either by standing still or with gentle stirring. In this way, heavy mesophase pitches accumulate at the bottom of the reactor and are completely removed. The isotropic pitch thus obtained is subjected to a second heat treatment. In this second stage heat treatment, the isotropic pitch after the mesophase pitch has been separated and removed is subjected to more severe conditions than the first stage heat treatment, usually at a temperature of 450 to 500.
℃, pressure 0.1~5mmHg, preferably temperature 460~490
The test is carried out under conditions of temperature and pressure of 0.5 to 3 mmHg. If the temperature of the second stage heat treatment is less than 450℃, it will be difficult to remove light components and the heat treatment time will be longer.
If the temperature exceeds 500°C, coking occurs and it becomes difficult to control the reaction rate, which is not preferable. In addition, if the pressure in the second stage heat treatment is less than 0.1 mmHg, the yield will decrease and the vacuum equipment will be large-scale;
Exceeding Hg is not preferable because the content of light components increases and the performance as a product becomes insufficient. The pitch thus obtained has substantially 100% mesophase (optical anisotropy) and is of extremely good quality. Therefore, the pitch obtained by the present invention can be effectively used in the production of carbon fibers as well as various carbon products such as carbon films, filaments, and yarns. Substantially 100% mesophase obtained by the present invention
To produce pitch-based carbon fiber from pitch, the pitch may be first spun using a conventional method, then subjected to infusibility treatment, and then fired. According to the present invention, pitches having a high mesophase content and substantially 100% mesophase can be obtained. Therefore, there is no need to further separate the mesophase pitch and the isotropic pitch after the second heat treatment, and the product can be used as is for producing carbon products. In addition, since the second stage heat treatment is performed under severe conditions in terms of the manufacturing method, the softening point of the pitch is relatively high, and the time for the infusibility treatment can be significantly shortened compared to the conventional method. Furthermore, in the present invention, high molecular weight substances contained in the mesophase pitch initially generated are removed,
Moreover, since the heat treatment is performed in a high vacuum state, low molecular weight substances are also removed. Therefore, the resulting pitch has a narrow molecular weight distribution and good fluidity, so even though the softening point is high, the spinnability is good. Furthermore, the carbon fiber obtained from this pitch has excellent tensile strength and high modulus of elasticity. Therefore, the present invention can be effectively utilized in the production of carbon materials, particularly carbon fibers. Next, the present invention will be explained by examples. Example 1 The ash content of the catalytic cracking residual oil obtained from the catalytic cracking equipment for heavy gas oil was removed using a filter, and then the light oil content was removed by vacuum distillation. It was used as 100 g of this raw material pitch was subjected to a first stage heat treatment at 420° C. for 1 hour under a vacuum of 10 mmHg. The content of mesophase pitch in the produced pitch was 8% by weight. The content of toluene insoluble matter (according to JIS-K-2425) in the produced isotropic pitch was 35% by weight. The generated pitches are allowed to stand still, and due to the difference in specific gravity, the heavier mesophase pitches accumulate at the bottom of the reactor.
I removed g. Next, remove the isotropic pitch remaining at the top of the reactor by 1 mm.
A second heat treatment was performed for 12 minutes under Hg and 460°C conditions, resulting in 65 g of pitch (yield: 65
%) was obtained. The quinoline insoluble content of this mesophase pitch was 26% by weight, and the softening point was 320°C. Moreover, the number average molecular weight was 1100. Next, the obtained mesophase pitch was spun at a spinning temperature of 360°C.
The fibers were spun at 700 m/min at a spinning speed of 700 m/min. There was no yarn breakage during the spinning process. The infusibility treatment of the obtained fibers was completed by simply raising the temperature from room temperature to 350°C in 100 minutes. Next, carbon fibers were obtained by firing at 1500°C for 10 minutes in an argon atmosphere.
Table 1 shows the physical properties of the obtained carbon fiber. Example 2 In Example 1, the first stage heat treatment was performed at 15 mmHg,
Same as Example 1 except that the treatment was carried out at 420°C for 2 hours and the amount of mesophase pitch separated and removed was 20g, and the second stage heat treatment was carried out at 3mmHg and 480°C for 7 minutes. , substantially mesophase
60 g (60% yield) of 100% pitch was obtained. The quinoline insoluble content of this product is 30% by weight, and the softening point is
It was 320℃. Moreover, the number average molecular weight was 1150. Next, this mesophase pitch was treated in the same manner as in Example 1 to obtain carbon fibers. Table 1 shows the physical properties of the obtained carbon fiber. Comparative Example 1 In Example 1, the first stage heat treatment was performed at 10 mmHg,
Example 1 except that the treatment was carried out at 420°C for 1 hour, and the amount of mesophase pitch separated and removed was 6 g, and the second stage heat treatment was carried out at 10 mmHg and 420°C for 6 hours. In the same manner as above, 65 g of pitch (yield: 65%) containing substantially 100% meso phase was obtained. The quinoline-insoluble content of this product was 60% by weight, and the softening point was 280°C. This pitch is spun at 350℃,
Infusibility treatment was carried out in air at 270°C for 2 hours,
Carbon fibers were obtained by firing at 1500°C for 10 minutes. Table 1 shows the physical properties of the obtained carbon fiber. Comparative Example 2 In Example 1, the first stage heat treatment was performed at 3 mmHg,
The procedure was the same as in Example 1, except that the treatment was carried out at 430°C for 1 hour, and the amount of mesophase pitch separated and removed was 25g, and the second stage heat treatment was carried out at 20mmHg and 420°C for 5 hours. Mesophase pitch content
20 g of 60% pitch (yield 20%) was obtained. The quinoline insoluble content of this product is 65%, and the softening point is 290℃.
It was hot. This pitch is spun at 370℃,
Infusible at 270℃ in air for 2 hours, 1500℃
Carbon fibers were obtained by firing at ℃ for 10 minutes. Table 1 shows the physical properties of the obtained carbon fiber. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 石油系残油を熱処理することによりピツチを
製造するにあたり、石油系残油中の軽質油分を除
去した原料ピツチを、温度400〜440℃、圧力5〜
30mmHgの条件下で第一段熱処理し、生成したピ
ツチ中のメソ相ピツチを分離除去した後、等方性
ピツチを温度450〜500℃、圧力0.1〜5mmHgの条
件下で第二段熱処理して実質的にメソ相100%の
ピツチを得ることを特徴とする炭素材用ピツチの
製法。
1. When producing pitch by heat-treating petroleum-based residual oil, the raw material pitch from which the light oil content in petroleum-based residual oil has been removed is heated at a temperature of 400 to 440°C and a pressure of 5 to
After performing the first stage heat treatment under the condition of 30 mmHg and separating and removing the mesophase pitches in the produced pitches, the isotropic pitch was subjected to the second stage heat treatment under the conditions of the temperature of 450 to 500℃ and the pressure of 0.1 to 5 mmHg. A method for producing pitch for carbon materials, which is characterized by obtaining pitch containing substantially 100% mesophase.
JP24432383A 1983-12-26 1983-12-26 Production of pitch for carbonaceous material Granted JPS60137988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24432383A JPS60137988A (en) 1983-12-26 1983-12-26 Production of pitch for carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24432383A JPS60137988A (en) 1983-12-26 1983-12-26 Production of pitch for carbonaceous material

Publications (2)

Publication Number Publication Date
JPS60137988A JPS60137988A (en) 1985-07-22
JPH0362197B2 true JPH0362197B2 (en) 1991-09-25

Family

ID=17117006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24432383A Granted JPS60137988A (en) 1983-12-26 1983-12-26 Production of pitch for carbonaceous material

Country Status (1)

Country Link
JP (1) JPS60137988A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202189A (en) * 1984-03-26 1985-10-12 Idemitsu Kosan Co Ltd Pitch for carbonaceous material and its preparation
JPS6232178A (en) * 1985-08-06 1987-02-12 Idemitsu Kosan Co Ltd Preparation of pitch for carbonaceous material
JP2546801B2 (en) * 1987-10-30 1996-10-23 出光興産株式会社 Method for manufacturing pitch for carbon material

Also Published As

Publication number Publication date
JPS60137988A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
EP0086608A1 (en) Carbon artifact grade pitch and manufacture thereof
US4575411A (en) Process for preparing precursor pitch for carbon fibers
EP0119100A2 (en) Process for preparing a spinnable pitch product
US4502943A (en) Post-treatment of spinnable precursors from petroleum pitch
JPH0321588B2 (en)
JPH0362197B2 (en)
JPS58196292A (en) Preparation of carbonaceous substance in premetaphase
JPH0516475B2 (en)
US4759839A (en) Process for producing pitch useful as raw material for carbon fibers
JPH0320432B2 (en)
JPS60137989A (en) Production of pitch for carbonaceous material
JP2917486B2 (en) Mesoface pitch for carbon materials
JPH0321589B2 (en)
JPH0257839B2 (en)
JP2529167B2 (en) Method for manufacturing pitch for carbon material
JPH0315954B2 (en)
JPS6036594A (en) Preparation of pitch for carbon material
JPH0362196B2 (en)
JP2520099B2 (en) Carbon fiber pitch manufacturing method
JPS59161483A (en) Production of pitch for carbon material
JPH0155314B2 (en)
JPS6218593B2 (en)
JPS6257678B2 (en)
JPH01115990A (en) Production of pitch for carbonaceous material
JPS6232178A (en) Preparation of pitch for carbonaceous material