JPS5936418B2 - Impurity diffusion method for silicon substrate - Google Patents

Impurity diffusion method for silicon substrate

Info

Publication number
JPS5936418B2
JPS5936418B2 JP12877075A JP12877075A JPS5936418B2 JP S5936418 B2 JPS5936418 B2 JP S5936418B2 JP 12877075 A JP12877075 A JP 12877075A JP 12877075 A JP12877075 A JP 12877075A JP S5936418 B2 JPS5936418 B2 JP S5936418B2
Authority
JP
Japan
Prior art keywords
group
silicon substrate
diffusion
solution
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12877075A
Other languages
Japanese (ja)
Other versions
JPS5252569A (en
Inventor
健敏 加藤
晴征 後藤
知仁 小林
敏夫 米沢
雅志 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12877075A priority Critical patent/JPS5936418B2/en
Publication of JPS5252569A publication Critical patent/JPS5252569A/en
Publication of JPS5936418B2 publication Critical patent/JPS5936418B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明はシリコン基板に対する不純物拡散方法に関し、
特にシリコン基板に欠陥の少い拡散を施す改良された不
純物拡散方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for diffusing impurities into a silicon substrate,
In particular, an improved impurity diffusion method is provided that provides diffusion into silicon substrates with fewer defects.

従来シリコン基板にたいする深い拡散は、たとえばシリ
コン整流素子形成における一電極預域の形成、三重拡散
トランジスタにおけるコレクタ領域形成、パワー素子の
エミッタ拡散に対しては、B、O。
Conventionally, deep diffusion into a silicon substrate is performed using B, O, etc., for example, for the formation of a single electrode deposit in the formation of a silicon rectifier, the formation of a collector region in a triple diffusion transistor, and the emitter diffusion of a power device.

、P2O、等1族、V族に属する不純物の酸化物を有機
溶剤、例えばエチルアルコール、メチルセルソルブ等に
溶解し、これをスブレ等の手段により塗着して行なうい
わゆるペイントオン(Painton)拡散法が一般に
適用されている0、しかし上記の拡散法によれば上記エ
ミッタ層、コレクタ電極等高濃度層形成の場合、不純物
元素とシリコン原子の四面体半径の相違のため格子歪を
生じ、これから非常に多くの線欠陥の発生をみる。これ
ら欠陥は、ノイズ等半導体装置の電気的特性に悪影響を
与えるばかりでなく、欠陥によつてエミツタデイツプ、
ラテラル方向の拡散等を生じ、制御性が著るしく悪かつ
た。上記に対しボロンシリケートガラス(以下本明細書
においてはBSGと略称する)拡散とか、燐一砒素拡散
等が提唱され、プレナトランジスタ、バイボーラIC等
の浅い拡散に対しては低周波ノイズが減少する等の成果
がみられた。
, P2O, and other impurity oxides belonging to Groups 1 and V are dissolved in an organic solvent such as ethyl alcohol, methylcellosolve, etc., and this is applied by a method such as a soot coating, which is the so-called Painton diffusion. However, according to the above diffusion method, when forming highly concentrated layers such as the emitter layer and collector electrode, lattice distortion occurs due to the difference in the tetrahedral radius of the impurity element and the silicon atom. A large number of line defects are observed. These defects not only adversely affect the electrical characteristics of semiconductor devices such as noise, but also cause emitter dips and
Lateral diffusion occurred, resulting in extremely poor controllability. In response to the above, boron silicate glass (hereinafter abbreviated as BSG) diffusion, phosphorus-arsenic diffusion, etc. have been proposed, and low-frequency noise can be reduced for shallow diffusion in planar transistors, bibolar ICs, etc. results were seen.

しかしてN+拡散に用いられる燐一砒素は砒素の拡散係
数が燐に比し一桁小さいため拡散が遅れ、特に深い拡散
、一例としてXj>15μ(Xjは層厚)のエミツタ拡
散にあつては歪相殺機構が働く程の充分な濃度が得られ
ない。一方BSG拡散による無欠陥拡散も図における斜
線を施した範囲、即ちNs(表面濃度)が4×1020
/一以下にしてかつ全ボロン量Qが2×1016/Cf
lt以下の範囲しか無欠陥とならない。上記範囲におけ
るNs≦4×1020/(−JモViはBSGによつて補
正できるも、Q≦2×10’6/CilではXjが大き
く(深い拡散)なるとすぐ満足しなくなる。一例として
Ns=4×1020/dのときXjが1μ前後で欠陥が
発生する領域に入るのである。本発明は上記従来の拡散
方法の欠点を改良する 一とともに容易に深い無欠陥拡
散を達成する方法を提供するものである。
However, in the case of phosphorus-arsenic used for N+ diffusion, the diffusion coefficient of arsenic is one order of magnitude smaller than that of phosphorus, so diffusion is delayed, especially in deep diffusion, for example, emitter diffusion where Xj>15μ (Xj is the layer thickness). A sufficient concentration cannot be obtained for the strain canceling mechanism to work. On the other hand, defect-free diffusion by BSG diffusion also occurs in the shaded area in the figure, that is, when Ns (surface concentration) is 4×1020
/1 or less and the total boron amount Q is 2×1016/Cf
Only the range below lt is defect-free. Ns≦4×1020/(-JmoVi in the above range can be corrected by BSG, but Q≦2×10'6/Cil becomes unsatisfactory as soon as Xj becomes large (deep diffusion). For example, Ns= When Xj is 4×1020/d, defects occur at around 1μ.The present invention improves the drawbacks of the conventional diffusion methods described above, and provides a method for easily achieving deep defect-free diffusion. It is something.

本発明のシリコン基板に対する不純物拡散方法はシリコ
ン基板に不純物のI族またはv族元素を族元素と同時に
拡散するにあたり、族元素をその酸化物から添加するこ
とを特徴とする。
The method for diffusing impurities into a silicon substrate according to the present invention is characterized in that when a group I or V element as an impurity is simultaneously diffused into a silicon substrate, the group element is added from its oxide.

また、上記において、族元素が酸化物で添加されると同
時にこの酸化物をPHl以下の酸溶液またはPHl3以
上のアルカリ溶液に溶解した溶液で添加することを特徴
とする。さらに、I族またはV族元素をシリコン基板に
結晶の欠陥少く拡散するために、上記元素と族元素のガ
ラス、シリコン間の偏析現象に留意して添加割合を決定
することを特徴とする。また、I族またはv族元素とも
その酸化物を水溶性有機溶媒に溶解した溶液となし、こ
れをシリコン基板に重ね塗り、または混液として塗布す
ることを特徴とする。さらに、上記有機溶媒がアルコー
ルおよびまたはメチルセルソルブであることを特徴とす
るものである。次に本発明の開発の経過とさらに実施例
について説明する。
Further, in the above method, the group element is added in the form of an oxide, and at the same time, this oxide is added in the form of a solution dissolved in an acid solution with a pH of 1 or less or an alkaline solution with a pH of 3 or more. Furthermore, in order to diffuse the Group I or V element into the silicon substrate with fewer crystal defects, the addition ratio is determined by paying attention to the segregation phenomenon between the above element and the group element glass and silicon. Further, the method is characterized in that a solution of an oxide of a group I or group V element is dissolved in a water-soluble organic solvent, and the solution is coated on a silicon substrate in layers or as a mixed solution. Furthermore, the organic solvent is alcohol and/or methylcellosolve. Next, the progress of development of the present invention and further examples will be described.

実施例ではボロン(B)、燐ヤ)等Siよ1 り四面体
半径の小さい原子によつて生ずるコムプレツシヨンを補
償するために不純物元素Geを同時に拡散することを案
出した。Geは族元素であつて電気的にほとんど素子特
性に影響を与えないという利点がある。しカルGeは元
素単体の形では拡散不純物源として使えず、Gecl4
ではSiH4、B2H゜等と同時にCVD( Chem
icalvapOrdepOsitiOn)することは
困難であり、またCVD装置を銹びさせる恐れがある。
またGeH4は作製、入手が困難であつたためにGeを
拡散することはほとんど実用化されていない状態である
。本発明においてはドナー不純物並びにアクセプタ不純
物としてP2O5並びにB2O3を、歪相殺用不純物と
してGeO2を用いる。
In the embodiment, it was devised to simultaneously diffuse the impurity element Ge in order to compensate for the compression caused by atoms having a smaller tetrahedral radius than Si, such as boron (B) and phosphorus. Ge is a group element and has the advantage of having little electrical effect on device characteristics. Gecl4 cannot be used as a diffusion impurity source in the form of a single element, and Gecl4
Then, CVD (Chem
icalvapOrdepOsitiOn) is difficult and may rust the CVD equipment.
Furthermore, since GeH4 is difficult to produce and obtain, diffusion of Ge has hardly been put into practical use. In the present invention, P2O5 and B2O3 are used as donor impurities and acceptor impurities, and GeO2 is used as a strain canceling impurity.

現状において上記両者を同時に溶解する溶剤が見当らな
いので、各各を溶解する溶剤によつて溶解したのち互い
の溶液を混合するという方法によつた。一例としてB2
O3を用いるとき、これをメチルセルソルブ、またはエ
タノールを用い、GeO2に対しては濃Hclまたは濃
アルカリを用いて溶解したのち両者を混合し、スピン(
SpinOn)方式、スプレ方式等によつて塗着を行な
い、のち拡散する方法を見出した。次に本発明の一実施
例につき説明する。
At present, there is no solvent that can dissolve both of the above at the same time, so a method was adopted in which each was dissolved in a solvent that dissolved each, and then the mutual solutions were mixed. B2 as an example
When O3 is used, it is dissolved using methyl cellosolve or ethanol, and GeO2 is dissolved using concentrated HCl or concentrated alkali, and then the two are mixed and spin (
We have discovered a method of applying the coating using a spin-on method, a spray method, etc., and then diffusing it. Next, one embodiment of the present invention will be described.

溶液囚〜IC)を次の如く調製する。A solution (IC) is prepared as follows.

(調製された溶液(支)〜(C)は以下の各実施例に共
通)実施例 (1)溶誕囚を3“十溶液(C)を677
11よりなる混合液を作製し、直径43”φ、厚さ35
0μ、比抵抗値30〜50Ω傭のN型ウエハにSpin
Onし、1285℃の拡散炉中にて酸素雰囲気(02の
流量21/Mm)にて30時間拡散を行ない、2.3×
1019/DC7)Nsを得た。
(Prepared solutions (sub) to (C) are common to each example below) Example (1) 3" solution (C) to 677
A mixed solution consisting of 11 was prepared, and the diameter was 43”φ and the thickness was 35
Spin on an N-type wafer with a resistivity of 0μ and a resistivity of 30 to 50Ω.
Turn on, and perform diffusion for 30 hours in an oxygen atmosphere (02 flow rate 21/Mm) in a diffusion furnace at 1285°C.
1019/DC7) Ns was obtained.

実施例 (2) 溶液Q3)3ゴ十溶液(C)6ゴよりなる混合液を作製
し、使用ウエハ、塗着、拡散等実施例の如くしてNs=
6.5×1019/Cld.xj= 27μを得た。
Example (2) A mixed solution consisting of 3 solutions (Q3) and 6 solutions (C) was prepared, and Ns=
6.5×1019/Cld. We obtained xj=27μ.

実施例 (3)溶液(様3mi×溶液(C)9ゴよりな
る混合液を作製し、直径43171Lφ、厚さ350μ
、比抵抗値30〜50Ω儂のN型ウエハに塗着し、12
85℃の拡散炉中にて、酸素20cc/Minと窒素2
1/WLmの混合気雰囲気中で90TRi!tの拡散を
行ないNs=1.3×102で/(V7f.Xj=15
.5μを得た。
Example (3) A mixed solution consisting of 3mi of solution (3mi x 9mi of solution (C)) was prepared, and the diameter was 43171Lφ and the thickness was 350μ.
, coated on an N-type wafer with a specific resistance value of 30 to 50 Ω, and
In a diffusion furnace at 85°C, oxygen 20cc/min and nitrogen 2
90TRi in a mixture atmosphere of 1/WLm! Perform the diffusion of t and get Ns=1.3×102/(V7f.Xj=15
.. 5μ was obtained.

上記実施例(1)〜(3)で得られたウエハの転位密度
を調べると(1)>(2)>(3)の順にあり、特に(
3)のものにあつては1000個/d以下でほとんど無
欠陥とみられた。次にB(7)Si中の四面体半径は0
.88λであるのに対し、Geは1.22λであつてS
iの1.17λに対し前者は小さく、後者は大きい。
When examining the dislocation densities of the wafers obtained in Examples (1) to (3) above, the order is (1)>(2)>(3), especially (
In the case of 3), the number of defects was 1000 pieces/d or less, and it appeared that there were almost no defects. Next, the radius of the tetrahedron in B(7)Si is 0
.. 88λ, while Ge is 1.22λ and S
The former is small and the latter is large compared to 1.17λ of i.

理論的にはGe:B=5.3:1の割合で混合したとき
COmpressiOn(5Expansi0nがバラ
ンスして無歪となるはずであるが、実際にはGeO2(
またはSiO2中)とSi間の偏析係数の問題から拡散
雰囲気や拡散温度(いづれも酸化速度に影響する)によ
つて無欠陥拡散条件が異なる。実施例においても偏析現
象に留意して添加割合をGeO2:1/2B203=3
:1の条件で欠陥が減少した。上述と同様にして深いド
ナー拡散に対しても無欠陥拡散する事ができる。すなわ
ちP2O,とGeO2を夫々エチルアルコールと有機ア
ルカリに溶解しその混合液を用いたスピンオン塗着、お
よび拡散により無欠陥化ができる。たゞしP2O5の気
化を防止するため、気化点(591℃)と融点(569
℃)の中間温度約580℃で加熱溶融後、拡散温度に上
げる。上述の実施例による説明で四面体半径の大小を選
択して無欠陥化拡散ができることは述べた通りであるが
、GeO2:吉B2O3は3:1の例からしても、固溶
体を増加させることによつて欠陥が減少していることも
わかる。
Theoretically, when mixed at a ratio of Ge:B = 5.3:1, CompressiOn(5ExpansiOn) should be balanced and have no distortion, but in reality GeO2(
The defect-free diffusion conditions differ depending on the diffusion atmosphere and the diffusion temperature (both of which affect the oxidation rate) due to the problem of the segregation coefficient between Si (or in SiO2) and Si. In the examples, the addition ratio was set to GeO2:1/2B203=3, taking into consideration the segregation phenomenon.
:Defects decreased under the condition of 1. In the same manner as described above, defect-free diffusion can also be achieved for deep donor diffusion. That is, defect-free formation can be achieved by dissolving P2O and GeO2 in ethyl alcohol and organic alkali, respectively, and spin-on coating and diffusion using a mixed solution thereof. In order to prevent the vaporization of P2O5, the vaporization point (591℃) and melting point (569℃)
After melting by heating at an intermediate temperature of about 580°C (100°C), the temperature is raised to the diffusion temperature. As mentioned in the above example, defect-free diffusion can be achieved by selecting the size of the tetrahedral radius, but even from the 3:1 GeO2:KiB2O3 example, it is possible to increase the solid solution. It can also be seen that the number of defects is reduced.

また、液を混合して沈澱を生ずる場合には別々に塗布し
乾燥させてもよい。
In addition, if the liquids are mixed to form a precipitate, they may be applied separately and dried.

上記別々に塗布するときにはGeO2を先に塗布し、G
eO2を溶解させているHcl,N( CH3)40H
等を分解蒸発せしめたのちB2O3を塗布し、後の液に
よつて影響を受けない様にすることを要する。
When applying the above separately, apply GeO2 first, and
Hcl,N(CH3)40H dissolving eO2
It is necessary to apply B2O3 after decomposing and evaporating the liquid so that it will not be affected by the subsequent liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

図はBSG拡散における拡散を説明するためのものであ
る。
The figure is for explaining diffusion in BSG diffusion.

Claims (1)

【特許請求の範囲】 1 シリコン基板に不純物のIII族またはV族元素をIV
族元素と同時に拡散するにあたり、IV族元素をその酸化
物から添加することを特徴とするシリコン基板に対する
不純物拡散方法。 2 IV族元素がその酸化物で添加されると同時にこの酸
化物をpH1以下の酸溶液またはpH13以上のアルカ
リ溶液に溶解した溶液で添加することを特徴とする特許
請求の範囲第1項記載のシリコン基板に対する不純物拡
散方法。 3 シリコン基板にIII族またはV基元素を結晶の欠陥
少く拡散するために、予め上記元素とIV族元素のガラス
、シリコン間の偏析現像に留意して添加割合を決定する
ことを特徴とする特許請求の範囲第1項記載のシリコン
基板に対する不純物拡散方法。 4 III族またはV族元素ともその酸化物を水溶性有機
溶媒に溶解した溶液となし、前記溶液を基板に重ね塗り
または混液を塗布することを特徴とする特許請求の範囲
第1項記載のシリコン基板に対する不純物拡散方法。 5 III族またはV族元素の酸化物の溶解に適用する水
溶性有機溶媒がアルコールおよびまたはメチルセルソル
ブである特許請求の範囲第4項記載のシリコン基板に対
する不純物拡散方法。
[Claims] 1. Group III or group V elements as impurities are added to the silicon substrate.
A method for diffusing impurities into a silicon substrate, characterized in that a group IV element is added from its oxide when being diffused simultaneously with a group element. 2. The method according to claim 1, characterized in that the group IV element is added in the form of its oxide, and at the same time, this oxide is added in the form of a solution dissolved in an acid solution with a pH of 1 or less or an alkaline solution with a pH of 13 or more. Impurity diffusion method for silicon substrate. 3. A patent characterized in that, in order to diffuse group III or V group elements into a silicon substrate with fewer crystal defects, the addition ratio is determined in advance with consideration to segregation development between the above elements and group IV elements between glass and silicon. A method for diffusing impurities into a silicon substrate according to claim 1. 4. Silicon according to claim 1, characterized in that a group III or V group element or an oxide thereof is dissolved in a water-soluble organic solvent to form a solution, and the solution is coated over a substrate or a mixed solution is applied. Method for diffusing impurities into the substrate. 5. The method for diffusing impurities into a silicon substrate according to claim 4, wherein the water-soluble organic solvent used to dissolve the oxide of a group III or group V element is alcohol and/or methylcellosolve.
JP12877075A 1975-10-25 1975-10-25 Impurity diffusion method for silicon substrate Expired JPS5936418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12877075A JPS5936418B2 (en) 1975-10-25 1975-10-25 Impurity diffusion method for silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12877075A JPS5936418B2 (en) 1975-10-25 1975-10-25 Impurity diffusion method for silicon substrate

Publications (2)

Publication Number Publication Date
JPS5252569A JPS5252569A (en) 1977-04-27
JPS5936418B2 true JPS5936418B2 (en) 1984-09-04

Family

ID=14993030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12877075A Expired JPS5936418B2 (en) 1975-10-25 1975-10-25 Impurity diffusion method for silicon substrate

Country Status (1)

Country Link
JP (1) JPS5936418B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691421A (en) * 1979-12-25 1981-07-24 Toshiba Corp Method for diffusing impurities in semiconductor
JPWO2013015284A1 (en) * 2011-07-25 2015-02-23 日立化成株式会社 Semiconductor substrate and method for manufacturing the same, solar cell element, and solar cell

Also Published As

Publication number Publication date
JPS5252569A (en) 1977-04-27

Similar Documents

Publication Publication Date Title
US4091169A (en) Silicon oxide/silicon nitride mask with improved integrity for semiconductor fabrication
Hsieh et al. Silicon homoepitaxy by rapid thermal processing chemical vapor deposition (RTPCVD)—A review
JPH02162720A (en) Manufacture of semiconductor device
US4088516A (en) Method of manufacturing a semiconductor device
JPS5936418B2 (en) Impurity diffusion method for silicon substrate
US3986905A (en) Process for producing semiconductor devices with uniform junctions
JPH03139836A (en) Method for piling silicon nitride layer on glass substrate
JPS61194826A (en) Manufacture of semiconductor
JP2730156B2 (en) Method for forming polycrystalline silicon film
JPH0526326B2 (en)
JPH01194416A (en) Manufacture of semiconductor device
JPH0196923A (en) Epitaxial growth method
US3713910A (en) Method for manufacturing a semiconductor device
TW201730934A (en) Method for producing semiconductor element and method for producing solar cell
JP3295481B2 (en) Method of forming aluminum dopant distribution
JP2583962B2 (en) Method for manufacturing semiconductor device
Plauger Etching studies of diffusion source boron glass
JPH0793278B2 (en) Diffusion method of phosphorus into polycrystalline silicon film
JPS5856462A (en) Manufacture of semiconductor device
SU669695A1 (en) Solution for producing source of donor impurity diffusion
JPH05152236A (en) Manufacture of semiconductor device
JPH043663B2 (en)
JPH0499029A (en) Forming method for insulating film
JPH07130676A (en) Boron diffusion into semiconductor wafer
JPS6074613A (en) Manufacture of semiconductor device