JPS5935757A - Method and device for controlling flow rate of refrigerant - Google Patents

Method and device for controlling flow rate of refrigerant

Info

Publication number
JPS5935757A
JPS5935757A JP14523582A JP14523582A JPS5935757A JP S5935757 A JPS5935757 A JP S5935757A JP 14523582 A JP14523582 A JP 14523582A JP 14523582 A JP14523582 A JP 14523582A JP S5935757 A JPS5935757 A JP S5935757A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
flow rate
evaporator
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14523582A
Other languages
Japanese (ja)
Inventor
宗実 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP14523582A priority Critical patent/JPS5935757A/en
Publication of JPS5935757A publication Critical patent/JPS5935757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷媒負荷変動、冷媒圧力変動等の外乱に対応し
て絶えず冷媒の流量を調節することを特徴とする冷媒の
流量制御方法並びにその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling the flow rate of a refrigerant, characterized in that the flow rate of the refrigerant is constantly adjusted in response to disturbances such as refrigerant load fluctuations and refrigerant pressure fluctuations.

従来、乾式蒸発器を使用する冷凍装置の冷媒の流量制御
には、主として温度式自動膨張弁が使用されている。こ
の温度式自動膨張弁は蒸発器出口の冷媒ガス温度が蒸発
温度より3〜7 ’cの過熱温度を保ち、この温度を蒸
発出口側に数句けた感温筒で検出し、この温度変化によ
り、感温筒内の封入ガス圧力が変動し、このガス圧力変
化をキャピラリーチューブにより弁本体のダイアフラム
面に導き、グイアフラムが該圧力変化により歪むことに
よシ弁を開閉して蒸発器への冷媒の流量を制御する構成
となっている。、この温度式自動膨張弁では冷媒負荷変
動と蒸発器能力が一致していれば負荷変動に対しても容
量的、時間的に追従し得るはずであるが、実際には蒸発
器における冷媒の蒸発過程、膨張弁の前記機械的(1i
造、圧縮機の容量制御等の種々−致し得ない要素があり
、完全なものを求め得ないのが現状で、温度式目1li
IJ膨張弁の機械的構造の制約の/ヒめ・設定値に対し
て±30%以内の能力しか制御できないので、蒸発器の
どのような負荷変動にも対応すると云うことが困り、缶
となる。また膨張弁11(I後の高圧と低圧の圧力差が
冷媒液の流−1が、に影響し、膨張弁の制御範囲が前記
の如< fitll限されることによって、i+ilJ
御範囲を越えて冷媒液の供給量の過不足が生じる欠点が
ある。この結果、冷媒供給量の過剰は圧縮機への液パツ
クを生じ、故障の原因ともなり・不足送液は冷凍能力の
不足を招き、所要動力を必要以上に消費して、省エネル
ギーの要請にも合致しない。このため高温、中温及び低
温用の各膨張弁を冷凍サイクルに並列に挿入し、外界の
温度に合わせて人為的に各膨張弁をA整して能力範囲の
制限に対処しているが、特に船舶においては航行海域の
海水温度により、また陸上設備においては夏季、冬季等
で各膨張弁の調亙を行なわねばならず、人為的調整では
il制御し得なくな一つている。更にダイアフラムの歪
み率によって弁を開閉するので、制御量が波動状となり
、青果物等の温度制御で必要とされる±0.25〜0.
5℃の如き厳しい温度精度を得るための正確な制御が不
可能で、またグイヤフラムの破損及び永久歪みが生じ、
能力制御が正常に作動しない等の種々欠点を存するもの
である。
Conventionally, thermostatic automatic expansion valves have been mainly used to control the flow rate of refrigerant in refrigeration systems that use dry evaporators. This temperature-type automatic expansion valve maintains the refrigerant gas temperature at the evaporator outlet at a superheat temperature of 3 to 7'C above the evaporation temperature, and detects this temperature with a thermosensor installed several times on the evaporation outlet side. , the pressure of the gas sealed inside the temperature-sensing cylinder fluctuates, and this gas pressure change is guided to the diaphragm surface of the valve body through the capillary tube, and the guiaphragm is distorted by the pressure change, opening and closing the valve, thereby supplying refrigerant to the evaporator. It is configured to control the flow rate of This temperature-type automatic expansion valve should be able to follow load fluctuations in terms of capacity and time if the refrigerant load fluctuations and evaporator capacity match, but in reality, refrigerant evaporation in the evaporator process, the mechanical (1i
Currently, there are various factors such as construction, compressor capacity control, etc. that cannot be achieved, and it is impossible to obtain a perfect one.
Due to the constraints of the mechanical structure of the IJ expansion valve, the capacity can only be controlled within ±30% of the set value, so it is difficult to respond to any load fluctuations on the evaporator, and it becomes a problem. . In addition, the pressure difference between the high pressure and the low pressure after the expansion valve 11 (I) affects the flow of the refrigerant liquid, and the control range of the expansion valve is limited as described above.
There is a drawback that the amount of refrigerant liquid supplied may be too large or too small beyond the control range. As a result, an excess supply of refrigerant will cause a liquid buildup in the compressor, which may cause a malfunction. An insufficient supply of refrigerant will lead to a lack of refrigeration capacity, consuming more power than necessary, and meeting the requirements for energy conservation. Doesn't match. For this reason, expansion valves for high temperature, medium temperature, and low temperature are inserted in parallel in the refrigeration cycle, and each expansion valve is artificially adjusted to A according to the outside temperature to cope with the limited capacity range. In ships, each expansion valve must be adjusted depending on the temperature of the seawater in the sea area in which it is sailing, and in land equipment, in summer and winter, etc., and IL control cannot be achieved by manual adjustment. Furthermore, since the valve is opened and closed depending on the strain rate of the diaphragm, the control amount becomes wave-like, and the range of ±0.25 to 0.25 is required for temperature control of fruits and vegetables.
Accurate control to obtain strict temperature accuracy such as 5℃ is impossible, and damage and permanent distortion of the Guiaflame occur.
There are various drawbacks such as capacity control not working properly.

本発明においては、蒸発温度と吸入過熱温度とを測温体
で直接検出し、該検出値を電子回路に入力し、電気信号
に変換し、その差を演算し、その出力と温度調節計の設
定値が同等となるよう流量制御弁を作動せしめ、冷媒の
流量全制御調節するから、常に負荷変動、圧力変動等の
外乱に対応して容量的、時間的に且つ自動的に追従し得
るもので、従来の如く人為的調整をも必要としないもの
である。
In the present invention, the evaporation temperature and the suction superheat temperature are directly detected with a temperature measuring element, the detected values are input into an electronic circuit, converted into an electric signal, the difference is calculated, and the output and temperature controller are The flow rate control valve is operated so that the set values are the same, and the refrigerant flow rate is fully controlled, so it can always respond to disturbances such as load fluctuations and pressure fluctuations automatically in terms of capacity and time. This does not require any manual adjustment as in the past.

なお、この場合の流量制御弁(電気式、空気式のいずれ
であってもよい)は電子式温度自動膨張弁として働くも
のである。
In this case, the flow rate control valve (which may be either electric or pneumatic) functions as an electronic thermostatic expansion valve.

以下に図面について本発明の実施例を詳細に説明する。Embodiments of the invention will be described in detail below with reference to the drawings.

■は蒸発器で、2は熱電対等より成る測温体で、蒸発器
10入口側に付設して冷媒液の蒸発温度を測定するもの
である。3は前記同様の測温体で、蒸発器1の出口に付
設して冷媒ガスの圧縮器への吸入過熱温度を測定するも
のである。4は変換器で、測温体2,3の熱電対等の抵
抗変化を電気信号として取シ出すもので、測温体2゜3
の端子を夫々側々の変換器4a、4bに結線したもので
ある。5は変換器4a#4bからの出力電気信号の差を
演算する演算器で、公知の加減算器またはコンピユーク
ー等の演算機能を利用するものである。6はPID(比
例・積分・微分)制御動作を有する公知の電子式温度調
節計で、演算器5よりの蒸発温度さ吸入過熱温度との差
の出力を入力端子に結線するものである。
2 is an evaporator, and 2 is a temperature measuring element such as a thermocouple, which is attached to the inlet side of the evaporator 10 to measure the evaporation temperature of the refrigerant liquid. Reference numeral 3 denotes a temperature measuring element similar to the above, which is attached to the outlet of the evaporator 1 to measure the superheating temperature of the refrigerant gas sucked into the compressor. Reference numeral 4 denotes a converter, which extracts the resistance change of the thermocouples, etc. of the temperature sensors 2 and 3 as an electrical signal.
The terminals are connected to converters 4a and 4b on each side, respectively. Reference numeral 5 denotes an arithmetic unit for calculating the difference between the output electric signals from the converters 4a and 4b, which utilizes the arithmetic function of a known adder/subtractor or computer. Reference numeral 6 denotes a known electronic temperature controller having PID (proportional, integral, differential) control operation, and the output of the difference between the evaporation temperature and the suction superheating temperature from the computing unit 5 is connected to an input terminal.

7け流量制御弁で、蒸発器1の入口に何役するもので、
電気式または空気式のいずれであってもよく、その駆動
回路8に温度調節計6の操作出力端子を結線したもので
ある。
This is a 7 piece flow control valve that serves a purpose at the inlet of evaporator 1.
It may be either an electric type or a pneumatic type, and the operation output terminal of the temperature controller 6 is connected to the drive circuit 8.

ここで第2図は蒸発器1内での抵抗損失の少ない場合の
適用例を示すもので、第3図は蒸発器1内での抵抗損失
の大きい場合の適用例を示すもので、@3図では蒸発器
l出口の冷媒ガス温度が蒸発温度に比べて第2図の実施
例ト同様の過熱温度(6〜8℃)を得るために蒸発温度
を測定する測温体2を蒸発器1の出口と入口の中間部分
に付設したものである。
Here, FIG. 2 shows an example of application when the resistance loss inside the evaporator 1 is small, and FIG. 3 shows an example of application when the resistance loss inside the evaporator 1 is large. In the figure, the refrigerant gas temperature at the outlet of the evaporator 1 is compared with the evaporation temperature, and in order to obtain a superheating temperature (6 to 8°C) similar to the embodiment shown in FIG. It is attached to the middle part between the outlet and the inlet.

本発明を使用するに当っては、測温体2で蒸発温度を、
測温体3で吸入過熱温度を絶えず直接検出し、夫々の検
出値を変換器4a、4bに入力して電気信号に変換させ
て、夫々の出力を加減    □算器またはコンピュー
ターの演算機能を利用した演算器5に入力してその差を
演算せしめ、その値を電気信号として取り出し、温度調
節計6で予め設定した値と合致するまで温度調節計6よ
り操作信号を冷媒流量制御弁7の駆桂νJ回路8に与え
、冷媒流量を調節制御するから、過熱温度差を常に測定
・演算するため人為的な調整を加えなくても自動的に負
荷変動、圧力変動等の外乱に対応して容量:的、時間的
にも追従できるものである。
When using the present invention, the temperature measuring element 2 measures the evaporation temperature.
The temperature measuring element 3 directly detects the suction overheating temperature, and each detected value is input to the converters 4a and 4b to convert it into an electric signal, and each output is added or subtracted. □Use the calculation function of a calculator or computer. The difference is calculated by the calculation unit 5, which takes out the value as an electric signal, and the operation signal from the temperature controller 6 is used to drive the refrigerant flow rate control valve 7 until the value matches the value set in advance by the temperature controller 6. Since the refrigerant flow rate is adjusted and controlled by the Katsura νJ circuit 8, the superheating temperature difference is constantly measured and calculated, so the capacity can be adjusted automatically in response to disturbances such as load fluctuations and pressure fluctuations without any manual adjustment. : It can be followed both in terms of target and time.

以上により従来の温度式臼!1lIJ1膨張弁の性能の
基準に対する本発明の特徴は (1間に何ら、機械的なものを介在ぜしめj゛、電子式
であるから、感温応答速度が非常に早いこと・ (2〕電子式71旨度調節計では比例動作帯が自由に変
えることができ、流量制御弁の能力(レンジアビリティ
)は3〜100憾の能力範囲で1七す御が可能で、比例
動作帯が広いこと、 (3)従来のものはガス圧で作動するダイアフラムの破
損及び永久歪みが生じ、能力制御111が正常に作動し
ない場合があるが、本発明の流量制御弁は直動式または
空気圧式で強力に作動するので機械的安定性が高いこと
、 (4)実験によれば+10 ’c〜−70′cの範囲で
完全に作動し、使用温度範囲が広いこと、(5)本発明
は電子式′またはコンピューターの演算機能を利用して
作動させるので、従来より数段上の精度を出すことがで
き、過熱温度が使用温度範囲内ではソ一定であること、 等にあるものである。
With the above, the conventional temperature type mortar! The characteristics of the present invention with respect to the performance standards of the IJ1 expansion valve are that (1) there is no mechanical component interposed between the valves, and since it is an electronic type, the temperature-sensing response speed is very fast; In the formula 71 taste controller, the proportional operation band can be changed freely, and the capacity (range ability) of the flow rate control valve can be controlled within the capacity range of 3 to 100, and the proportional operation band is wide. (3) In the conventional type, the diaphragm operated by gas pressure may be damaged or permanently deformed, and the capacity control 111 may not operate normally, but the flow control valve of the present invention is a direct acting type or pneumatic type and is powerful. (4) According to experiments, it operates perfectly in the range of +10'C to -70'C, and has a wide operating temperature range; (5) The present invention is an electronic Since it is operated using the arithmetic function of a computer, it is possible to achieve accuracy several steps higher than conventional methods, and the superheating temperature remains constant within the operating temperature range.

【図面の簡単な説明】[Brief explanation of drawings]

添付図回は本発明実施の一例を示すものであり、第1図
は本発明装置の配線を示すブロック線図、第2図は蒸発
器内での抵抗損失が少ない場合の適用例を示す概略説明
図、第3図は蒸発器内での抵抗損失が大きい場合の適用
例を示す概略説明図である。 1・・・蒸発器、2,3・・・測温体、4.4a、4b
・・・変換器、5・・・演算器、6・・・温度調節計、
7・・・流量制御弁、8・・・駆動回路。 出願人 日新興業株式会社
The attached figures show an example of implementing the present invention, and Fig. 1 is a block diagram showing the wiring of the device of the present invention, and Fig. 2 is a schematic diagram showing an example of application when resistance loss in the evaporator is small. The explanatory diagram, FIG. 3, is a schematic explanatory diagram showing an example of application when the resistance loss within the evaporator is large. 1... Evaporator, 2, 3... Temperature measuring element, 4.4a, 4b
...Converter, 5...Arithmetic unit, 6...Temperature controller,
7...Flow control valve, 8...Drive circuit. Applicant: Nisshin Gyogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、冷媒の蒸発温度と吸入過熱温度とを直接検出し、該
6検出値を電気信号に変換せしめて演算し・温度調節計
の設定値と比較して流量制御弁を作動することを特徴と
する冷媒の流量制御方法。 2、蒸発器の入口と出口とに夫々蒸発温度と吸入過熱温
度を測定する測温体を設け、夫々の測ユ体と、測温体で
の検出値を電気信号に変換する変換器とを結線し、各変
換器と演算器とを、また該演算器の出力と温度調節計と
を、更に該温度調節計の操作出力と蒸発器の入口に設備
した流量制御弁とを夫々結線し、該演算器の出力値と温
度調節計の設定値とが同等になるように流は制御弁を作
動せしめるようにしたことを特徴とする冷媒の流計測1
ii11装置。
[Claims] 1. Directly detect the evaporation temperature and suction superheating temperature of the refrigerant, convert the detected values into electrical signals, calculate them, and compare them with the set value of the temperature controller to control the flow rate control valve. A refrigerant flow rate control method characterized in that the refrigerant flow rate control method operates. 2. Temperature measuring elements are installed at the inlet and outlet of the evaporator to measure the evaporation temperature and suction superheating temperature, respectively, and a converter is installed in each temperature measuring element and converts the detected value from the temperature measuring element into an electrical signal. connecting each converter to a computing unit, the output of the computing unit to a temperature controller, and the operating output of the temperature controller to a flow control valve installed at the inlet of the evaporator; Refrigerant flow measurement 1 characterized in that a flow control valve is operated so that the output value of the computing unit and the set value of the temperature controller are equal.
ii11 device.
JP14523582A 1982-08-20 1982-08-20 Method and device for controlling flow rate of refrigerant Pending JPS5935757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14523582A JPS5935757A (en) 1982-08-20 1982-08-20 Method and device for controlling flow rate of refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14523582A JPS5935757A (en) 1982-08-20 1982-08-20 Method and device for controlling flow rate of refrigerant

Publications (1)

Publication Number Publication Date
JPS5935757A true JPS5935757A (en) 1984-02-27

Family

ID=15380456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14523582A Pending JPS5935757A (en) 1982-08-20 1982-08-20 Method and device for controlling flow rate of refrigerant

Country Status (1)

Country Link
JP (1) JPS5935757A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644568A (en) * 1979-09-19 1981-04-23 Matsushita Electric Ind Co Ltd Refrigerant flow rate controller
JPS5649866A (en) * 1979-10-01 1981-05-06 Matsushita Electric Ind Co Ltd Controller for air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644568A (en) * 1979-09-19 1981-04-23 Matsushita Electric Ind Co Ltd Refrigerant flow rate controller
JPS5649866A (en) * 1979-10-01 1981-05-06 Matsushita Electric Ind Co Ltd Controller for air conditioner

Similar Documents

Publication Publication Date Title
KR890001327B1 (en) Integrated control of output and surge for a dynamic compressor control system
US3577743A (en) Control for refrigeration systems
US3834617A (en) Pid controller for heating, ventilating and air conditioning systems
US7290402B1 (en) Expansion valve control system and method and refrigeration unit employing the same
JPH01501652A (en) How to analyze and control the cooling process
JPS5935757A (en) Method and device for controlling flow rate of refrigerant
CN114911286B (en) PID control coefficient determining method, device, equipment and medium
JPS6176853A (en) Control system of operation of refrigerator
US5699267A (en) Hot gas expander power recovery and control
SU987193A1 (en) Method of controlling centrifugal compressor
JPS5994013A (en) Electrical signal-pneumatic signal transducer
JPS61184367A (en) Refrigerant flow controller
JP2646917B2 (en) Refrigeration equipment
JPS58106363A (en) Controller for flow rate of refrigerant
JPS587318Y2 (en) pressure sensing device
JPH0239708B2 (en)
SU1566247A1 (en) Method of checking hermetic sealing of articles walls
JPH0723794B2 (en) Air conditioner
JPS6298168A (en) Refrigerant flow controller for refrigerating air conditioner
JPS6058383B2 (en) Refrigerant flow control device
JPS6189454A (en) Flow controller for refrigerant
Pang et al. Building pressure control in VAV system with relief air fan
JPS5977524A (en) Method and device for controlling temperature in refrigerating chamber
JPS6358065A (en) Refrigerator
JPS63286663A (en) Refrigerant flow controller