JPS6176853A - Control system of operation of refrigerator - Google Patents
Control system of operation of refrigeratorInfo
- Publication number
- JPS6176853A JPS6176853A JP19599384A JP19599384A JPS6176853A JP S6176853 A JPS6176853 A JP S6176853A JP 19599384 A JP19599384 A JP 19599384A JP 19599384 A JP19599384 A JP 19599384A JP S6176853 A JPS6176853 A JP S6176853A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- valve
- pressure
- control
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Temperature (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
この発明は、例えば水を冷却媒体として半導体素子の冷
却を行う水冷式冷却装置等、被冷却体の精密な温度制御
が要求される冷凍装置を対象として温度制御と容量制御
を行う冷凍装置の運転制御方式に関する。
[61来技術とその問題点]
1記した半導体の冷却装置では、半導体素子の使用温度
が厳しく規定されていることから、半導体素子の冷却を
行う冷凍装置は熱負荷の変動に対応して冷却媒体である
冷却水の精密な温度制御が要求されろ。
次ぎにかかる冷凍装置の従来における運転制御方式のい
くつかを第2図、第3図、第4図について説明する。ま
ず、第2図シより−モスタット制御方弐を示すものであ
り、図において1は圧縮機、2は凝1Iil器、3は液
電磁弁、4は膨張弁、5は水を被冷却体とする蒸発器で
あり、かかる回路溝底での冷凍サイクルにより蒸発器5
を循環して流れる冷却水を冷却する。かかる回路におい
て、液電磁弁3に対応して蒸発器5の冷却水出口温度を
感知して作動するサーモスタット6が投1されている。
かかる制721方式はよく知られており、冷却水の出口
4変を瞳出し、熱′!!荷の変動により冷却水の温度が
あらかじめ設定された基準温度から変化した際に、サー
モスタット6の動作により液itffi弁3を開閉制御
し、これにより例えば低圧圧力スイッチを介して圧[8
11をオン、オフ制御する。
しかしてこのサーモスタット制御方式は、サーモスタッ
トのヒステリヒス特性により、冷却水の水温変動幅が太
き(精密な温度制御が得られない。
このためにこの制御方式を採用する場合には、冷却水の
循環系に冷凍装置で冷却される容量の大きいアキュムレ
ータを設備して水温変動を防止する等の手段を講じてい
るが、設備が大形になる等の欠点がある。
この対策として、第3図に示すf発圧力調整弁制御方式
、あるいは第4図のホットガスバイパス制御方式が従来
より知られている。このうち、第3図の蒸発圧力調整弁
!1IWj方式は、蒸発器5と圧m8!lの吸い込み側
との間の管路に温度式1発圧力調整弁7を介装し、該弁
7を冷却水検出温度を人力制御信号とする電子式の温度
コントローラ8により制御する方式である。なお前記温
度コントローラ8はPI動作あるいはPrD動作によっ
て制御動作する。かかる制御方式によれば、冷却水の精
密な&度制御71(±0.5deg以下)が行えるが、
反fit前記の蒸発圧力調整弁と圧縮機との組合せでは
、冷凍機の容量制御は高々40〜50%程度が限度でそ
れ以下の容量制御が行えず、その使用用途力1限られる
欠点がある。
これに対し第4図のM旧方式は、圧縮機1の吐き出し側
と蒸発i?I5との間を結ぶバイパス管路に温度コント
ローラ8によっ°C開閉制御される容量mW弁としての
ホットガスバイパス弁9を介装し、冷n1水温度を検出
してPIないしPiD動作でホットガスバイパス弁9を
開閉pjliづ゛るようにしたものである。かかる制御
方式によれば、精密な温度制御(±0.5deg以下)
に加えて、熱負荷が減少して冷却水の温度が低下すれば
ホ7)ガスパイパフ弁9が開弁して冷凍機lの吐き出し
ホットガスの一部を蒸発器5にバイパスさせて模擬負荷
を与え1.:れにより冷凍能力と負荷とをバランスさせ
るので広範囲な冷凍機の容量制?all (100〜θ
%)が可能となる。しかしながら一方では、軽負荷時で
も冷/J!l1a1は全負荷時と同様な運転を行うため
に、消費電力の面では省エネルギ効果が得られず、運転
効率が低くなる難点がある。This invention is aimed at operating a refrigeration system that performs temperature control and capacity control for refrigeration systems that require precise temperature control of objects to be cooled, such as water-cooled refrigeration systems that cool semiconductor elements using water as a cooling medium. Regarding control method. [61 Prior Art and its Problems] In the semiconductor cooling device mentioned in 1, the operating temperature of the semiconductor element is strictly regulated, so the refrigeration equipment that cools the semiconductor element has to adjust the cooling in response to fluctuations in heat load. Precise temperature control of the cooling water medium is required. Next, some conventional operation control methods for such a refrigeration system will be explained with reference to FIGS. 2, 3, and 4. First, from Figure 2, the mostat control method is shown. In the figure, 1 is a compressor, 2 is a condenser, 3 is a liquid electromagnetic valve, 4 is an expansion valve, and 5 is water as an object to be cooled. The evaporator 5 is
The cooling water that circulates through the system is cooled. In this circuit, a thermostat 6 is provided corresponding to the liquid electromagnetic valve 3 and is activated by sensing the cooling water outlet temperature of the evaporator 5. This control system 721 is well known, and it exposes the four exits of the cooling water and removes the heat! ! When the temperature of the cooling water changes from the preset reference temperature due to load fluctuations, the thermostat 6 operates to control the opening and closing of the liquid itffi valve 3, thereby increasing the pressure [8] via a low pressure switch, for example.
11 is turned on and off. However, with the lever thermostat control method, due to the hysteresis characteristic of the thermostat, the cooling water temperature fluctuation range is wide (precise temperature control cannot be obtained. Therefore, when adopting this control method, the cooling water circulation Measures have been taken to prevent water temperature fluctuations by installing a large-capacity accumulator that is cooled by a refrigeration system in the system, but this has drawbacks such as requiring large equipment. The f generating pressure regulating valve control system shown in FIG. 1 or the hot gas bypass control system shown in FIG. In this system, a temperature-type single pressure regulating valve 7 is interposed in the pipeline between the suction side of the cooling water and the valve 7, and the valve 7 is controlled by an electronic temperature controller 8 that uses the detected temperature of the cooling water as a manual control signal. Note that the temperature controller 8 performs control operation by PI operation or PrD operation.According to such a control method, precise & degree control 71 (±0.5 deg or less) of the cooling water can be performed.
With the above-mentioned combination of the evaporation pressure regulating valve and compressor, the capacity of the refrigerator can only be controlled by 40 to 50%, and it is not possible to control the capacity below that, which has the drawback of limiting its usage. . On the other hand, in the M old system shown in FIG. 4, the discharge side of the compressor 1 and the evaporator i? A hot gas bypass valve 9 as a capacity mW valve whose opening/closing is controlled by °C by a temperature controller 8 is installed in the bypass line connecting with I5, and the hot gas bypass valve 9 is installed as a capacity mW valve that is controlled to open and close by °C by a temperature controller 8. The gas bypass valve 9 is configured to open and close according to the timing. According to this control method, precise temperature control (±0.5deg or less)
In addition, if the heat load decreases and the temperature of the cooling water decreases, e7) the gas pipe puff valve 9 opens to bypass a portion of the hot gas discharged from the refrigerator l to the evaporator 5 to create a simulated load. Giving 1. :This balances the refrigerating capacity and load, so it is possible to use a wide range of refrigerating machine capacities. all (100~θ
%) becomes possible. However, on the other hand, even under light load, the cold/J! Since l1a1 operates in the same way as when it is at full load, it has the disadvantage that no energy saving effect can be obtained in terms of power consumption, and that the operating efficiency is low.
この発明は上記の点にかんがみなされたものであり、前
記した従来方式の欠点を除去し、精密な温度制御と広範
囲な容量制御を行いつつ、さらに軽負荷運転時に充分な
省エネルギ効果が得られるようにした実用面での育苗な
冷凍装置の運転制御方式を提供することを目的とする。This invention was developed in consideration of the above points, and eliminates the drawbacks of the conventional method described above, performs precise temperature control and wide range capacity control, and furthermore provides sufficient energy saving effect during light load operation. The object of the present invention is to provide a practical operation control method for a refrigeration system for growing seedlings.
上記目的を達成するために、この発明は冷凍回路におけ
る蒸発器と圧縮機吸い込み側との間に被冷却体の検出温
度を入力信号として動作する温度弐草発圧力調整弁を介
装するとともに、圧mmの吐き出し側と蒸発器入り口と
の間を結ぶバイパス管路に圧lllI機の吸入圧力を入
力信号として所定の設定圧力で開弁動作するホットガス
バイパス弁を介装し、前記蒸発圧力調整弁と方式バイパ
ス弁との併用により熱負荷の変動に対応して被冷却体の
温度w制御と冷凍機の容量制御を行うようにしだもので
ある。In order to achieve the above object, the present invention interposes a temperature/pressure regulating valve that operates using the detected temperature of the object to be cooled as an input signal between the evaporator and the compressor suction side in the refrigeration circuit, and A hot gas bypass valve that opens at a predetermined set pressure using the suction pressure of the pressure IllI machine as an input signal is installed in the bypass line connecting the outlet side of the pressure mm and the evaporator inlet to adjust the evaporation pressure. By using a valve and a system bypass valve in combination, the temperature w of the object to be cooled and the capacity of the refrigerator are controlled in response to changes in heat load.
【発明の実施例1
第1図はこの発明の実施例の冷凍回路図を示すものであ
り、先記した各図と同じ符号は同一部材を示す、第1図
において、この発明により冷凍回路における蒸発器5と
圧縮Illの吸い込み側との間には電子式温度コントロ
ーラ8によって制御動作する温度式算発圧力調整弁7が
介装されているとともに、さらに圧[411の吐き出し
側と蒸発器5の入り口側との間を結んで配管されたバイ
パス管路10にホットガスバイパス弁11が介装されて
いる。酸ホットガスバイパス弁11は常時は閉じてお
□す、圧縮機lの吸入圧力を入力信号として該圧力が
図示されてない低圧スイッチの動作圧力よりも僅か大き
め定めた所定の設定圧力以下に低下すると開弁動作する
ように設定されている。
」−記の構成によれば、まず温度コントローラ8と蒸発
圧力調整弁7との制御糸により、蒸発器5に!?ける冷
却水の出口温度を検出して蒸発圧力調整弁7の弁開度を
加、滅し、これにより冷却水の精密な温度制御が行われ
る。すなわち熱負荷が減少して冷却水の温度が低下し始
めると、温度コントローラ8の温度センサ8aがこの温
度変化を感知して蒸発圧力調整弁7の弁開度を下げ、冷
凍WA1の冷凍能力を熱負荷とバランスさせるように低
減させる。一方、この能力低減に伴って圧m1llの吸
入圧力が低下する。そして吸入圧力が先記したホットガ
スバイパス弁11の設定圧力まで低下すると、ホットガ
スバイパス弁1175<開弁動作して圧1i1111か
ら吐き出すホットガスの一部をバイパス管路10を通じ
て蒸発器5にバイパスさせて蒸発器5に模擬負荷を与え
、この状態で冷凍能力と冷凍負荷とをバランスさせるよ
うにする。ここで本発明者が行った実験によれば、この
制御方式によりほぼ100〜O%までの容量制御が可能
であることが確認されている。またこの容量制御を行っ
ている状態では、蒸発圧力調整弁7の動作により圧縮機
の能力を落としているので、第4図の制御方式と比べて
軽負荷時の消費電力が軽減され、その分だけ省エネルギ
効果が得られることになる。
なお図示実施例は液冷式冷却装置への適用に付いて述べ
たが、用途はこれに限られるものではなく、空気調和機
、ショーケース等に対しても実施通用できることは勿論
である。
【発明の効果】
以上述べたようにこの発明によれば、冷凍回路における
蒸発器と圧縮11iUjLい込み側との間に被冷却体の
)食出温度を人力信号として動作する温度式蒸発圧力調
整弁を介装するとともに、圧縮機の吐き出し側と蒸発器
入り口との間を結ぶバイパス管路に圧1iIIlaの吸
入圧力を入力信号として所定の設定圧力で開弁動作する
ホ7)ガスバイパス弁を介装し、前記蒸発圧力調整弁と
ホ7)ガスバイパス弁の併用により熱負荷の変動に対応
して被冷却体の温度制御と冷凍機の容量制御を行うよう
にしたことにより、被冷却体の高精度な温度制御と広範
囲な容101を行いつつ、しかも軽負荷時には充分に高
い省エネルギ効果も得られる等の実用面での優れた効果
を奏することができる。Embodiment 1 of the Invention FIG. 1 shows a refrigeration circuit diagram according to an embodiment of the present invention, and the same reference numerals as in each of the previous figures indicate the same members. A temperature-based calculation pressure regulating valve 7 controlled and operated by an electronic temperature controller 8 is interposed between the evaporator 5 and the suction side of the compression Ill, and further between the pressure [411 discharge side and the evaporator 5 A hot gas bypass valve 11 is interposed in a bypass pipe line 10 connected to the inlet side of the hot gas bypass pipe 10 . The acid hot gas bypass valve 11 is normally closed.
□The suction pressure of the compressor 1 is used as an input signal, and the valve is set to open when the pressure falls below a predetermined set pressure, which is slightly larger than the operating pressure of a low pressure switch (not shown). According to the configuration described in "-", first, the control thread between the temperature controller 8 and the evaporation pressure regulating valve 7 is used to control the evaporator 5. ? The outlet temperature of the cooling water is detected and the opening degree of the evaporation pressure regulating valve 7 is increased or decreased, thereby achieving precise temperature control of the cooling water. In other words, when the heat load decreases and the temperature of the cooling water starts to drop, the temperature sensor 8a of the temperature controller 8 senses this temperature change and lowers the opening degree of the evaporation pressure regulating valve 7, thereby increasing the refrigeration capacity of the refrigerator WA1. Reduce to balance with heat load. On the other hand, with this capacity reduction, the suction pressure of pressure m1ll decreases. When the suction pressure drops to the set pressure of the hot gas bypass valve 11 described above, the hot gas bypass valve 1175 is opened and a portion of the hot gas discharged from the pressure 1i1111 is bypassed to the evaporator 5 through the bypass pipe 10. A simulated load is applied to the evaporator 5, and in this state, the refrigerating capacity and the refrigerating load are balanced. According to experiments conducted by the present inventor, it has been confirmed that capacity control of approximately 100% to 0% is possible using this control method. In addition, when this capacity control is being performed, the compressor capacity is reduced by the operation of the evaporation pressure regulating valve 7, so power consumption at light loads is reduced compared to the control method shown in Fig. 4. This will result in an energy saving effect. Although the illustrated embodiment has been described with reference to its application to a liquid cooling type cooling device, the application is not limited thereto, and it goes without saying that it can also be applied to air conditioners, showcases, etc. Effects of the Invention As described above, according to the present invention, temperature-based evaporation pressure adjustment is provided between the evaporator and compression side in the refrigeration circuit, which operates using the output temperature of the object to be cooled as a human signal. E7) A gas bypass valve is installed in the bypass line connecting the discharge side of the compressor and the evaporator inlet, and the valve is opened at a predetermined set pressure using the suction pressure of pressure 1iIIla as an input signal. By using a combination of the evaporation pressure adjustment valve and the gas bypass valve, the temperature of the object to be cooled and the capacity of the refrigerator are controlled in response to changes in heat load. While performing highly accurate temperature control and wide range capacity 101, it is also possible to achieve excellent effects in practical terms, such as obtaining a sufficiently high energy saving effect under light loads.
第1図はこの発明の実施例の運転制御方式に係る冷凍装
置の冷凍回路図、第2図、第3図および第4図はそれぞ
れ従来における運転制御方式を示す冷凍装置の冷凍回路
図である0図において、x:圧ms、2:1tlfl器
、4;膨張弁、5:蒸発器、7:温度式蒸発圧力調整弁
、8:温度コントローラ、IO=バイパス管路、11;
ホットガスバイパス弁。
第1図
第2図FIG. 1 is a refrigeration circuit diagram of a refrigeration system according to an operation control system according to an embodiment of the present invention, and FIGS. 2, 3, and 4 are refrigeration circuit diagrams of a refrigeration system showing conventional operation control systems, respectively. In Figure 0, x: pressure ms, 2: 1tlfl device, 4: expansion valve, 5: evaporator, 7: temperature type evaporation pressure adjustment valve, 8: temperature controller, IO = bypass pipe, 11;
Hot gas bypass valve. Figure 1 Figure 2
Claims (1)
に被冷却体の検出温度を入力信号として動作する温度式
蒸発圧力調整弁を介装するとともに、圧縮機の吐き出し
側と蒸発器入り口との間を結ぶバイパス管路に圧縮機の
吸入圧力を入力信号として所定の設定圧力で開弁動作す
るホットガスバイパス弁を介装し、前記蒸発圧力調整弁
とホットガスバイパス弁との併用により熱負荷の変動に
対応して被冷却体の温度制御と冷凍機の容量制御を行う
ことを特徴とする冷凍装置の運転制御方式。1) A temperature-type evaporation pressure regulating valve that operates using the detected temperature of the object to be cooled as an input signal is interposed between the evaporator and the compressor suction side in the refrigeration circuit, and a temperature-type evaporation pressure regulating valve is installed between the compressor discharge side and the evaporator inlet. A hot gas bypass valve that opens at a predetermined set pressure using the compressor's suction pressure as an input signal is installed in the bypass line connecting the An operation control method for a refrigeration system characterized by controlling the temperature of an object to be cooled and the capacity of a refrigerator in response to load fluctuations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19599384A JPS6176853A (en) | 1984-09-19 | 1984-09-19 | Control system of operation of refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19599384A JPS6176853A (en) | 1984-09-19 | 1984-09-19 | Control system of operation of refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6176853A true JPS6176853A (en) | 1986-04-19 |
JPH0534578B2 JPH0534578B2 (en) | 1993-05-24 |
Family
ID=16350432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19599384A Granted JPS6176853A (en) | 1984-09-19 | 1984-09-19 | Control system of operation of refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6176853A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243674A (en) * | 1987-03-30 | 1988-10-11 | 三洋電機株式会社 | Cooling system |
JPS6479548A (en) * | 1987-09-18 | 1989-03-24 | Mitsubishi Electric Corp | Heat pump device |
JPS6479549A (en) * | 1987-09-18 | 1989-03-24 | Mitsubishi Electric Corp | Heat pump device |
JPH01131971U (en) * | 1988-03-01 | 1989-09-07 | ||
JPH01263461A (en) * | 1988-04-12 | 1989-10-19 | Mitsubishi Electric Corp | Heat pump device |
JPH02140244U (en) * | 1989-04-27 | 1990-11-22 | ||
JPH0545027A (en) * | 1991-08-08 | 1993-02-23 | Daikin Ind Ltd | Operation control device of freezer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4721976U (en) * | 1971-03-16 | 1972-11-11 | ||
JPS49126149A (en) * | 1973-03-16 | 1974-12-03 | ||
JPS58208546A (en) * | 1982-05-31 | 1983-12-05 | カルソニックカンセイ株式会社 | Air-cooling device for automobile |
-
1984
- 1984-09-19 JP JP19599384A patent/JPS6176853A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4721976U (en) * | 1971-03-16 | 1972-11-11 | ||
JPS49126149A (en) * | 1973-03-16 | 1974-12-03 | ||
JPS58208546A (en) * | 1982-05-31 | 1983-12-05 | カルソニックカンセイ株式会社 | Air-cooling device for automobile |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243674A (en) * | 1987-03-30 | 1988-10-11 | 三洋電機株式会社 | Cooling system |
JPS6479548A (en) * | 1987-09-18 | 1989-03-24 | Mitsubishi Electric Corp | Heat pump device |
JPS6479549A (en) * | 1987-09-18 | 1989-03-24 | Mitsubishi Electric Corp | Heat pump device |
JPH01131971U (en) * | 1988-03-01 | 1989-09-07 | ||
JPH01263461A (en) * | 1988-04-12 | 1989-10-19 | Mitsubishi Electric Corp | Heat pump device |
JPH02140244U (en) * | 1989-04-27 | 1990-11-22 | ||
JPH0545027A (en) * | 1991-08-08 | 1993-02-23 | Daikin Ind Ltd | Operation control device of freezer |
Also Published As
Publication number | Publication date |
---|---|
JPH0534578B2 (en) | 1993-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6032472A (en) | Motor cooling in a refrigeration system | |
US4498310A (en) | Heat pump system | |
JPH11193967A (en) | Refrigerating cycle | |
US5443112A (en) | Water flow and heat exchange control system and method between heat source and water reservoir | |
JPS6176853A (en) | Control system of operation of refrigerator | |
DK150251B (en) | CONTROL DEVICE FOR KAELE PLANTS | |
JP3021987B2 (en) | Refrigeration equipment | |
JP2501811B2 (en) | Refrigeration equipment | |
JPS6021721Y2 (en) | Absorption chiller control device | |
JPS60108633A (en) | Air conditioner with many separate indoor units | |
JPS6383556A (en) | Refrigeration cycle | |
JPS63129286A (en) | Refrigerator | |
JPS5837456A (en) | Heating apparatus | |
JPH0833242B2 (en) | Refrigeration equipment | |
JPS6396452A (en) | Cooling capacity control type cooling unit | |
JP3649853B2 (en) | Air conditioning system | |
JPS60111851A (en) | Heat pump type refrigerator | |
JPS62106261A (en) | Refrigerator | |
JPS5844303B2 (en) | How to control absorption chiller operation | |
JPH0221499B2 (en) | ||
JPH087314Y2 (en) | refrigerator | |
JPS6060444A (en) | Heating control of air conditioner and air conditioner applied thereto | |
JPS5823544B2 (en) | Refrigerant control device | |
JPS5825952B2 (en) | Heat recovery refrigeration equipment | |
JPS5844184B2 (en) | Refrigeration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |