JPS5935692A - Composite membrane for electrolysis - Google Patents

Composite membrane for electrolysis

Info

Publication number
JPS5935692A
JPS5935692A JP14468682A JP14468682A JPS5935692A JP S5935692 A JPS5935692 A JP S5935692A JP 14468682 A JP14468682 A JP 14468682A JP 14468682 A JP14468682 A JP 14468682A JP S5935692 A JPS5935692 A JP S5935692A
Authority
JP
Japan
Prior art keywords
membrane
exchange membrane
ion exchange
cathode
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14468682A
Other languages
Japanese (ja)
Inventor
Hiroshi Goto
弘 後藤
Masaharu Kashiwase
柏瀬 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP14468682A priority Critical patent/JPS5935692A/en
Publication of JPS5935692A publication Critical patent/JPS5935692A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a titled composite membrane which permits production of alkali hydroxide with a low voltage, is inexpensive and is easy to manufacture, by the constitution wherein rough surface films having liquid permeability and foam desorbability are superposed via a material to be dissolved by electrolysis on an ion exchange membrane. CONSTITUTION:Carbon powder of about <=50mu grain size is dispersed in water by a nonionic surfactant and asbestos fibers of about <=0.1mu diameter and about <=2mm. length are mixed therewith. The mixing ratio of both is controlled adequately at about 2-20 times the carbon powder based on the weight of the asbestos. A dispersed emulsion of a heat resistant and alkali resistant binder of PE, etc., having about <=1mu grain size is added to the liquid mixture, whereby the raw liquid for forming porous layers is prepd. Thin layered Japanese paper 3 which is of about 50mu thickness and is made resistant to water by viscose is held horizontally, and the above-mentioned raw liquid is supplied thereon to form about 50-150mu layer as a material to be dissolved by electolysis. The paper is heated and calcined at about 160-180 deg.C after drying and dehydration, whereby a rough surface film 4 is obtd. Such films 4 are superposed via the paper 3 on a cation exchange membrane 2, whereby a composite membrane 1 is obtd.

Description

【発明の詳細な説明】 本発明は、水酸化アルカリを低7に圧で有利に製造しう
るようにした電解用複合膜に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite membrane for electrolysis that allows alkali hydroxide to be advantageously produced at low pressures.

塩化アルカリ、特に、塩化ナトリウム水溶液のイオン交
換膜電解においては、一般に陽極室と陰極室を陽イオン
交換膜によって区画し、陽イオン交換膜の陽極面に陽極
を、又陰極面に陰極を対面させ、陽極室に塩化ナトリウ
ム水溶液を、陰極室に水酸化ナトリウム水溶液を満たし
、陽極液の塩化ナトリウム濃度を°200〜220f/
/に、陰極液の水酸化ナトリウム濃度を25〜35重量
%に保持するよう塩水および純水を供給して電解し、陽
極室において塩素ガスが、陰極室において水酸化ナトリ
ウムと水素ガスがそれぞれ生成するようにしている。
In ion exchange membrane electrolysis of alkali chloride, especially sodium chloride aqueous solutions, an anode chamber and a cathode chamber are generally separated by a cation exchange membrane, and the anode faces the anode surface of the cation exchange membrane, and the cathode faces the cathode surface. , the anode chamber is filled with a sodium chloride aqueous solution and the cathode chamber is filled with a sodium hydroxide aqueous solution, and the sodium chloride concentration of the anolyte is adjusted to 200 to 220 f/°.
/, electrolysis is performed by supplying salt water and pure water to maintain the sodium hydroxide concentration in the catholyte at 25 to 35% by weight, producing chlorine gas in the anode chamber and sodium hydroxide and hydrogen gas in the cathode chamber. I try to do that.

近年における水沫技術の進歩は著しく、特に省エネルギ
一対策としての電力コストの低減に有効な手段、たとえ
ば電極形状の適正化、極間距離の短縮、陰極の水素過電
圧の低減、イオン交換膜の固有抵抗の減少および粗面化
による水素気泡の付着防止等が開発され実施されている
が、本発明は、これらの手段中、電解生成ガス気泡のイ
オン交換膜への付着防止による遮蔽効果の除去に係わる
ものである。
The progress of water droplet technology in recent years has been remarkable, and effective means for reducing power costs as an energy saving measure, such as optimizing the electrode shape, shortening the distance between electrodes, reducing the hydrogen overvoltage of the cathode, and the unique characteristics of ion exchange membranes, have been developed in recent years. Measures to prevent hydrogen bubbles from adhering to the ion exchange membrane by reducing resistance and roughening the surface have been developed and implemented. It is related.

1977年10月に開催された米国電気化学会において
、電解によシ生成する水素ガスの気泡がイオン交換膜面
に付着しやすく、気泡の付着を防止することが摺電圧の
低減化に有効であることが、DuPont社のベルツイ
ン氏により公表されて以来、陰極液の強制循環、界面活
性剤の添加等により、気泡の付着な防止する手段が提案
されている。又最近、陽極および陰極をイオン交換膜に
接近させ、極間距離を出来るだけ小さくして溶液抵抗を
極少化して電M電圧を低減すべく、陰極又は陽極の少く
とも一方金、イオン交換膜の表面に密着させる構造の電
解槽が提案されたが、陽極の膜面密着が有効であるのに
対して、陰極側は水素ガスが微細な気泡となってイオン
交換膜に付着し、その部分への電流が遮蔽されるため、
陰極を膜に接近させると却って電圧」−昇をまねくこと
になり、陰極を膜に密着させると極間での電流集中を生
じて電圧が上昇するばかりでなく、イオン交換膜の性能
を劣化させる不利な結果を招くことになる。又イオン交
換膜に密着させた陽極は、陰極側から逆泳動してくるア
ルカリによってコーディング材質が脆化し、その陽極電
位を高め摺電圧を増加させる現象をも招来する。
At the American Electrochemical Society meeting held in October 1977, it was reported that hydrogen gas bubbles generated by electrolysis tend to adhere to the ion exchange membrane surface, and that preventing bubbles from adhering is effective in reducing sliding voltage. Ever since this was published by Mr. Beltsin of DuPont, measures have been proposed to prevent the adhesion of air bubbles by forced circulation of the catholyte, addition of surfactants, etc. Recently, in order to bring the anode and cathode close to the ion exchange membrane and minimize the distance between the electrodes to minimize solution resistance and reduce the electric voltage, at least one of the cathode or anode is made of gold or ion exchange membrane. An electrolytic cell with a structure in which the anode is in close contact with the membrane surface has been proposed, but while it is effective to have the anode in close contact with the membrane surface, on the cathode side, hydrogen gas forms fine bubbles and adheres to the ion exchange membrane, causing damage to the ion exchange membrane. Since the current of
If the cathode is brought close to the membrane, the voltage will actually increase, and if the cathode is brought into close contact with the membrane, current concentration will occur between the electrodes, not only increasing the voltage but also degrading the performance of the ion exchange membrane. This will lead to unfavorable results. In addition, when an anode is placed in close contact with an ion exchange membrane, the coating material becomes brittle due to alkali migrating back from the cathode side, causing a phenomenon in which the anode potential increases and the sliding voltage increases.

か\る現象を防止し、摺電圧を低減させるため、自然界
における植物の葉面のじゅう毛が水滴を撥水させ水玉に
する原理を応用して、第1に、イオン交換膜自体の表面
を熱プレス、研磨、乾式ブラスト、エツチング、グロー
放電等の方法により粗面化する方法(特開昭55−11
0786.57−39187等)が、第2に、電極とし
て作用しない金属酸化物、金属窒化物等の無機質の粉末
、粒子からなるガスおよび液透過性の多孔質層を、イオ
ン交換膜の表面にテフロンバインダー等の結合剤と共に
加熱圧着して形成させる方法(特開昭56−75583
.56−112487等)が、又、第3に、陰極とイオ
ン交換膜との間に、水素気泡がイオン交換膜に付着する
のを防止する目的をもった多孔性フィルノ・を、脱着可
能で可撓性をもった低水素過電圧の多孔性金網に重ねて
、イオン交換膜に密着させる構造体(特開昭56−38
486)が提案されている。
In order to prevent this phenomenon and reduce the sliding voltage, we applied the principle in nature in which the villi on the leaves of plants repel water droplets and turn them into water beads. A method of roughening the surface by heat pressing, polishing, dry blasting, etching, glow discharge, etc.
0786.57-39187 etc.), secondly, a gas and liquid permeable porous layer made of inorganic powders and particles such as metal oxides and metal nitrides that do not act as electrodes is placed on the surface of the ion exchange membrane. A method of forming by heating and pressing together with a binder such as a Teflon binder (Japanese Unexamined Patent Publication No. 56-75583
.. 56-112487, etc.), and thirdly, a porous filtration film between the cathode and the ion exchange membrane, which is designed to prevent hydrogen bubbles from adhering to the ion exchange membrane, is removable. A structure that is layered on a flexible porous wire mesh with low hydrogen overvoltage and adhered to the ion exchange membrane (Japanese Patent Laid-Open No. 56-38
486) has been proposed.

これらの方法は、原理的には気泡の膜面付着を防止し摺
電圧の減少を可能ならしめるものとじて優れている。し
かし前記第1の方法のうち、例えば、サンドペーパー等
により研磨して粗面にし尋イオン交換膜は、確かに水素
気泡が付着しにくく電圧の低減を可能とするが、イオン
交換膜を傷つける結果、膜の百1久性を損ない膜寿命が
かなり短かくなるという欠点があるっ又、第2の方法l
(、既存のイオン交換膜の広い膜面全体に多孔質層全均
一な厚みに加熱圧着するのに高度の技術と高価な機械設
備を快するため、加]、コストが、電圧低減によりイ↓
tられるメリットの大半を消費12、又イオン交換膜の
物性を損ない、その寿命を短縮する恐れがあるばかりで
なく、電解槽装着時に行う前処理による膜の湿潤膨張、
電解槽内の諸条件による収縮、膨張等の寸法、厚みの変
化に因り多孔質物質が剥離し易く、その取り扱いに厳格
な注量が要求されるという欠点がある。
These methods are excellent in principle because they prevent air bubbles from adhering to the film surface and enable a reduction in sliding voltage. However, in the first method, for example, polishing the ion exchange membrane with sandpaper or the like to make it rough makes it difficult for hydrogen bubbles to adhere to it and makes it possible to reduce the voltage, but it results in damage to the ion exchange membrane. However, the second method has the disadvantage of impairing the durability of the membrane and significantly shortening its lifespan.
(In order to eliminate the need for advanced technology and expensive mechanical equipment to heat and press the porous layer to a uniform thickness over the entire wide membrane surface of existing ion exchange membranes, the cost is reduced by reducing the voltage.)
Not only does it consume most of the benefits that can be obtained12, but it also impairs the physical properties of the ion exchange membrane and shortens its lifespan.
Porous materials tend to peel off due to changes in size and thickness due to contraction, expansion, etc. due to various conditions inside the electrolytic cell, and there are disadvantages in that strict pouring is required for handling.

このほかにも、剥離防止を目的として金属酸化物のかわ
りに、テフロン粒子によって多孔質層を形成させる手段
が提案されている(特開昭57=60081 )が、特
殊かつ高度な加工技術を要するため、コストが高くなり
、依然として経済的に有利とは貰い難い。更に又、第3
の方法に関しても、特開昭57−40081に開示され
ているような親水性処理したポリフロンシール、テフロ
ン織布などの形態のフィルムは、実質的にその本の自体
の膜抵抗が大きく、且又水素気泡の離脱性が充分でない
こと、および可撓性の低水素過電圧の金網と剛性陰極板
の電気的接続を圧着により行なうため、実用規模におい
ては均等圧着が難かしく、接触抵抗による電圧損を生じ
て容易に槽電圧低減を得ることができず、効果的な槽電
圧低減を得るためには、電解槽組立上高度な精度を必要
とする。
In addition to this, a method has been proposed in which a porous layer is formed using Teflon particles instead of metal oxides for the purpose of preventing peeling (Japanese Patent Application Laid-Open No. 1983-60081), but this requires special and advanced processing technology. Therefore, the cost is high, and it is still difficult to find it economically advantageous. Furthermore, the third
Regarding the method of JP-A No. 57-40081, films in the form of hydrophilically treated polyflon seals, Teflon woven fabrics, etc. have a substantially high membrane resistance and In addition, the ability of hydrogen bubbles to separate is insufficient, and since the electrical connection between the flexible low hydrogen overvoltage wire mesh and the rigid cathode plate is made by crimping, uniform crimping is difficult on a practical scale, resulting in voltage loss due to contact resistance. Therefore, it is not possible to easily reduce the cell voltage, and in order to obtain an effective cell voltage reduction, a high degree of precision is required in assembling the electrolytic cell.

本発明者らは、上記の検討をもとに廉価な材料と簡便な
技術により実用規模に適用出来る手段を追求して種々の
研究を重ねた結果、たとえば、ビスコース加工により耐
水性をもたせた薄層和紙の上に、黒鉛粉末、石綿繊維、
高分子結合剤等の配合物の薄層を、抄紙法を適用して均
一に形成させた後、乾燥焼成する比較的単純容易な方法
によって得られる粗面膜を、イオン交換膜に市ねて湿潤
させて複合膜とし、電極面に加圧接着した場合の密着性
、ガス気泡の離脱性、電解条件下での安定性が良好であ
り、この複合膜を用いて塙化すl−’Jウム等を電解す
ると、検電jFを低減させることができることを見い出
すに至った。
Based on the above considerations, the present inventors have conducted various studies in pursuit of means that can be applied on a practical scale using inexpensive materials and simple techniques. As a result, for example, the inventors have found that water resistance can be imparted through viscose processing. Graphite powder, asbestos fiber,
After uniformly forming a thin layer of a compound such as a polymeric binder using a papermaking method, a rough membrane obtained by a relatively simple and easy method of drying and baking is applied to an ion exchange membrane and wetted. This composite membrane has good adhesion when pressure-adhered to the electrode surface, gas bubble release properties, and stability under electrolytic conditions. It has been found that electrolyzing the voltage jF can be reduced.

即ち本発明は、陽イオン交換膜の陰極又は/および陽極
面側に、電解により溶解する物質を介17て、液透過性
及び気泡離脱性を有する粗面膜を一体的に重ね合わせた
電解用複合膜であり、以下、添付図面に基いて説明する
That is, the present invention provides an electrolytic composite in which a rough membrane having liquid permeability and bubble separation property is integrally laminated on the cathode and/or anode side of a cation exchange membrane via a substance that is dissolved by electrolysis. It is a membrane, and will be explained below based on the attached drawings.

第1図は、本発明に係る電解用複合膜の一例を示す断面
図である。
FIG. 1 is a sectional view showing an example of a composite membrane for electrolysis according to the present invention.

1は、少なくとも陽極及び陰極に而する部分が陽イオン
交換膜2で形成され、その両面に、電解により溶解する
物質3を介しで、後述する方法で形成される液透過性及
び気泡離脱性を有する111面膜4を重ね合わせてなる
複合膜であり、′電解により溶解する物質5としては、
たとえば50μ程度に抄紙され、かつ制水性を付与され
た和紙、あるいは織布された絹等を使用するのがよく、
粗面膜4は、黒鉛末、酸化チタン末、石綿等の混合物を
積層してなるものを使用するのがよい。
1, at least the anode and cathode portions are formed of a cation exchange membrane 2, and both surfaces thereof have liquid permeability and bubble separation properties formed by a method described later through a substance 3 that is dissolved by electrolysis. It is a composite membrane formed by overlapping 111-sided membranes 4, and the substance 5 that dissolves by electrolysis is
For example, it is best to use Japanese paper that is made to a thickness of about 50μ and has water-repellent properties, or woven silk.
The rough surface film 4 is preferably formed by laminating a mixture of graphite powder, titanium oxide powder, asbestos, and the like.

第2図は、上記複合膜を塩化アルカリ電解用の電解槽に
装着した状態を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing the composite membrane installed in an electrolytic cell for alkali chloride electrolysis.

5は、鉄、ステンレス、ニッケル等の導電性金属からな
る複数の多孔かつ中空管状の陰極で、該陰極5は、電解
槽本体の1つの内部側壁からこれと相対する内部側壁に
伸び、陰極1と電解槽本体が一体化されている。6は、
給電板7の一ヒにフン素樹脂等の耐食シート8を積層し
てなる電解槽の底板で、該底板6の隣り合う2つの陰極
5.5の中間位置には後述する導電棒が貫通可能な複数
の円孔9が穿設されている。10は、下部にねじ11が
刻設され、ねじ11のやや上部に突部12が水平に形成
された銅製等の円柱状の導即、棒で、該導電棒10の突
部12より−1一方の外周面には、ブタンあるいはチタ
ン合金等からなる被覆r?;413が被覆されている。
Reference numeral 5 denotes a plurality of porous and hollow tubular cathodes made of conductive metal such as iron, stainless steel, or nickel. and the electrolytic cell body are integrated. 6 is
The bottom plate of an electrolytic cell is made by laminating a corrosion-resistant sheet 8 made of fluorine resin or the like on one of the power supply plates 7, and a conductive rod (described later) can pass through the bottom plate 6 at an intermediate position between two adjacent cathodes 5.5. A plurality of circular holes 9 are bored. 10 is a cylindrical conductive rod made of copper or the like, with a screw 11 carved in the lower part and a protrusion 12 horizontally formed slightly above the screw 11; One outer peripheral surface is coated with butane, titanium alloy, etc. ;413 is coated.

この導電棒10は、突部12の下面が底板6に当接する
ように、前記円孔9に上方から挿入され、ねじ11にナ
ツト14を螺合させて、底板6に垂直に固定されでいる
。15は、前記複合膜1を上方が開りする袋状に成型し
、かつ下部に削口13突部12と同径をなす通孔が穿設
された成型体で、該成型体15は、前記突部1−2の外
縁に歌合されている。16及び17は、成型体15の突
部12の外縁近傍を挾持する1対のシール材で、−に方
のシール材16fJへ陽極室で発生する塩素に対する耐
久性を有するフッ素系樹脂を用いることが望ま(7く、
下方のシール材17は、通常のゴノ、製とすることが経
済的にftTま17い。18tJ云突部12の上面及び
被伊層13の下方外周に溶接により固着されたフランジ
で、19は、成型体15の保護のために、上方のシール
利1Aとフランジ18の間に固定されているフッ素系樹
脂からなるグロブフタ−である。20は、前記導電棒1
0の上部に接続された網状の拡張可能な陽極で、この陽
極20及び前記陰極5は、前記成型体15の両面に密着
し、極間W1離が実質的に成型体15の厚さと等しくな
っている。
The conductive rod 10 is inserted into the circular hole 9 from above so that the lower surface of the protrusion 12 contacts the bottom plate 6, and is fixed vertically to the bottom plate 6 by screwing the nut 14 into the screw 11. . Reference numeral 15 denotes a molded body in which the composite membrane 1 is molded into a bag shape that opens at the top, and a through hole having the same diameter as the cutout 13 protrusion 12 is bored in the lower part, and the molded body 15 includes: It is joined to the outer edge of the protrusion 1-2. 16 and 17 are a pair of sealing materials that sandwich the vicinity of the outer edge of the protrusion 12 of the molded body 15, and the sealing material 16fJ on the - side is made of fluororesin that has durability against chlorine generated in the anode chamber. is desired (7ku,
It is economical to make the lower sealing material 17 made of ordinary rubber. 18tJ is a flange fixed by welding to the upper surface of the protrusion 12 and the lower outer periphery of the covered layer 13, and 19 is fixed between the upper seal 1A and the flange 18 in order to protect the molded body 15. This is a glob lid made of fluororesin. 20 is the conductive rod 1
This anode 20 and the cathode 5 are in close contact with both surfaces of the molded body 15, and the distance W1 between the electrodes is substantially equal to the thickness of the molded body 15. ing.

本例においては、陽極及び陰極と複合膜を密着させだが
、本発明はこれに限定されるものではなく、陽イオン交
換膜の一方面、特に、陰極面にのみ粗面膜を形成し、そ
の面のみを電極と密着さ亡るようにしてもよい。また、
′電解槽の構造も上記例に限定されるものではなく、フ
ィルタープレス型の電解槽としてもよい。なお、−に起
倒において粗面膜中に存在する和紙等は、電解により溶
解して消滅する。
In this example, the anode and cathode are brought into close contact with the composite membrane, but the present invention is not limited thereto. Alternatively, only the electrode may be brought into close contact with the electrode. Also,
'The structure of the electrolytic cell is not limited to the above example, and may be a filter press type electrolytic cell. It should be noted that the Japanese paper and the like present in the rough surface film when raised and lowered in the negative direction are dissolved and disappeared by electrolysis.

次に、本発明における粗面膜の形成方法について説明す
る。気泡に対する反発性をもつ表面の形成には、植物の
葉面における突起状面と、空間を保有する磁針状複合面
に相当する材料を使用することが有効である。本発明で
は、前者に相当するものとして、炭素粉末、酸化チタン
粉末等ヲ、後者に相高するものとして、石綿繊維、カー
フ+イン繊維等を使用することができるが、炭素粉末及
び石綿繊維を例にとって粗面膜形状につき説明する。
Next, a method for forming a rough surface film in the present invention will be explained. In order to form a surface that is repellent to air bubbles, it is effective to use a material that corresponds to the protruding surfaces on the leaf surfaces of plants and the magnetic needle-like composite surfaces that hold spaces. In the present invention, carbon powder, titanium oxide powder, etc. can be used as equivalent to the former, and asbestos fiber, calf+in fiber, etc. can be used as complementary to the latter. As an example, the rough surface film shape will be explained.

炭素粉末としては、粒径5071以下の黒鉛末、活性炭
、泥状炭等を使用1〜、石綿は、繊維の直(吊が0.1
p以下である白石綿をミルにかけて充分開綿し、長さ2
門以Fに篩分けしたものを使用に先立つ−[10〜30
チの水酸化す) IJウム水溶液で煮沸処理し、溶解成
分を溶離した後、水酸化ナトリウム水溶液から沈降分離
17、純水で洗浄し、繊維がpH8〜10の水に懸濁し
た状態とし−Cおく。
As carbon powder, use graphite powder, activated carbon, peat charcoal, etc. with a particle size of 5071 or less.
White asbestos with p or less is thoroughly opened by milling, and the length is 2.
Before use, sieve to 10 to 30%
After boiling in an aqueous IJ solution to elute the dissolved components, the fibers are separated by sedimentation from an aqueous sodium hydroxide solution (17) and washed with pure water to suspend the fibers in water with a pH of 8 to 10. Put C.

これに、前112黒鉛粉末の石綿型缶の2〜20倍量ケ
、予め非イオン界面活性剤とともに攪拌して充分水に分
散させた1−で前記石綿繊維と混合し、緩やかに攪拌す
ることにより、a遊する石綿繊維の絡みの中に黒鉛粉が
吸着されて均一に混合分散する。かかる黒鉛粉と石綿繊
維の含有Iは、1〜1゜f / 100 f  112
0が望ましく、強い攪拌、長時間攪拌は、繊維と黒鉛粉
の混合物を塊状に造粒するので避けなければならない。
To this, mix 2 to 20 times the amount of asbestos-type can of 112 graphite powder, which was previously stirred with a nonionic surfactant and sufficiently dispersed in water, with the asbestos fibers, and gently stir. As a result, graphite powder is adsorbed into the tangles of loose asbestos fibers and is uniformly mixed and dispersed. The content I of graphite powder and asbestos fiber is 1 to 1°f/100f 112
A value of 0 is desirable, and strong stirring or long-time stirring must be avoided since it will granulate the mixture of fibers and graphite powder into lumps.

かくして得た混合液を15℃以下のもとで、粒径1 p
以下のポリエチレン、ポリテトラフルオロエチレン等の
耐熱、耐アルカリ性結合剤の分散乳液を添加して、均一
混合に必要最小限の攪拌を行って粗面多孔層形成原料液
とする。これを、厚約50pに抄紙され、かつビスコー
ス加工によって耐水性とした和紙を平坦に載置したスク
リーンに、厚さ20 p〜200/J、好ましくは50
p〜150μとなる様に供給し、p水して粗面多孔質層
を形成させた上、乾燥脱水後、160〜180℃に加熱
焼成する。
The thus obtained mixture was heated to a particle size of 1 p at a temperature below 15°C.
The following dispersion emulsion of a heat-resistant and alkali-resistant binder such as polyethylene or polytetrafluoroethylene is added, and stirring is performed to the minimum necessary for uniform mixing to obtain a raw material solution for forming a rough porous layer. This is placed on a screen on which washi paper made to a thickness of about 50p and made water-resistant by viscose processing is placed flat, and the thickness is 20p to 200/J, preferably 50p.
The material is supplied so as to have a p-to-150 μm, p-watered to form a rough-surfaced porous layer, dried and dehydrated, and then heated and fired at 160-180°C.

かくして得られる粗面膜は、充分な可撓性を有し、和紙
とその上に形成された粗面多孔層は容易に剥離せず、さ
らに、適度のガス、液透過性、親水性をも備えている。
The rough surface membrane thus obtained has sufficient flexibility, the Japanese paper and the rough surface porous layer formed thereon do not peel off easily, and furthermore, it has appropriate gas and liquid permeability and hydrophilicity. ing.

本発明においては、この多孔性粗面膜を、イオン交換膜
電解槽におけるイオン交換膜の陰極面又は/および陽極
面に重ね合わせ、多孔性電極材よりなるエキスバンド陽
極又は/およびエキスバンド陰極とイオン交換膜との間
に挿入密着して使用され、あるいは、フィルタープレス
型電解槽の陽極及び陰極間に挿入して使用される。本発
明に使用されるイオン交換膜としては、カルボン酸基、
スルフォン酸基又はスルフォンアミド基等を有するパー
フルオロカーボン系のイオン交換脱法アルカリ電解に一
般に用いられている特殊な表面処理加工をしていない膜
のいずれをも使用出来る。陽極としては、チタン利から
なるエキスバンドメトル、パンチングメタル、メノシコ
等の多孔性基材の表面を、白金族金属やその酸化物等で
被覆してなるいわゆる寸法安定性電極(DSE)が、又
陰極としては、鉄、ニッケル、スデンレス等の材料から
なる陽極と同様の多孔性見料又はこれらのイ゛そ而にR
hXCo等の特殊メッキ、或いeまニッケル、酸化ニッ
ケルの溶射被覆等の処理を施して水素過′電圧を切り下
げたものが使用される。
In the present invention, this porous rough membrane is superimposed on the cathode surface and/or anode surface of the ion exchange membrane in an ion exchange membrane electrolytic cell, and the expanded band anode and/or expanded band cathode made of the porous electrode material and the ion It is used by being inserted in close contact with an exchange membrane, or it is used by being inserted between an anode and a cathode of a filter press type electrolytic cell. The ion exchange membrane used in the present invention includes carboxylic acid groups,
Any perfluorocarbon-based membrane having a sulfonic acid group or sulfonamide group, which is generally used in ion-exchange removal alkaline electrolysis, and which has not undergone any special surface treatment can be used. As an anode, a so-called dimensionally stable electrode (DSE) is used, which is made by coating the surface of a porous base material made of titanium such as expanded metal, punched metal, or menoshiko with platinum group metal or its oxide. As a cathode, a porous material similar to the anode made of materials such as iron, nickel, and stainless steel, or a porous material made of materials such as iron, nickel, stainless steel, etc.
The hydrogen overvoltage is reduced by special plating such as hXCo, or by thermal spray coating with nickel or nickel oxide.

このように組立てられた電解槽の都、解電圧は、その変
動幅が0〜3mVと極めC小さく安定しており、かつ従
来の一般的現職であった陰極とイオン交換膜のギャップ
を21騙、下にし7tと?Xに現れる電圧上昇が消滅し
て、極間短縮による溶液抵抗の減少、ガス気泡のイオン
交Jf%膜漉齢効果が解消されて、顕著な屯JE低減を
得ろCとができる。さらに、直接イオン交換膜面に炉鏝
質又は有機質の粉体を加熱圧着したり、リンドペ・−パ
ー、リントプラスト等によシ膜面に傷を与乏、イ)よう
な脱本来の特性、特に高価な膜の寿命に影響を及はすよ
うな障害を与えず、原料、加工の容易性から低コストで
粗面膜を形成できるという特徴を有する。
The electrolytic voltage of the electrolytic cell assembled in this way is extremely small and stable, with a fluctuation range of 0 to 3 mV. , 7t below? The voltage increase appearing at X disappears, the solution resistance decreases due to the shortening of the electrode gap, and the ion exchange Jf% film aging effect of gas bubbles is eliminated, resulting in a significant reduction in JE. In addition, heat-pressing furnace trowel or organic powder directly onto the ion-exchange membrane surface, or using lindoper, lintoplast, etc., to damage the membrane surface; In particular, it has the characteristic that a rough surface film can be formed at low cost because of the ease of raw materials and processing without causing any trouble that would affect the life of an expensive film.

しかして、イオン交換膜面と陰極室又は陽極室電解液間
や水酸化アルカリ又はアルカリ塩水溶液の濃度勾配が゛
、粗面膜の介在によって大きくなり、その結果として電
流効率が低下することが懸念され、事実、粗面膜の形成
とイオン交換膜との密着度が適正を欠く時には、水酸化
アルカリ生成の電流効率を低下させる現象を生じるが、
粗面膜の厚さ、多孔度、通気度、親水性を適正に選択す
ることにより、これらの現象を極めて微少に押さえるこ
とができる。
Therefore, there is concern that the concentration gradient between the ion exchange membrane surface and the electrolyte in the cathode compartment or anode compartment or in the alkali hydroxide or alkaline salt aqueous solution becomes large due to the presence of the rough membrane, resulting in a decrease in current efficiency. In fact, when the formation of a rough membrane and the degree of adhesion between it and the ion exchange membrane are inadequate, a phenomenon occurs that reduces the current efficiency of alkali hydroxide production.
By appropriately selecting the thickness, porosity, air permeability, and hydrophilicity of the roughened membrane, these phenomena can be suppressed to an extremely small level.

又、イオン交換膜に電極を密着させるいわゆるゼロギャ
ップ方式においては、電極のエツジ、突起物等が膜を傷
つけることを避けるため、通常表面を7ラツト加工する
か、エツジのない可撓性のメツシュを、剛性給゛峨体に
接合して使用するのが一般的であるが、本発明において
は多孔性粗面膜がイオン交換膜面を保護する役割シをす
るので、必ずしもこれらの考慮を払う必要はない。又、
ニッケル溶射等の手段によって活性化した低水素過電圧
陰極の表面は、イオン交換膜に圧着するとヒンホールを
生じしめる微小の突起を有するため、低水素過軍IJ:
特性ケゼロギャップに活かし雌いが、本発明の複合膜は
、イオン交換膜を傷つけることなく、ゼロギャップを可
能とし、より低い電解電圧を保持できる特徴を有する。
In addition, in the so-called zero-gap method in which the electrode is closely attached to the ion exchange membrane, in order to prevent the membrane from being damaged by the edges or protrusions of the electrode, the surface is usually processed with 7-Rats or a flexible mesh without edges is used. is generally used by bonding it to a rigid filler, but in the present invention, since the porous rough membrane plays the role of protecting the ion exchange membrane surface, it is not necessary to take these considerations into consideration. There isn't. or,
The surface of the low hydrogen overvoltage cathode activated by means such as nickel spraying has minute protrusions that create hinholes when pressed against the ion exchange membrane, so the surface of the low hydrogen overvoltage cathode has a low hydrogen overvoltage IJ:
Taking advantage of the characteristic zero gap, the composite membrane of the present invention has the feature of enabling a zero gap without damaging the ion exchange membrane and being able to maintain a lower electrolytic voltage.

なお、本発明の複合膜は、粗面膜を陰極側、又は陰極と
陽極の両側に挿入4″ることか出来るが、ll′!i−
に有効なのは陰極(1111である、は」〕詳述L7た
通り、本発明は、陽イオン交換膜の陰極又は/および陽
極面側に、液透過性及び気泡離脱性を有する粗面膜を一
体的に取ね合わせて複合膜を形成し7てあり、電解で生
成する水素等が膜面に付着しないため、気泡による遮蔽
効果が解消され、気泡による電圧上昇が生ずることがな
いう又、陽イオン交換膜自体を傷つけないため、膜の寿
命が短かくなることがない。さらに、複合膜の形成にあ
たってQよ、高度な技術を蜆さず、低コストで製造する
ことができる。しかも、粗面膜により高価な陽イオン交
換膜が保護されるため、複合膜と電極との間に、陽イオ
ン交換膜が傷つくことを防止するだめのプロテクター金
介在させないようにすることもできる。
In addition, in the composite membrane of the present invention, it is possible to insert the rough surface membrane on the cathode side or on both sides of the cathode and the anode, but ll'!i-
The cathode (1111) is effective for the cathode (1111).As described in detail L7, the present invention integrates a rough membrane having liquid permeability and bubble separation property on the cathode and/or anode side of the cation exchange membrane. A composite membrane is formed in conjunction with 7, and since hydrogen generated by electrolysis does not adhere to the membrane surface, the shielding effect caused by bubbles is eliminated, and a voltage increase due to bubbles does not occur. Since the exchange membrane itself is not damaged, the life of the membrane will not be shortened.Furthermore, the composite membrane can be manufactured at low cost without using advanced technology. Since the expensive cation exchange membrane is protected, it is also possible to avoid interposing a protector gold between the composite membrane and the electrode to prevent the cation exchange membrane from being damaged.

実施例1 カナダ規格6クラス6Dのクリソタイル石綿繊維1fを
10%濃度の水酸化す) IJウム水溶液100m1に
浸漬し、90℃、1時間加熱後、放冷沈降して上澄苛性
液を分離した。引き続き純水21を加えて充分開綿した
石綿繊維を浮遊懸濁状態とし、僅かの沈降成分を傾瀉に
よって分離し、静1沈降して上液を除いた後、同じ操作
を繰返して、浮遊性単繊維0.94Fを含むpH9の石
綿含有水100m1 を用意したう 次いで粒径30μ以下の黒鉛粉末3fを微量の非イオン
界面活性剤を添加した純水100tnlに力]1えて攪
拌して水中に分散させた。次いで、前H己石綿分散水を
添加攪拌して、黒鉛と石綿の分散液を調整した後、平均
粒径0,2〜0.4 pの1uLlフツイヒ工チレン樹
脂60重歇チを含むディスパージョン3ml1を添加混
合して、多孔質層形成原液約200m1lを調整した。
Example 1 1f of chrysotile asbestos fibers of Canadian standard 6 class 6D were immersed in 100 ml of IJum aqueous solution (hydroxidized at a concentration of 10%), heated at 90°C for 1 hour, allowed to cool and settle, and a supernatant caustic solution was separated. . Subsequently, pure water 21 is added to make the fully opened asbestos fibers into a floating suspension state, a small amount of sedimented components are separated by decantation, and the supernatant is removed by sedimentation. Prepare 100ml of asbestos-containing water with a pH of 9 containing single fibers of 0.94F, then add 3f of graphite powder with a particle size of 30μ or less to 100tnl of pure water to which a trace amount of nonionic surfactant has been added]1, stir, and add to the water. Dispersed. Next, asbestos dispersion water was added and stirred to prepare a dispersion of graphite and asbestos, and then a dispersion containing 60 grams of 1 μL plastic tyrene resin with an average particle size of 0.2 to 0.4 p was prepared. 3 ml was added and mixed to prepare about 200 ml of porous layer forming stock solution.

一方、縦10an1横25αの抄紙スクリーンを有する
気ためすき〃用、気すき桶Iのスクリーンの上に、スク
リーン外周のフランジ寸法に裁断した厚さ約50 pの
ビスコース加工により耐水性をもたせた薄層和紙を敷い
て気すき桶Iをセットし、和紙をスクリーン上に固定し
た後、純水をスクリーン上5 cm ′!!で醸った。
On the other hand, on the screen of Air Suki Oke I, which has a papermaking screen with a length of 10an and a width of 25α, a viscose coating with a thickness of about 50p cut to the flange size around the screen's outer periphery was applied to make it water resistant. Spread a thin layer of Japanese paper, set the Air Suki Oke I, and after fixing the Japanese paper on the screen, pour pure water 5 cm above the screen! ! Brewed with

これに、上記多孔質層形成原液を注入し、紙抄きの要領
により掻き混ぜて均一分散させた上、水切りをして、和
紙−Lに黒鉛粒子と石綿繊維からなる複合多孔質層を形
成させた。
The above porous layer forming stock solution was injected into this, stirred according to papermaking procedures to uniformly disperse it, and then drained to form a composite porous layer consisting of graphite particles and asbestos fibers on Japanese paper-L. I let it happen.

次いで風乾により乾燥させた後、スクリーンよシ剥離し
て電気炉に移し、160℃で60分加熱焼成して111
面膜を完成させた。和紙上の多孔質層の厚みは、平均1
26±15μ、多孔度は72%であった。
Next, after drying by air drying, the screen was peeled off, transferred to an electric furnace, and heated and baked at 160°C for 60 minutes to obtain 111
Completed the membrane. The average thickness of the porous layer on Japanese paper is 1
26±15μ, porosity was 72%.

かくして得たオ′↑を面膜を、′重層面積2.5dm’
のイオン交換膜法竪型殖解槽に装着し電解試験を行った
。イオン交換膜はデニポン社のナフィオン901を、陽
極は、チタン材エキスバンドメタル(長径6 ttm 
X短径五5覇)の表面に酸化ルテニウムとイリジウムを
被覆させたDSE電極を、陰極は5U8310B@エキ
スバンドメタル(長径6n−++x短径五5剛)に溶射
した活性電極を用い、陰極とイオン交換膜の間に粗面膜
を挿入した上、スプリングにより拡張可能とした陽極を
約0.15 Kf/Clftで加圧接触させて極間距離
を約0.5 wmに調節し、陽極室食塩濃度を200 
f/13に、陰極室水酸化ナトリウム濃度を32重ji
t%、温度90℃に保持して電解を行ったところ、極間
電圧は次の通りであった。
The surface film obtained in this way is 2.5 dm in layer area.
An electrolytic test was carried out by installing it in a vertical fermentation tank using an ion-exchange membrane method. The ion exchange membrane is Denipon's Nafion 901, and the anode is titanium extracted band metal (length: 6 ttm).
A DSE electrode whose surface is coated with ruthenium oxide and iridium is used as the cathode, and an active electrode sprayed on 5U8310B@exband metal (major axis 6n-++x minor axis 55 mm) is used as the cathode. A rough membrane was inserted between the ion exchange membranes, and the anode, which was expandable by a spring, was brought into contact with pressure at about 0.15 Kf/Clft to adjust the distance between the electrodes to about 0.5 wm, and the anode chamber was filled with saline. Concentration to 200
At f/13, the sodium hydroxide concentration in the cathode chamber was adjusted to 32
When electrolysis was carried out at a temperature of 90° C., the interelectrode voltage was as follows.

電流密度(A/dm”)   極間電圧(V’)20 
       2.94 30        3.16 又通常、極間約2m以下で現れる槽′電圧の瞬間バラツ
キの増加が解消して、変動幅が0〜3 mVの極めて安
定した電圧を示した。
Current density (A/dm”) Electrode voltage (V') 20
2.94 30 3.16 Moreover, the increase in instantaneous variation in the cell voltage that normally appears when the electrode spacing is about 2 m or less was eliminated, and an extremely stable voltage with a variation range of 0 to 3 mV was exhibited.

電解開始後、5 OA/dm’で30日運転したが、そ
の間の電圧は殆んど一定に推移し、その間の電流効率は
96,8チであった。電WFWzO日で運転を停止し、
2日放置後、再運転し、だが、直ぐに停止前の電圧に復
元した。
After the start of electrolysis, it was operated at 5 OA/dm' for 30 days, during which the voltage remained almost constant, and the current efficiency during that period was 96.8 cm. Electricity WFWzO stops operation,
After leaving it for two days, it was restarted, but the voltage was immediately restored to the voltage before the shutdown.

f1運転1 [] Flの後、停止開槽し−C111面
膜とイオン交換膜の状態を観察したところ、外見−ヒ粗
面膜は綺麗にイオン交換膜に付着(7ており剥離等の異
状は認められなかったっ粗面膜をイオン交換IAより人
為的にq−1がしたところ、和紙は溶解消滅しており、
イオン交換膜面は通常若)−みられる瑳痕などの汚れは
全くなく、使用前とほぼ同じ綺麗な状態が保たれていた
f1 operation 1 [] After Fl, the tank was stopped and the tank was opened.The condition of the C111 surface membrane and the ion exchange membrane was observed.The appearance of the rough surface membrane was clearly adhered to the ion exchange membrane (7), and no abnormalities such as peeling were observed. When the rough membrane that could not be removed was artificially exposed to q-1 using ion exchange IA, the Japanese paper dissolved and disappeared.
The surface of the ion exchange membrane (usually young) had no stains such as stains, and remained in almost the same clean condition as before use.

実施例2 ノJナダ規格7クラス7Fのクリソタイル石綿繊維0.
81?を実施例1と同様に水酸化ナトリウム加熱処理、
水洗して(1だpH8,8の石綿含有水100mgに予
め用意した粒径20 p以下の活性炭粉末2Vを100
m/の水に分散させた分散液を混合し、これに60重吋
%PTFFJディスバージ責ン液5m1lを添加して得
た多孔質層原液を、実施例1と同様の方法によυ抄紙面
積10I:rnX25crnのためすき器を用いてビス
コース加工した厚み約507sの和紙上に均一に濾過し
て、活性炭、石綿の層を積層して、乾燥後160℃で3
0分焼成した。得られた粗面膜を2分して電解面積1 
dm″の電解槽のイオン交換膜の陽極側と陰極側に重ね
合わせ、長径2wI!!×短径1咽のニッケル材エキス
バンドメタルにRhコーティングした活性陰極を、長径
12酬×短径8鰭のニッケル材エキスバンドメタルに溶
接してなる二層電極の上に配置し、陰極と同じ二層形状
でチタン材の上にptとIrをコーティングし拡張可能
なスプリング構造とした陽極と対面させて、約0. I
 Kp/+7何で圧着し、実質上の極間距離を0.6鯛
として電解したところ次の結果が得られた。
Example 2 Chrysotile asbestos fiber of NoJNada standard 7 class 7F 0.
81? was heated with sodium hydroxide in the same manner as in Example 1,
Rinse with water (1) and add 2V of activated carbon powder with a particle size of 20p or less prepared in advance to 100mg of asbestos-containing water with a pH of 8.8.
The porous layer stock solution obtained by mixing the dispersion liquid dispersed in water of m/m/m and adding 5 ml of 60% by weight PTFFJ disverge reagent to this was prepared using the same method as in Example 1 to prepare a porous layer with a paper area of υ. 10I: For rn
Baked for 0 minutes. Divide the obtained rough surface membrane into two to make an electrolytic area of 1
An active cathode coated with Rh on nickel extract band metal with 2 wI!! in major axis x 1 fin in minor axis was superimposed on the anode and cathode sides of the ion exchange membrane of the electrolytic cell of ``DM''. It is placed on a two-layer electrode made by welding expanded nickel metal, and faces the anode, which has the same two-layer shape as the cathode and has an expandable spring structure made by coating titanium with PT and Ir. , about 0.I
When the electrodes were crimped with Kp/+7 and electrolyzed with the actual interpole distance set to 0.6, the following results were obtained.

電流密度(A/dm’)   極間電圧(V)20  
      2.92 30        3、13 電流密度30 A / dm” 、水酸化ナトリウム濃
度30wt%、温度90℃で10日間運転したが、瞬間
変動幅の極めて小さい安定した電圧で推移し、この間の
電流効率は96,8%であった。
Current density (A/dm') Electrode voltage (V) 20
2.92 30 3, 13 It was operated for 10 days at a current density of 30 A/dm", a sodium hydroxide concentration of 30 wt%, and a temperature of 90°C, but the voltage remained stable with extremely small instantaneous fluctuations, and the current efficiency during this period was It was 96.8%.

比較例1 粗面膜を挿入せずイオン交換膜と陽極の距離をOw 、
イオン交換膜と陰極の距@、 7&:2 mとした以外
は実施例1と同じ条件で電解槽を組立て10日間運転し
たところ、次の結果がイ()られた。
Comparative Example 1 The distance between the ion exchange membrane and the anode was Ow without inserting the rough membrane.
When an electrolytic cell was assembled and operated for 10 days under the same conditions as in Example 1 except that the distance between the ion exchange membrane and the cathode was set to 7 &: 2 m, the following results were obtained.

電流密度(A/dm″)  極間′電圧(V)20  
              3.0130     
         3.24なお、電圧の瞬間変動幅は
±14mVを示し、この間の電流効率は94.4チであ
った。
Current density (A/dm'') Voltage between electrodes (V) 20
3.0130
3.24 The instantaneous voltage fluctuation range was ±14 mV, and the current efficiency during this period was 94.4 cm.

比較例2 粗面膜を挿入せず、イオン交換膜と陽極の距離を01、
イオン交換膜と陰極の距離を2tmとした以外は実施例
2と同じ条件で電解槽を組立て、15日間運転したとこ
ろ、次の結果が得られた。
Comparative Example 2 Without inserting the rough membrane, the distance between the ion exchange membrane and the anode was set to 01,
An electrolytic cell was assembled under the same conditions as in Example 2 except that the distance between the ion exchange membrane and the cathode was 2 tm, and when it was operated for 15 days, the following results were obtained.

電流密度(A/dm’)   極間゛電圧(V)2 【
]                       ろ
、0030                3.22
電圧の瞬間変動幅は±18mV、電流効率は94.2チ
であった。
Current density (A/dm') Voltage between electrodes (V)2 [
] Ro, 0030 3.22
The instantaneous voltage fluctuation range was ±18 mV, and the current efficiency was 94.2 cm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る電解用複合膜の一例を示す断面
図、第2図は、この複合膜を塩化アルカリ電解用の電解
槽に装着した状態を示す縦断面図である。 1・・・・・・複合膜 2・・・・・・陽イオン交換膜 3・・・・・・溶解性物質 4・・・・・・粗面膜 5・・・・・・陰極 15・・・・・・成型体 20・・・・・・陽極
FIG. 1 is a sectional view showing an example of a composite membrane for electrolysis according to the present invention, and FIG. 2 is a longitudinal sectional view showing the composite membrane installed in an electrolytic cell for alkali chloride electrolysis. 1... Composite membrane 2... Cation exchange membrane 3... Soluble substance 4... Rough surface membrane 5... Cathode 15... ...Molded body 20...Anode

Claims (3)

【特許請求の範囲】[Claims] (1)陽イオン交換膜の陰極又は/および陽極面側に、
電解により溶解する物質を介して、液透過性及び気泡離
脱性を有する粗面膜を一体的に重ね合わせたことを特徴
とする[MY用複合膜。
(1) On the cathode and/or anode side of the cation exchange membrane,
[Composite membrane for MY] characterized by integrally laminating rough membranes having liquid permeability and bubble releasability via a substance that dissolves by electrolysis.
(2)  7!、解により溶解する物質が薄層和紙であ
る特#Tii?+#求の範囲第(1)項に記載の電解用
複合膜。
(2) 7! , special #Tii? in which the substance dissolved by the solution is thin Japanese paper? +# The electrolytic composite membrane according to the desired range (1).
(3)粗面膜が、炭素粉末と、石綿繊維と結合剤とから
なる特許請求の範囲第(1)項又は第(2)項に記載の
電解用複合膜。
(3) The composite membrane for electrolysis according to claim (1) or (2), wherein the rough surface membrane comprises carbon powder, asbestos fibers, and a binder.
JP14468682A 1982-08-23 1982-08-23 Composite membrane for electrolysis Pending JPS5935692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14468682A JPS5935692A (en) 1982-08-23 1982-08-23 Composite membrane for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14468682A JPS5935692A (en) 1982-08-23 1982-08-23 Composite membrane for electrolysis

Publications (1)

Publication Number Publication Date
JPS5935692A true JPS5935692A (en) 1984-02-27

Family

ID=15367895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14468682A Pending JPS5935692A (en) 1982-08-23 1982-08-23 Composite membrane for electrolysis

Country Status (1)

Country Link
JP (1) JPS5935692A (en)

Similar Documents

Publication Publication Date Title
US6217728B1 (en) Electrolysis cell
ES2634806T3 (en) Electrolyte percolation cells with gas diffusion electrode
EP0612864B1 (en) Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide
US4518470A (en) Ion exchange membrane cell and electrolytic process using thereof
JPH0125836B2 (en)
JPS607710B2 (en) Electrolysis method of alkali metal chloride using diaphragm electrolyzer
US5015344A (en) Electrodes with dual porosity
JPS61250189A (en) Production of nico204 catalyst-containing anode for electrolysis of sodium hydroxide solution
US4311567A (en) Treatment of permionic membrane
US4752369A (en) Electrochemical cell with improved energy efficiency
US4402806A (en) Multi layer ion exchanging membrane with protected interior hydroxyl ion rejection layer
US4738741A (en) Method for forming an improved membrane/electrode combination having interconnected roadways of catalytically active particles
JPS61157691A (en) Electrochemical tank, production of gas reduced cathode and electrolysis
JPS5935692A (en) Composite membrane for electrolysis
CA1117473A (en) Electrolytic cell
JPS5935689A (en) Electrolytic cell by ion exchange membrane
US4560461A (en) Electrolytic cell for use in electrolysis of aqueous alkali metal chloride solutions
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
US4871703A (en) Process for preparation of an electrocatalyst
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
RU2187578C2 (en) Bipolar plate for electrolyzer of filter-press type
US4360412A (en) Treatment of permionic membrane
JPH0610179A (en) Method for electrolysis using polymer additive for film tank operation
US4869799A (en) Membrane cell for the electrolysis of alkali metal chloride and process thereof