JPS5935689A - Electrolytic cell by ion exchange membrane - Google Patents

Electrolytic cell by ion exchange membrane

Info

Publication number
JPS5935689A
JPS5935689A JP57143391A JP14339182A JPS5935689A JP S5935689 A JPS5935689 A JP S5935689A JP 57143391 A JP57143391 A JP 57143391A JP 14339182 A JP14339182 A JP 14339182A JP S5935689 A JPS5935689 A JP S5935689A
Authority
JP
Japan
Prior art keywords
exchange membrane
membrane
cathode
ion exchange
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57143391A
Other languages
Japanese (ja)
Inventor
Hiroshi Goto
弘 後藤
Masaharu Kashiwase
柏瀬 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP57143391A priority Critical patent/JPS5935689A/en
Publication of JPS5935689A publication Critical patent/JPS5935689A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a titled electrolytic cell which protects inexpensively a cation exchange membrane with a simple technique and can operate on a low voltage, by the constitution wherein a cathode or/and anode are adhered tightly to the cation exchange membrane via rough surface films having liquid permeability and foam desorbability. CONSTITUTION:Rough surface films 14 having liquid permeability and foam desorbability are integrally superposed with a material 13 which is dissolved by electrolysis on both surfaces of a cation exchange membrane 12 to form a composite membrane 11, and a cathode 1 and an anode 19 placed oppositely to the films 14 are adhered tightly to the films 14 in an electrolytic cell by a vertical ion exchange membrane method for electrolysis of an aq. alkali chloride soln. which produces alkali hydroxide. The cathode 1 is formed by plating Rh, etc. on a base material of iron or the like which is made porous. The anode 19 is formed by plating Pt or the like on a base material of Ti, or the like which is made porous, and both electrodes are mounted to the top part of a conductive bar 6 of copper or the like. The rough surface films 14 of the composite membrane 11 are obtd. by supplying a raw material liquid contg. carbon powder, asbestos fibers and a binder onto soluble Japanese paper to form a porous layer and calcining the same after filtering, drying and dehydrating.

Description

【発明の詳細な説明】 本発明は、改良されたイオン交換脱法電解槽、特に水酸
化アルカリを低電圧で有利に製造しうるようにした塩化
アルカリ水溶液電解用竪型イオン交換脱法電解槽に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved ion-exchange removal electrolytic cell, and particularly to a vertical ion-exchange removal electrolytic cell for aqueous alkali chloride solution electrolysis, which allows alkali hydroxide to be advantageously produced at low voltage.

塩化アルカリ、特に、塩化ナトリウム水溶液のイオンに
換膜電解においては、一般に陽極室と陰極室を陽イオン
交換膜によって区画し、陽イオン交換膜の陽極面に陽極
を、又陰極面に陰極を対面させ、陽極室に塩化ナトリウ
ム水溶液を、陰極室に水酸化す) IJウム水溶液を満
たし、陽極液の塩化ナトリウム濃度を200〜220f
/eに、陰極液の水酸化す) IJウム濃度を25〜6
51■に保持するよう塩水および純水を供給して電解し
、陽極室において塩素ガスが、陰極室において水酸化ナ
トリウムと水素ガスがそれぞれ生成するようにしている
In membrane electrolysis where ions of alkali chloride, especially sodium chloride aqueous solution, are exchanged, an anode chamber and a cathode chamber are generally separated by a cation exchange membrane, and the anode faces the anode side of the cation exchange membrane, and the cathode faces the cathode side. Fill the anode chamber with a sodium chloride aqueous solution and the cathode chamber with an IJium aqueous solution to bring the sodium chloride concentration of the anolyte to 200 to 220f.
/e, the catholyte is hydroxylated) The IJ concentration is 25 to 6.
Salt water and pure water are supplied and electrolyzed so as to maintain the temperature at 51 cm, so that chlorine gas is produced in the anode chamber, and sodium hydroxide and hydrogen gas are produced in the cathode chamber.

近年における本法技術の進歩は著しく、特に省エネルギ
一対策としての電力コストの低減に有効な手段、たとえ
ば電極形状の適正化、極間距離の短縮、陰極の水素過電
圧の低減、イオン交換膜の固有抵抗の減少および粗面化
による水素気泡の付着防止等が開発され実施されている
が、本発明は、これらの手段中、電解生成ガス気泡のイ
オン交換膜への付着防止による遮蔽効果の除去に係わる
ものである。
The technology of this method has made remarkable progress in recent years, and effective means for reducing power costs as an energy-saving measure, such as optimizing the electrode shape, shortening the distance between electrodes, reducing the hydrogen overvoltage of the cathode, and using ion exchange membranes, have been developed. Measures to prevent hydrogen bubbles from adhering to the ion exchange membrane by reducing the specific resistance and roughening the surface have been developed and implemented. This is related to.

1977年10月に開催された米国電気化学会において
、1JiLMによシ生成する水素ガスの気泡がイオン交
換膜面に付着しやすく、気泡の付着を防止することが摺
電圧の低減化に有効であることが、DuPont社のベ
ルツイン氏によυ公表されて以来、陰極液の強制循環、
界面活性剤の添加等により、気泡の付着を防止する手段
が提案されている。又最近、陽極および陰極をイオン交
換膜に接近させ、極間距離を出来るだけ小さくして溶液
抵抗を極少化し電解電圧を低減すべく、陰極又は陽極の
少くとも一方をイオン交換膜の表面に密着させる構造の
電解槽が提案されたが、陽極の膜面密着が有効であるの
に対し2て、陰極側は水素ガスが微細な気泡となってイ
オン交換膜に付着し、その部分への電流が遮蔽されるた
め、陰極を膜に接近さぜると却って電圧上昇をまねくこ
とになり、陰極を膜に密着させると極間での電流集中を
生じて電圧が−1−昇するばかりでなく、イオン交換膜
の性能を劣化させる不利な結果を招くことになる。又、
イオン交換膜に密着させた陽極は、陰極側から逆泳動し
てくるアルカリによってコーテイング材質が脆化し、そ
の陽極電位を高め摺電圧を増加させる現象をも招来する
At the American Electrochemical Society meeting held in October 1977, it was reported that hydrogen gas bubbles produced by 1JiLM tend to adhere to the ion exchange membrane surface, and that preventing the bubbles from adhering is effective in reducing the sliding voltage. Since something was published by Mr. Beltwin of DuPont, forced circulation of the catholyte,
Measures have been proposed to prevent the adhesion of air bubbles, such as by adding a surfactant. Recently, in order to bring the anode and cathode closer to the ion exchange membrane and to minimize the distance between the electrodes to minimize solution resistance and reduce electrolysis voltage, at least one of the cathode or anode has been brought into close contact with the surface of the ion exchange membrane. However, while it is effective to have the anode in close contact with the membrane surface, on the cathode side, hydrogen gas becomes fine bubbles and adheres to the ion exchange membrane, causing the current to flow to that part. is shielded, so if the cathode is brought close to the membrane, it will actually cause an increase in voltage, and if the cathode is brought into close contact with the membrane, current concentration will occur between the electrodes, and the voltage will not only increase by -1- , which will have the disadvantageous effect of deteriorating the performance of the ion exchange membrane. or,
When an anode is placed in close contact with an ion exchange membrane, the coating material becomes brittle due to the alkali migrating back from the cathode side, causing a phenomenon in which the anode potential increases and the sliding voltage increases.

か\る現象を防止し、摺電圧を低減させるため、自然界
における植物の葉面のじゆう毛が水滴を撥水させ水玉に
する原理を応用して、第1に、イオン交換膜自体の表面
を熱プレス、研磨、乾式ブラスト、エツチング、グロー
放電等の方法により粗面化する方法(特開昭55−11
0786.57−39187等)が、第2に、電極とし
て作用しない金属酸化物、金属窒化物等の無機質の粉末
・粒子からなるガスおよび液透過性の多孔質層を、イオ
ン交換膜の表面にテフロンバインダー等の結合剤と共に
加熱圧着して形成させる方法(特開昭56−75583
.56−112487等)が、又、第3に、陰極とイオ
ン交換膜との間に水素気泡がイオン交換膜に付着するの
を防止する目的をもった多孔性フィルムを、脱着可能で
可撓性をもった低水素過電圧の多孔性金網に重ねてイオ
ン交換膜に密着させる構造体(特開昭56−58486
)が提案されている。
In order to prevent this phenomenon and reduce the sliding voltage, we applied the principle in nature in which the hairs on the leaves of plants repel water droplets and turn them into water beads. A method of roughening the surface by heat pressing, polishing, dry blasting, etching, glow discharge, etc.
0786.57-39187, etc.), secondly, a gas and liquid permeable porous layer made of inorganic powder/particles such as metal oxides and metal nitrides that does not function as an electrode is placed on the surface of the ion exchange membrane. A method of forming by heating and pressing together with a binder such as a Teflon binder (Japanese Unexamined Patent Publication No. 56-75583
.. 56-112487 etc.), and thirdly, a porous film between the cathode and the ion exchange membrane with the purpose of preventing hydrogen bubbles from adhering to the ion exchange membrane is removable and flexible. A structure that is stacked on a porous wire mesh with a low hydrogen overvoltage and closely adhered to an ion exchange membrane (Japanese Patent Application Laid-Open No. 56-58486
) has been proposed.

これらの方法は、原理的には気泡の膜面付着を防止し摺
電圧の減少を可能なら[2めるものとして優れている。
These methods are excellent in principle if they can prevent bubbles from adhering to the film surface and reduce the sliding voltage.

しかし前記第1の方法のうち、例えば、サンドペーパー
等により研磨して粗面にしたイオン交換膜は、確かに水
素気泡が付着しにくく電圧の低減を可能とするが、イオ
ン交換膜を傷つける結果、膜の耐久性を損ない膜寿命が
がなり短かくなるという欠点がある。又、第2の方法は
、既存のイオン交換膜の広い膜面全体に多孔質層を均一
な厚みに加熱圧着するのに高度の技術と高価な機械設備
を要するため、加工コストが、電圧低減によシ得られる
メリットの大半を消費し、又イオン変換膜の物性を損な
い、その寿命を短縮する恐れがあるばかりでなく、電解
槽装着時に行う前処理による膜の湿潤膨張、電解槽内の
諸条件による収縮、膨張等の寸法、厚みの変化に因り多
孔質物質が剥離し易く、その取り扱いに厳格な注意が要
求されるという欠点がある。
However, in the first method, the ion exchange membrane whose surface is roughened by sandpapering, for example, does not allow hydrogen bubbles to adhere to it and makes it possible to reduce the voltage, but it does not damage the ion exchange membrane. However, the disadvantage is that the durability of the membrane is impaired and the life of the membrane is shortened. In addition, the second method requires advanced technology and expensive mechanical equipment to heat and press the porous layer to a uniform thickness over the entire wide membrane surface of the existing ion exchange membrane, resulting in lower processing costs and lower voltage. Not only does this consume most of the benefits obtained by using the ion conversion membrane, it also impairs the physical properties of the ion conversion membrane and may shorten its lifespan. Porous materials tend to peel off due to changes in dimensions and thickness due to shrinkage, expansion, etc. due to various conditions, and they have the disadvantage that strict care is required when handling them.

このほかにも、剥離防止を目的として金属酸化物のかわ
シに、テフロン粒子によって多孔質層を形成させる手段
が提案されている(特開昭57−60081 )が、I
持株かっ高度な加工技術を要するため、コストが高くな
υ、依然として経済的に有利とは言い難い。更に又、第
3の方法に関しても、特開昭57−60081に開示さ
れているような親水性処理したポリフロンシール、テフ
ロン織布などの形態のフィルムは、実質的にそのもの自
体の膜抵抗が大きく、且又水素気泡の離脱性が充分でな
いこと、および可撓性の低水素過電圧の金網と剛性陰極
板の電気的接続を圧着により行なうため、実用規模にお
いて均等圧着が難かしく、接触抵抗による電圧損を生じ
て容易に槽電圧低減を得ることができず、効果的な槽電
圧低減を得るためには、電解槽桓立上高度々精度を必要
とする。
In addition, a method has been proposed in which a porous layer is formed using Teflon particles on a metal oxide adhesive for the purpose of preventing peeling (Japanese Patent Application Laid-open No. 57-60081).
Since the holding process requires advanced processing technology, the cost is high, so it is still difficult to say that it is economically advantageous. Furthermore, regarding the third method, films in the form of hydrophilically treated polyflon seals, Teflon woven fabrics, etc., as disclosed in JP-A-57-60081, have substantially the same membrane resistance. Because the hydrogen bubbles are large and the release properties of the hydrogen bubbles are not sufficient, and because the electrical connection between the flexible low hydrogen overvoltage wire mesh and the rigid cathode plate is made by crimping, uniform crimping is difficult on a practical scale, and contact resistance It is not easy to reduce the cell voltage due to voltage loss, and in order to effectively reduce the cell voltage, a high degree of precision is required in starting up the electrolytic cell.

本発明者らは、上記の検討をもとに廉価な材料と簡便な
技術によシ実用規模に適用出来る手段を追求して種々の
研究を重ねた結果、たとえば、ピスコース加工により耐
水性をもたせた薄層和紙の上に、黒鉛粉末、石綿繊維、
高分子結合剤等の配合物の薄層を、抄紙法を適用して均
一に形成させた後、乾燥焼成する比較的単純容易な方法
によって得られる粗面膜を、イオン交換膜に重ねて湿潤
させて複合膜とし、電極面に加圧接着した場合の密着性
、ガス気泡の離脱性、電解条件下での安定性が良好であ
り、この複合膜を装着した電解槽を用いて塩化ナトリウ
ム等を電解すると、摺電圧を低減させることができるこ
とを見い出すに至った。
Based on the above considerations, the present inventors have conducted various studies in pursuit of methods that can be applied on a practical scale using inexpensive materials and simple techniques. Graphite powder, asbestos fiber,
A rough membrane obtained by a relatively simple and easy method of uniformly forming a thin layer of a compound such as a polymeric binder using a papermaking method and then drying and baking is layered on an ion exchange membrane and moistened. This composite membrane has good adhesion when pressure-adhered to the electrode surface, good gas bubble release properties, and stability under electrolytic conditions. It has been discovered that electrolysis can reduce the sliding voltage.

即ち本発明は、陽イオン交換膜の陰極又は/および陽極
面側に、電解により溶解する物質を介して、液透過性及
び気泡離脱性を有する粗面膜を一体的に重ね合わせて複
合膜を形成し、前記粗面膜を対向する電極に密着させた
イオン交換脱法電解槽であり、以下添付図面に基いて具
体的に説明する。
That is, the present invention forms a composite membrane by integrally superimposing a rough membrane having liquid permeability and bubble releasability on the cathode and/or anode side of a cation exchange membrane via a substance dissolved by electrolysis. This is an ion-exchange dehydration electrolytic cell in which the rough-surfaced membrane is brought into close contact with opposing electrodes, and will be specifically described below with reference to the accompanying drawings.

第1図は、本発明に係るイオン交換脱法電解槽の一例を
示す縦断面図、第2図は、同じく要部の拡大断面図であ
る。
FIG. 1 is a longitudinal cross-sectional view showing an example of an ion-exchange removal electrolytic cell according to the present invention, and FIG. 2 is an enlarged cross-sectional view of the main parts.

1は、鉄、ステンレス、ニッケル等の導電性金属からな
る複数の多孔かつ中空管状の陰極で、咳陰極1は、電解
槽本体の1つの内部側壁からこれと相対する内部側壁に
伸び、陰極1と電解槽本体が一本化されている。2は、
給電板3の上にフッ素樹脂等の耐食シート4を積層して
なる電解槽の底板で、該底板2の隣り合う2つの陰極1
.1の中間位置には後述する導電棒が貫通可能な複数の
円孔5が穿設されている。6は、下部にねじ7が刻設さ
れ、ねじ7のやや上部に突部8が水平に形成された銅製
等の円柱状の導電棒で、該導電棒6の突部8より上方の
外周面には、チタンあるいはチタン合金等からなる被覆
層9が被覆されている。
1 is a plurality of porous and hollow tubular cathodes made of conductive metal such as iron, stainless steel, or nickel; the cough cathode 1 extends from one inner side wall of the electrolytic cell body to the opposite inner side wall; The electrolytic cell body is integrated into one. 2 is
A bottom plate of an electrolytic cell formed by laminating a corrosion-resistant sheet 4 made of fluororesin or the like on a power supply plate 3, and two adjacent cathodes 1 on the bottom plate 2.
.. A plurality of circular holes 5 through which conductive rods, which will be described later, can pass through are bored at intermediate positions of the holes 1. Reference numeral 6 denotes a cylindrical conductive rod made of copper or the like with a screw 7 carved in the lower part and a protrusion 8 horizontally formed slightly above the screw 7, and the outer peripheral surface of the conductive rod 6 above the protrusion 8. is coated with a coating layer 9 made of titanium, titanium alloy, or the like.

この導電棒6は、突部8の下面が底板2に当接するよう
に、前記円孔5に上方から挿入され、ねじ7にナツト1
0を螺合させて、底板2に垂直に固定されている。11
は、下部に前記突部8と同径をなす通孔が穿設され、上
方が開口する袋状の複合膜で、前記突部8の外縁に嵌合
されている。この複合膜11は、少なくとも陽極及び陰
極に面する部分が陽イオン交換膜12で形成され、その
両面に電解によシ溶解する物質13を介して後述する方
法で形成される液透過性及び気泡離脱性を有する粗面膜
14を車ね合わけ“である。電解により溶解する物質と
しては、たとえば、50μ程度に抄紙され、かつ耐水性
を付−/iされた第11紙あるいt」1、織布された絹
等を使用するのがよく、粗面膜14は、黒鉛末、酸化チ
タン末、石綿等の混合物を積層してなるものを使用する
のがよい。15及び16は、複合膜11の突部8の外縁
近傍を挾持する1対のシール材で、−上方のンール拐1
5は、陽極室で発生する塩素に対する耐久性を有するフ
ッ素糸樹脂を用いることが望ましく、F方のシール材1
6は、通常のゴト製とすることが経済的に好ましい。
The conductive rod 6 is inserted into the circular hole 5 from above so that the lower surface of the protrusion 8 comes into contact with the bottom plate 2, and the nut 1 is attached to the screw 7.
0 are screwed together and fixed vertically to the bottom plate 2. 11
is a bag-shaped composite membrane with a through hole having the same diameter as the protrusion 8 in its lower part and an opening at the top, and is fitted onto the outer edge of the protrusion 8. This composite membrane 11 has at least the portion facing the anode and cathode formed of a cation exchange membrane 12, and has liquid permeability and air bubbles formed by a method described later through a substance 13 that is dissolved by electrolysis on both surfaces. The rough surface film 14 having releasability is separated into a car. Examples of substances that can be dissolved by electrolysis include paper No. 11 made into paper of about 50μ and coated with water resistance. It is preferable to use woven silk, etc., and the rough surface membrane 14 is preferably formed by laminating a mixture of graphite powder, titanium oxide powder, asbestos, etc. 15 and 16 are a pair of sealing materials that sandwich the vicinity of the outer edge of the protrusion 8 of the composite membrane 11;
For 5, it is desirable to use fluorine thread resin that has durability against chlorine generated in the anode chamber, and for the sealing material 1 on the F side.
6 is economically preferable to be made of ordinary Goto.

17は、突部8の上面及び被覆層90F方外周に溶接に
より固着されたフランジで、18は、W金膜11の保護
のために、上方のシール材15とフランジ170間に固
定されているフッ素系樹脂からなるプロテクターである
。19は、前記導電棒6の上部に接続された網状の拡張
可能な陽極で、この陽極19及び前記陰極1は、前記複
合膜11の画面に密着し、極間距離が実質的に複合膜1
1の厚さと等しくなっている。
17 is a flange fixed by welding to the upper surface of the protrusion 8 and the outer periphery of the coating layer 90F, and 18 is fixed between the upper sealing material 15 and the flange 170 in order to protect the W gold film 11. A protector made of fluororesin. Reference numeral 19 denotes a net-like expandable anode connected to the upper part of the conductive rod 6. This anode 19 and the cathode 1 are in close contact with the screen of the composite membrane 11, and the distance between the electrodes is substantially equal to the composite membrane 1.
The thickness is equal to 1.

本例においては、陽極及び陰極と複合膜を密着させたが
、本発明はこれに限定されるものではなく、陽イオン交
換膜の一方面にのみ粗面膜を形成し、その面のみを電極
と密着させるようにしてもよい。また、電解槽の構造も
、上記例に限定されるものではなく、フィルタープレス
型の電解槽としてもよい。なお、上記例において粗面膜
中に存在する和紙等eよ、電解により溶解して消滅する
In this example, the anode and cathode were brought into close contact with the composite membrane, but the present invention is not limited to this. A rough membrane was formed only on one side of the cation exchange membrane, and only that side was used as an electrode. They may be brought into close contact. Furthermore, the structure of the electrolytic cell is not limited to the above example, and may be a filter press type electrolytic cell. In the above example, the Japanese paper etc. present in the rough surface film are dissolved and disappear by electrolysis.

次に、本発明における粗面膜の形成方法について説明す
る。気泡に対する反発性をもつ表面の形成には、植物の
葉面における突起状面と、空間を保有する磁引状複合面
に相当する材料を使用することが有効である。本発明で
は、前者に相当するものとして、炭素粉末、酸化チタン
粉末等を、後者に相当するものとして、石綿繊維、′カ
ーボン繊維等を使用することができるが、炭素粉末及び
石綿繊維を例にとって粗面膜形成につき説明する。
Next, a method for forming a rough surface film in the present invention will be explained. In order to form a surface that is repellent to air bubbles, it is effective to use a material that corresponds to a protruding surface on the leaf surface of a plant and a magnetically attracted composite surface that holds space. In the present invention, carbon powder, titanium oxide powder, etc. can be used as the former, and asbestos fiber, carbon fiber, etc. can be used as the latter. The formation of a rough surface film will be explained.

炭素粉末としては、粒径50p以下の黒鉛末、活性炭、
泥状炭等を使用し、石綿は、繊維の直径が011p以下
である白石綿をミルにかけて充分開綿し、長さ2Ilf
fI+以下に篩分けしたものを使用に先立って10〜5
0qbの水酸化す) リウム水溶液で煮沸処理し、溶解
成分を溶離した後、水酸化す) IJウム水溶液から沈
降分離し、純水で洗浄し、繊維がpH8〜10の水に懸
濁した状態としておく。
As carbon powder, graphite powder with a particle size of 50p or less, activated carbon,
Using peat, etc., asbestos is made by milling white asbestos with a fiber diameter of 011p or less and thoroughly opening it to a length of 2Ilf.
10 to 5 sifted to below fI+ before use
0qb of hydroxide) is boiled in a lium aqueous solution to elute the dissolved components, and then hydroxylated) Separated by sedimentation from an IJ ium aqueous solution and washed with pure water, leaving the fibers suspended in water with a pH of 8 to 10. I'll leave it as that.

これに、前記黒鉛粉末の石綿重険の2〜20倍量を、予
め非イオン界面活性剤とともに攪拌して充分水に分散さ
せた上で前記石綿繊維と混合し、緩やかに攪拌すること
により、浮遊する石綿繊維の絡みの中に黒鉛粉が吸着さ
れて均一に混合分散する。かかる黒鉛粉と石綿繊維の含
有量は、1〜10f/100fHxOが望ましく、強い
攪拌、長時間攪拌は繊維と黒鉛粉の混合物を塊状に造粒
するので避けなければならない。
To this, 2 to 20 times the asbestos weight of the graphite powder is stirred in advance with a nonionic surfactant to sufficiently disperse it in water, and then mixed with the asbestos fiber and gently stirred. Graphite powder is absorbed into the tangles of floating asbestos fibers and is evenly mixed and dispersed. The content of graphite powder and asbestos fibers is desirably 1 to 10 f/100 fHxO, and strong stirring or long-time stirring must be avoided since the mixture of fibers and graphite powder will be granulated into lumps.

かくして得た混合液を15℃以下のもとで、粒径1p以
下のポリエチレン、ポリテトラフルオロエチレン等の耐
熱、耐アルカリ性結合剤の分散乳液を添加して、均一混
合に必要最小限の攪拌を行って粗面多孔層形成原料液と
する。
A dispersion emulsion of a heat-resistant and alkali-resistant binder such as polyethylene or polytetrafluoroethylene with a particle size of 1 p or less is added to the thus obtained mixed liquid at a temperature of 15°C or less, and the minimum stirring necessary for uniform mixing is carried out. A raw material solution for forming a rough porous layer is obtained.

これを、厚さ約50μに抄紙され、且ビスコース加工に
よって耐水性とした和紙を平坦に載置したスクリーンに
、厚さ20μ〜200μ、好ましくは50μ〜150μ
となる様に供給し、戸水して粗面多孔質層を形成させた
上、乾燥脱水後、160〜180℃に加熱焼成する。
This is placed on a screen flatly placed with Japanese paper made to a thickness of about 50μ and made water-resistant by viscose processing, to a thickness of 20μ to 200μ, preferably 50μ to 150μ.
The material is supplied so as to have a rough surface porous layer, and after being dried and dehydrated, it is heated and fired at 160 to 180°C.

かくして得られる粗面膜は、充分な可撓性を有し、和紙
とその上に形成された粗面多孔層は容易に剥離せず、さ
らに、適度のガス、液透過性、親水性をも備えている。
The rough surface membrane thus obtained has sufficient flexibility, the Japanese paper and the rough surface porous layer formed thereon do not peel off easily, and furthermore, it has appropriate gas and liquid permeability and hydrophilicity. ing.

本発明においては、かくして得られる多孔性粗面膜を、
イオン交換膜電解槽におけるイオン交換膜の陰極面又は
/および陽極面に重ね合わせ、多孔性電極材よりなるエ
キスバンド陽極又は/およびエキスバンド陰極とイオン
交換膜との間に挿入密着して使用され、あるいは、フィ
ルタープレス型電解槽の陽極及び陰極間に挿入して使用
される。
In the present invention, the porous rough membrane thus obtained is
It is used by being superimposed on the cathode surface and/or the anode surface of the ion exchange membrane in an ion exchange membrane electrolytic cell, and inserted and brought into close contact between the expanded band anode and/or expanded band cathode made of porous electrode material and the ion exchange membrane. Alternatively, it is used by being inserted between the anode and cathode of a filter press type electrolytic cell.

本発明に使用されるイオン交換膜としては、カルボン酸
基、スルフォン酸基又はスルフォンアミド基等を有する
パーフルオロカーボン系のイオン図換脱法アルカリ電解
に一般に用いられている特殊な表面処理加工をしていな
い膜のいずれもが適用出来る。陽極としては、チタン利
からなるエキスバンドメタル、パンチングメタルメツシ
ュ等の多孔性基拐の表面を、白金族金属やその酸化物等
で被覆してなるいわゆる寸法安定性電極(I) S E
 )が、又陰極と1.7ては、鉄、ニッケル、ステンレ
ス等の材料からなるIJ4極と同様の多孔性基材又はこ
れらの表面にRh、On等の特殊メツ虚、或いはニッケ
ル、酸化ニック゛ルの溶射被覆等の処理を施して水素過
電圧を1りり下けたものが使用される。
The ion exchange membrane used in the present invention is a perfluorocarbon-based membrane having a carboxylic acid group, a sulfonic acid group, or a sulfonamide group, etc., and has been subjected to a special surface treatment commonly used in alkaline electrolysis. Any of the following membranes can be applied. As an anode, a so-called dimensionally stable electrode (I) is formed by coating the surface of a porous substrate such as expanded metal or punched metal mesh made of titanium with platinum group metal or its oxide.
), but the cathode and 1.7 are porous substrates made of materials such as iron, nickel, and stainless steel, similar to the IJ4 electrodes, or special metal hollows such as Rh and On, or nickel and nickel oxide on their surfaces. Hydrogen overvoltage is lowered by 1 level by applying treatments such as thermal spray coating.

このように組立てられた電解槽の電解砺、圧Qま、その
変動幅がO〜3mVと極めて小さく安定しており、且つ
又従来の一般的現象であった陰極とイオン交換膜のギャ
ップを2門以下にしたときに現れる電圧上昇が消滅して
、極間短縮による溶液抵抗の減少、ガス気泡のイオン交
換膜遮蔽効果が解消されて、顕著な市;圧低減を得るこ
とができると共に、直接イオン交換膜面に無機質又は有
機質の粉体を加熱圧着したり、サンドペーパー、サンド
ブラスト等により膜面に傷を与えるような膜本来の特性
、特に高価な膜の寿命に影響を及はすような障害を与え
ず、且つ又原料、加工の容易性から低コストで粗面膜を
形成できるという特徴を有する。
The fluctuation range of the electrolytic force and pressure Q of the electrolytic cell assembled in this way is extremely small and stable at 0 to 3 mV, and the gap between the cathode and the ion exchange membrane, which was a common phenomenon in the past, has been reduced to 2. The voltage increase that appears when the voltage is lower than 100 nm disappears, the solution resistance decreases due to the shortening of the electrode distance, and the ion exchange membrane shielding effect of gas bubbles is eliminated, making it possible to obtain a significant pressure reduction and to directly Do not heat or press inorganic or organic powder onto the ion-exchange membrane surface, or use sandpaper, sandblasting, etc. to damage the membrane surface, which may affect the inherent properties of the membrane, especially the lifespan of expensive membranes. It has the feature that it does not cause any damage and can form a rough surface film at low cost due to the ease of raw materials and processing.

しかして、イオン交換膜面と陰極室又は陽極室電解液間
や水酸化アルカリ又はアルカリ塩水溶液の濃度勾配が、
粗面膜の介在によって大きくなシ、その結果として電流
効率が低下することが懸念され、事実粗面膜の形成とイ
オン交換膜との密着度が適正を欠く時には水酸化アルカ
リ生成の電流効率を低下させる現象を生じるが、粗面膜
の厚さ、多孔度、通気度、親水性を適正に選択すること
によシとれらの現象を極めて微少に押さえることができ
る。
Therefore, the concentration gradient between the ion exchange membrane surface and the electrolyte in the cathode compartment or anode compartment or in the alkali hydroxide or alkaline salt aqueous solution,
There is a concern that the presence of a rough membrane may result in a decrease in current efficiency, and in fact, when the rough membrane is formed and the adhesion between the ion exchange membrane and the ion exchange membrane is inappropriate, the current efficiency for alkali hydroxide generation is reduced. However, these phenomena can be minimized by appropriately selecting the thickness, porosity, air permeability, and hydrophilicity of the roughened membrane.

又、イオン交換膜に電極を密着させるいわゆるゼロギャ
ップ方式においては、電極のエツジ、突起物等が膜を傷
つけることを避ける為、通常表面をフラット押工するか
、エツジのない可撓性のメツシュを、剛性給電体に接合
して使用するのが一般的であるが、本発明においては多
孔性粗面膜がイオン交換膜面を保護する役割りをするの
で、必しもこれらの考慮全仏う必要はない。又、ニッケ
ル溶射等の手段によって活性化した低水素過電圧陰極の
表面は、イオン交換膜に圧着するとピンホールを生じし
める微小の突起を有するため、低水素過γに正特性をゼ
ロギャップに活かし難いが、本発明の多孔膜は、イオン
交換膜を傷つけることなくゼロギャップを可能とし、よ
り低い電解電圧を保持できる特徴を有する。
In addition, in the so-called zero-gap method in which the electrode is closely attached to the ion exchange membrane, the surface is usually flattened or a flexible mesh without edges is used to prevent the membrane from being damaged by the edges or protrusions of the electrode. However, in the present invention, since the porous rough membrane serves to protect the ion exchange membrane surface, these considerations are not necessarily taken into account. There's no need. In addition, the surface of the low hydrogen overvoltage cathode activated by means such as nickel spraying has minute protrusions that create pinholes when pressed against the ion exchange membrane, making it difficult to utilize the positive characteristics for low hydrogen overgamma to zero gap. However, the porous membrane of the present invention has the feature that it enables a zero gap without damaging the ion exchange membrane and can maintain a lower electrolytic voltage.

なお、本発明の電解槽は、粗面膜を陰極側、又は陰極と
陽極の両側に挿入することが出来るが、特に有効なのは
陰極側である。
In the electrolytic cell of the present invention, the roughened membrane can be inserted on the cathode side or on both sides of the cathode and anode, but it is particularly effective on the cathode side.

以上詳述した通り、本発明は、陽イオン交換膜の陰極又
は/および陽極面側に、液透過性及び気泡離脱性を有す
る粗面膜を一体的に重ね合わせて複合膜を形成し、この
複合膜をイオン交換脱法電解槽の電極に密着させるよう
にしてあり、電解で生成する水素等が膜面に付着しない
ため、気泡による遮蔽効果が解消され、気泡による電圧
上昇が生ずることがない。又、陽イオン交換膜自体を傷
つけないため、膜の寿命が短かくなることがない。
As detailed above, the present invention forms a composite membrane by integrally superimposing a rough membrane having liquid permeability and bubble releasability on the cathode and/or anode side of a cation exchange membrane. The membrane is brought into close contact with the electrodes of the ion-exchange dehydration electrolyzer, and hydrogen generated during electrolysis does not adhere to the membrane surface, eliminating the shielding effect of air bubbles and preventing voltage increases due to air bubbles. Furthermore, since the cation exchange membrane itself is not damaged, the life of the membrane will not be shortened.

さらに、複合膜の形成にあたっては、高度な技術を要さ
ず、低コストで製造することができる。しかも、粗面膜
によυ高価な陽イオン交換膜が保護されるため、複合膜
と電極との間に、陽イオン交換膜が傷つくことを防止す
るためのプロテクターを介在させないようにすることも
できる。
Furthermore, the composite membrane does not require sophisticated technology and can be manufactured at low cost. Moreover, since the rough surface membrane protects the expensive cation exchange membrane, it is possible to eliminate the need for a protector between the composite membrane and the electrode to prevent damage to the cation exchange membrane. .

実施例1 カナダ規格6クラス6Dのクリソタイル石綿繊維1fを
1.0%濃度の水酸化す) +7ウム水溶液100m1
に浸漬し、90℃1時間加熱後、放冷沈降して上澄苛性
液を分離した。引き続き、純水2ノを加えて充分開綿し
た石綿繊維を浮遊懸濁状態とし、僅かの沈降成分を傾瀉
によって分離し、静置沈降して上澄を除いた後、同じ操
作を繰返して、浮遊性単繊維0.94Fを含むpH9の
石綿含有水100m/を用意した。
Example 1 1f of Canadian standard 6 class 6D chrysotile asbestos fibers was hydroxylated at a concentration of 1.0%) +7um aqueous solution 100ml
After heating at 90°C for 1 hour, the mixture was allowed to cool and settle to separate the supernatant caustic solution. Subsequently, add 2 ml of pure water to make the asbestos fibers that have been sufficiently opened into a floating suspension state, separate a small amount of sedimented components by decantation, let it settle and remove the supernatant, and then repeat the same operation. 100 m of asbestos-containing water with a pH of 9 and containing 0.94 F of floating single fibers was prepared.

次いで粒径30 p以下の黒鉛粉末3fを微量の非イオ
ン界面活性剤を添加した純水100m7!に加えて攪拌
して水中に分散させた。次いで、前記石綿分散水を添加
攪拌して、黒鉛と石綿の分散液を調整した後、平均粒径
0.2〜0.41tの四フフ化エチレン樹脂60重R%
を含むディスバージ冒ン3mal  f添加混合して、
多孔質層形成原料液約200m1  を調整した。
Next, 100m7 of pure water containing 3f of graphite powder with a particle size of 30p or less and a trace amount of nonionic surfactant added! and stirred to disperse in water. Next, the asbestos dispersion water was added and stirred to prepare a dispersion of graphite and asbestos, and then 60% by weight R% of tetrafluoroethylene resin with an average particle size of 0.2 to 0.41 t was added.
Disverge air containing 3mal f added and mixed,
Approximately 200 ml of porous layer forming raw material solution was prepared.

一方、縦10rrn1横25何の抄紙スクリーンを有す
る夷ためすきギ用鳩すき桶〃のスクリーンの一ヒに、ス
クリーン外周のフランジ寸法に裁断した厚さ約50 /
Jのビスコース加工により削氷性をもたせた薄層和紙を
敷いC1すき桶〃をセットし、和紙をスクリーン上に固
定した後“、純水をスクリーン上5mまで渋った。これ
に、上記多孔質層形成原液を注入し、紙抄きの要領によ
シ掻き混ぜて均一分散させた上、水切りをして、和紙上
に黒鉛粒子と石綿繊維からなる複合多孔%、Iv4を形
成させた。
On the other hand, on one screen of a pigeon plow box for paper making, which has a paper making screen measuring 10 rrn in length and 25 rrn in width, a sheet of paper with a thickness of about 50 mm cut to the flange size of the outer periphery of the screen was used.
After setting the C1 suki-tub with a thin layer of washi paper made with J's viscose processing to give it ice-shaving properties and fixing the washi paper on the screen, pure water was poured up to 5 m above the screen. A layer-forming stock solution was injected, stirred in the manner of papermaking to uniformly disperse it, and then drained to form a composite porosity, Iv4, consisting of graphite particles and asbestos fibers on the Japanese paper.

次いで風乾により乾燥させた後、スクリーンより剥離し
て電気炉に移し、160℃で50分加熱焼成して粗面膜
を完成させた。和紙上の多孔質層の厚みは平均126±
15μ、多孔度は72チであった。
The film was then air-dried, peeled off from the screen, transferred to an electric furnace, and fired at 160° C. for 50 minutes to complete a rough surface film. The average thickness of the porous layer on Japanese paper is 126±
The porosity was 15μ and the porosity was 72μ.

かくして得た粗面換金、電解面積2.5dm”のイオン
交換脱法竪型電解槽に装着し電解試験を行った。イオン
交換膜はデーポン社のナフィオン901を、陽極は、チ
タン劇エキスバンドメタル(長径6簡×短径3.5 t
ar+ )の表面に酸化ルテニウムとイリジウムを被覆
させたDSE電極を、陰極は5US310S材エキスバ
ンドメタル(長径6嘔×短径15 vns )に溶射し
た活性電極を用い、陰極とイオン交換膜の間に粗面膜を
挿入した上、スプリングによシ拡張可能とした陽極を約
0.15 Kf/cdで加圧接触させて極間距離を約1
1.5 mに調節し、陽極室食塩濃度を20Of/Vに
、陰極室水酸化ナトリウム濃度を32重量%、温度90
℃に保持して電解を行ったところ、極間電圧は次の通シ
であった。
An electrolytic test was carried out by attaching the thus obtained rough surface to an ion exchange removal vertical electrolytic cell with an electrolysis area of 2.5 dm.The ion exchange membrane was Dapon's Nafion 901, and the anode was Titanium Exband Metal 6 long diameter x 3.5 t short diameter
A DSE electrode whose surface is coated with ruthenium oxide and iridium (ar+) is used, and the cathode is an active electrode sprayed on 5US310S extended metal (length: 6mm x width: 15vns), and between the cathode and the ion exchange membrane. After inserting the rough surface membrane, the anode, which can be expanded by a spring, is brought into contact with pressure at about 0.15 Kf/cd, and the distance between the electrodes is set to about 1.
1.5 m, the anode chamber salt concentration was 20Of/V, the cathode chamber sodium hydroxide concentration was 32% by weight, and the temperature was 90%.
When electrolysis was performed while maintaining the temperature at ℃, the voltage between electrodes was as follows.

電流密度(A/dm”)   極間電圧(V)20  
      2.94 3〇        五16 又通常、極間約2mm以下で現れる摺電圧の瞬間バラツ
キの増加が解消して、変動幅が0〜5mVの極めて安定
した電圧を示した。
Current density (A/dm”) Electrode voltage (V) 20
2.94 30 516 In addition, the increase in instantaneous variation in sliding voltage that normally appears when the gap between electrodes is about 2 mm or less was eliminated, and an extremely stable voltage with a variation range of 0 to 5 mV was exhibited.

電解開始後、30A/dm’で30日運転したが、その
間の電圧は殆んど一定に推移し1、その間の電流効率は
93,8チであった。’% M、 30日で運転を停止
し、2日放置後再運転したが、直ぐに停止前の電圧に復
元した。
After the start of electrolysis, it was operated at 30 A/dm' for 30 days, during which the voltage remained almost constant at 1, and the current efficiency during that period was 93.8. '% M, The operation was stopped after 30 days and restarted after being left for 2 days, but the voltage immediately returned to the voltage before the stop.

再運転10日の後、停止E開槽し°C1粗面膜とイオン
交換膜の状態を駅路したところ、外見上粗面膜は綺麗に
・イオン交換膜に付着しており剥離等の異状は認められ
なかった。粗面膜をイオン交換膜よシ人為的に剥がした
ところ、和紙は溶解消滅しており、イオン交換膜面は通
常若干みられる斑痕などの汚れは全くなく、使用前とほ
ぼ同じ綺麗な状態が保たれていたう 実施例2 カナダ規格7クラス7Fのタリンタイル石綿繊維0.8
2を実施例1と同様に水酸化す) IJウノ・加熱処理
、水洗して得たpH&8の石綿含有水100m1J に
予め用意した粒径20μ以下の活性炭粉末2fを100
m1の水に分散させた分散液を混合し、これに60重i
iI%PTFEディスバージ冒ン液5m1lを添加して
得た多孔質層原液を、実施例1と同様の方法により抄紙
面積10 cm X 25 rynのためすき器を用い
てビスコース加]ニした厚み約50μの和紙上に均一に
p過して、活性炭、石綿の層を積層して、乾燥後160
℃で50分焼成した。得られた粗面膜を2分して電解面
積1 dm’の電解槽のイオン交換膜の陽極側と陰極側
に重ね合わせ、長径2 m xai 1 wasのニッ
ケル材エキスバンドメタルにRhコーティングした活性
陰極を、長径12解×短径81Wlのニッケル材エキス
バンドメタルニ溶接してなる二層電極の上に配置し、陰
極と同じ二層形状でチタン材の上にptと工rをコーテ
ィングし拡張可能なスプリング構造とした陽極と対面さ
せて、約0.1 Kq/dで圧着し、実質上の極間距離
を0.6鴫として電解したところ次の結果が得られた。
After restarting operation for 10 days, the tank was stopped and the tank was opened at °C.The conditions of the rough membrane and ion exchange membrane were inspected.The rough membrane appeared to be clean and adhered to the ion exchange membrane, and no abnormalities such as peeling were observed. I couldn't. When the rough surface membrane was artificially peeled off from the ion exchange membrane, the Japanese paper had dissolved and disappeared, and the ion exchange membrane surface was free from any stains such as spots that are normally seen, and remained almost as clean as before use. Drooping Example 2 Canadian Standard 7 Class 7F Tallinn Tile Asbestos Fiber 0.8
2 was hydroxylated in the same manner as in Example 1) 100ml of activated carbon powder with a particle size of 20μ or less prepared in advance was added to 100ml of asbestos-containing water (pH &8) obtained by IJ Uno heat treatment and washing with water.
Mix the dispersion in 1 m of water, add 60 m
A porous layer stock solution obtained by adding 5 ml of iI% PTFE disverging solution was added with viscose using a plow to make a paper making area of 10 cm x 25 ryen in the same manner as in Example 1. Pass it evenly on 50μ Japanese paper, layer activated carbon and asbestos, and dry it to 160μm.
It was baked at ℃ for 50 minutes. The obtained rough membrane was divided into two halves and placed on the anode and cathode sides of an ion exchange membrane in an electrolytic cell with an electrolysis area of 1 dm' to form an active cathode made of nickel extract band metal with a major axis of 2 m xai 1 was coated with Rh. is placed on a two-layer electrode made by welding a nickel material expanded metal with a length of 12 mm and a short diameter of 81 Wl, and can be expanded by coating the titanium material with PT and R in the same two-layer shape as the cathode. The electrode was placed facing an anode having a spring structure, and was crimped at about 0.1 Kq/d, and electrolysis was conducted with the effective distance between the electrodes being 0.6 mm. The following results were obtained.

電流密度(A/dm”)   極間電圧(V)20  
             2.9230      
         3.13電流密度30A/dm″、
水酸化ナトリウム濃度6゜wtチ、温度90℃で10日
間運転1.だが、瞬間変動幅の極めて小さい安定した電
圧で推移し、こめ間の電流効率は93.8チであった。
Current density (A/dm”) Electrode voltage (V) 20
2.9230
3.13 Current density 30A/dm'',
1. Operation for 10 days at a sodium hydroxide concentration of 6°wt and a temperature of 90°C. However, the voltage remained stable with extremely small instantaneous fluctuations, and the current efficiency between the temples was 93.8.

比較例1 粗面膜を挿入せずイオン交換膜と陽極の距離を0咽、イ
オン変換膜と陰極の距離を2唄とした以外は実施例1と
同じ条件で電解槽を組立て10日間運転したところ、次
の結果が得られた。
Comparative Example 1 An electrolytic cell was assembled and operated for 10 days under the same conditions as in Example 1, except that no rough membrane was inserted and the distance between the ion exchange membrane and the anode was set to 0 and the distance between the ion exchange membrane and the cathode was set to 2. , the following results were obtained.

電流密度(A/dm’)   極間電圧(V)20  
              3.0130     
           3.24なお、電圧の瞬間変動
幅は±14mVを示し、この間の電流効率は94.4%
であった。
Current density (A/dm') Electrode voltage (V) 20
3.0130
3.24 The instantaneous voltage fluctuation range is ±14 mV, and the current efficiency during this period is 94.4%.
Met.

比較例2 粗面膜を挿入せず、イオン交換膜と陽極の距離を0燗、
イオン交換膜と陰極の距離を2輔とした以外は実施例2
と同じ条件で電解槽を組立て、15日間運転したところ
、次の結果が得られた。
Comparative Example 2 Without inserting the rough membrane, the distance between the ion exchange membrane and the anode was set to 0.
Example 2 except that the distance between the ion exchange membrane and the cathode was 2 feet.
When an electrolytic cell was assembled under the same conditions as above and operated for 15 days, the following results were obtained.

電流密度(A/dm’)   極間電圧(V)2 〇 
              五〇〇5 〇     
          五22電圧の瞬間変動幅は±18
mVX電流効率は94.2チであった。
Current density (A/dm') Voltage between poles (V)2 〇
5005 〇
522 The instantaneous fluctuation range of voltage is ±18
The mVX current efficiency was 94.2chi.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るイオン交換脱法電解槽の一例を
示す縦断面図、第2図は、同じく要部の拡大断面図であ
る。 1・・・・・・陰極 11・・・・・・複合膜 12・・・・・・陽イオン文換膜 13・・・・・・溶解性膜 14・・・・・・粗面膜 19・・・・・・陽極
FIG. 1 is a longitudinal cross-sectional view showing an example of an ion-exchange removal electrolytic cell according to the present invention, and FIG. 2 is an enlarged cross-sectional view of the main parts. 1... Cathode 11... Composite membrane 12... Cation exchange membrane 13... Soluble membrane 14... Rough surface membrane 19. ·····anode

Claims (3)

【特許請求の範囲】[Claims] (1)陽イオン交換膜の陰極又は/および陽極面側に、
電解によシ溶解する物質を介して液透過性及び気泡離脱
性を有する粗面膜を一体的に重ね合わせて複合膜を形成
し、前記粗面膜を対向する電極に密着させたことを特徴
とするイオン交換膜法菟解槽。
(1) On the cathode and/or anode side of the cation exchange membrane,
A composite membrane is formed by integrally overlapping rough membranes having liquid permeability and bubble separation properties through a substance that dissolves by electrolysis, and the rough membrane is brought into close contact with an opposing electrode. Ion exchange membrane method decomposition tank.
(2)電解により溶解する物質が薄層和紙である特許請
求の範囲第(1)項に記載のイオン交換脱法電解槽。
(2) The ion exchange dehydration electrolytic cell according to claim (1), wherein the substance to be dissolved by electrolysis is thin Japanese paper.
(3)粗面膜が、炭素粉末と石綿繊維と結合剤とからな
る特rt’請求の範囲第(1)項又は第(2)項に記載
のイオン交換膜法゛凋解槽。
(3) The ion-exchange membrane method decomposition tank according to claim (1) or (2), wherein the rough surface membrane is composed of carbon powder, asbestos fibers, and a binder.
JP57143391A 1982-08-20 1982-08-20 Electrolytic cell by ion exchange membrane Pending JPS5935689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143391A JPS5935689A (en) 1982-08-20 1982-08-20 Electrolytic cell by ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143391A JPS5935689A (en) 1982-08-20 1982-08-20 Electrolytic cell by ion exchange membrane

Publications (1)

Publication Number Publication Date
JPS5935689A true JPS5935689A (en) 1984-02-27

Family

ID=15337671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143391A Pending JPS5935689A (en) 1982-08-20 1982-08-20 Electrolytic cell by ion exchange membrane

Country Status (1)

Country Link
JP (1) JPS5935689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139545A (en) * 1983-12-07 1984-08-10 Daigou Giken Kk Apparatus for manufacturing cylinder case of dry cell
WO2015098769A1 (en) * 2013-12-25 2015-07-02 旭硝子株式会社 Production method for fluorinated cation exchange membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139545A (en) * 1983-12-07 1984-08-10 Daigou Giken Kk Apparatus for manufacturing cylinder case of dry cell
WO2015098769A1 (en) * 2013-12-25 2015-07-02 旭硝子株式会社 Production method for fluorinated cation exchange membrane
US11273435B2 (en) 2013-12-25 2022-03-15 AGC Inc. Production method for fluorinated cation exchange membrane

Similar Documents

Publication Publication Date Title
US4364803A (en) Deposition of catalytic electrodes on ion-exchange membranes
CN1314153C (en) Cell unit of solid polymeric electrolyte type fuel cell
US4417959A (en) Electrolytic cell having a composite electrode-membrane structure
JPH0125836B2 (en)
US3055811A (en) Electrolysis with improved platinum plated titanium anode and manufacture thereof
JPS6016518B2 (en) Ion exchange membrane electrolyzer
JP5632780B2 (en) Electrolytic cell manufacturing method
JPH07278864A (en) Gas diffusion electrode
JPH07331475A (en) Method for electrolyzing brine
JPS61250189A (en) Production of nico204 catalyst-containing anode for electrolysis of sodium hydroxide solution
KR910001950B1 (en) Electrode structure and process for fabricating the same
CN110219012A (en) Ion-exchange membrane electrolyzer
US4752369A (en) Electrochemical cell with improved energy efficiency
US4738741A (en) Method for forming an improved membrane/electrode combination having interconnected roadways of catalytically active particles
JPS5935689A (en) Electrolytic cell by ion exchange membrane
JPH08283979A (en) Gas diffusing electrode and electrolytic method using the electrode
US3923628A (en) Diaphragm cell chlorine production
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
US4560461A (en) Electrolytic cell for use in electrolysis of aqueous alkali metal chloride solutions
JPS5935692A (en) Composite membrane for electrolysis
US4162949A (en) Reduction of steel cathode overpotential
JPS622036B2 (en)
JP3769492B2 (en) Performance recovery method of gas diffusion electrode
JPH0610179A (en) Method for electrolysis using polymer additive for film tank operation
JP3264534B2 (en) Gas electrode structure and electrolysis method using the structure