JPS5935435B2 - Surface coated cemented carbide parts - Google Patents

Surface coated cemented carbide parts

Info

Publication number
JPS5935435B2
JPS5935435B2 JP4061579A JP4061579A JPS5935435B2 JP S5935435 B2 JPS5935435 B2 JP S5935435B2 JP 4061579 A JP4061579 A JP 4061579A JP 4061579 A JP4061579 A JP 4061579A JP S5935435 B2 JPS5935435 B2 JP S5935435B2
Authority
JP
Japan
Prior art keywords
cemented carbide
layer
hardness
base
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4061579A
Other languages
Japanese (ja)
Other versions
JPS55134107A (en
Inventor
俊一 村井
武志 阿部
頼嗣 細谷
正実 粥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP4061579A priority Critical patent/JPS5935435B2/en
Publication of JPS55134107A publication Critical patent/JPS55134107A/en
Publication of JPS5935435B2 publication Critical patent/JPS5935435B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Description

【発明の詳細な説明】 この発明は、すぐれた耐摩耗性および耐塑性変形性を有
し、かつ靭性に富んだ、特に切削工具として使用した場
合に中仕上げから荒切削の領域においてすぐれた切削性
能を示す表面被覆超硬合金1 部材に関するものである
Detailed Description of the Invention The present invention provides a cutting tool that has excellent wear resistance and plastic deformation resistance, is rich in toughness, and has excellent cutting ability in the range from semi-finishing to rough cutting, especially when used as a cutting tool. Surface-coated cemented carbide showing performance 1 This relates to a member.

従来、例えば炭化タングステン(以下WCで示す)基超
硬合金部材の表面に、周期律表の4a、5a、および6
a族の金属の炭化物、窒化物、炭窒化物、炭酸化物、お
よび炭酸窒化物、並びに酸・ 化アルミニウム、さらに
これらの2種以上の固溶体からなる群のうちの1種の単
層またの2種以上の多重層からなる被覆層を形成した表
面被覆超硬合金部材は公知であり、その一部は広く実用
に供されている。
Conventionally, for example, on the surface of a tungsten carbide (hereinafter referred to as WC)-based cemented carbide member, 4a, 5a, and 6 of the periodic table were applied.
A single layer or two of a group consisting of carbides, nitrides, carbonitrides, carbonates, and carbonitrides of group A metals, aluminum oxides and oxides, and solid solutions of two or more of these. BACKGROUND ART Surface-coated cemented carbide members having a coating layer composed of multiple layers or more are known, and some of them are widely used in practical use.

しかし、上記従来表面被覆超硬合金部材においては、上
記被覆層は超硬合金基体に比して硬質ではあるが、脆弱
であるために、超硬合金基体のみの場合より、はるかに
低い応力で前記被覆層にはクラツクが発生し易く、また
超硬合金基体の表面に被覆層を形成するに際して、表面
被覆法として広く用いられている化学蒸着法を適用した
場合、温度1000〜1100℃の高温で蒸着処理が行
なわれるため、その冷却過程における超硬合金基体と被
覆層との熱膨張係数の違いによつて被覆層には引張り応
力が加わるようになることから、クラツクが発生する場
合があり、このように一旦被覆層にクラツクが発生する
と、例えば切削工具として使用した場合、クラツクの先
端部に切削応力が集中するために、クラツクは急速に超
硬合金基体の内部に伝幡し、ついには切刃を欠損に至ら
しめるという問題点があつた。
However, in the above-mentioned conventional surface-coated cemented carbide member, the coating layer is harder than the cemented carbide base but is brittle, so the stress is much lower than in the case of only the cemented carbide base. Cracks are likely to occur in the coating layer, and when a chemical vapor deposition method, which is widely used as a surface coating method, is applied to form a coating layer on the surface of a cemented carbide substrate, a high temperature of 1000 to 1100°C is applied. During the cooling process, tensile stress is applied to the coating layer due to the difference in thermal expansion coefficient between the cemented carbide substrate and the coating layer, which may cause cracks. Once a crack occurs in the coating layer, for example, when used as a cutting tool, the cutting stress is concentrated at the tip of the crack, so the crack rapidly propagates inside the cemented carbide base, and finally There was a problem that the cutting edge could be damaged.

そこで、上記従来表面被覆超硬合金部材における超硬合
金基体の組成を靭性に富んだものにしてクラツクの伝幡
を阻止することも考えられたが、このように超硬合金基
体を靭性に富んだものにすると、反面耐塑性変形性およ
び耐摩耗性が劣化したものになるのを避けることができ
ず、したがつて、このような状態の表面被覆超硬合金部
材の使用に際しては、重負荷の加わる切削領域で所望の
性能が得られないとともに、耐摩耗性、耐熱性、耐溶着
性、および耐酸化性などの特性にすぐれた被覆層が摩耗
により消滅した後は、前記の特姓に劣る超硬合金基体が
露出するために、その摩耗が急速に進行するという問題
がある。
Therefore, it has been considered to prevent the propagation of cracks by making the composition of the cemented carbide base in the conventional surface-coated cemented carbide member rich in toughness. On the other hand, if the surface-coated cemented carbide parts are used in such conditions, it is impossible to avoid deterioration in plastic deformation resistance and wear resistance. If the desired performance cannot be obtained in the cutting area where the There is a problem in that the inferior cemented carbide substrate is exposed and its wear progresses rapidly.

すなわち、前記表面被覆超硬合金部材を、例えば切削工
具として鋼の切削に使用した場合、工具すくい面に形成
されるクレータ摩耗は、被覆層の摩耗による消滅後、急
速に発達し、ついに切刃陵に達し、切刃を欠損に至らし
めるという現象や、さらに旋削加工により形成される仕
上面の粗さは、工具前逃げ面の境界摩耗と密接な関係が
あり、一方この境界摩耗は、境界領域における具の酸化
反応、アブレシブ摩粍、および工具と被削材との拡散現
象と密接な関係があると考えられていることから、前記
表面被覆超硬合金部材においては、その境界部において
、耐酸化性および耐溶着性にすぐれ、かつ硬い(耐アブ
レシブ摩耗性にすぐれる)被覆層が摩滅すると、同様に
これらの特性に劣る超硬合金基体が露出し、急激に境界
摩耗が進行するため、ブランク摩耗およびクレータ摩耗
が少ないにもかかわらず、仕上面粗さの劣化により工具
寿命に至るという現象などに見られる通りである。また
、一方、上記従来表面被覆超硬合金部材において、耐摩
粍性を向上させる目的で、その被覆層の層厚を厚くする
ことも考えられるが、あまり被覆層を厚くすると急激な
靭性低下をきたすようになり、このように被覆層の層厚
は靭性面から制限を受けるものである。
That is, when the surface-coated cemented carbide member is used, for example, as a cutting tool for cutting steel, the crater wear formed on the rake face of the tool disappears due to wear of the coating layer, then rapidly develops, and finally the cutting edge The phenomenon of reaching the ridge and causing the cutting edge to break, as well as the roughness of the finished surface formed by turning, are closely related to the boundary wear on the front flank of the tool.On the other hand, this boundary wear It is thought that there is a close relationship with the oxidation reaction of the tool, abrasive wear, and the diffusion phenomenon between the tool and the workpiece in the boundary area of the surface-coated cemented carbide member. When the coating layer, which has excellent oxidation resistance, welding resistance, and hardness (excellent abrasive wear resistance) is worn away, the cemented carbide base, which is also inferior in these properties, is exposed, and boundary wear rapidly progresses. This can be seen in the phenomenon that, despite low blank wear and crater wear, the tool life is shortened due to deterioration of the finished surface roughness. On the other hand, in the above-mentioned conventional surface-coated cemented carbide members, it is possible to increase the thickness of the coating layer for the purpose of improving wear resistance, but if the coating layer is made too thick, the toughness will drop sharply. As described above, the thickness of the coating layer is limited in terms of toughness.

そこで、本発明者等は、上述のような観点から、上記従
来表面被覆超硬合金部材のもつ問題点を解決して、耐摩
耗性および耐塑性変形性にすぐれ、かつ靭囲にも富んだ
表面被覆超硬合金部材を得べく研究を行なつた結果、(
a)被覆層直下における超硬合金基体の表面部の物剛を
、被覆性と超硬合金基体内部との中間的な物曲を有する
硬化層とすると、前記超硬合金基体の靭性低下を抑制し
た上で、耐摩耗性および耐塑性変形性の大幅な向上をは
かることができること。
Therefore, from the above-mentioned viewpoint, the present inventors solved the problems of the conventional surface-coated cemented carbide members and created a material that has excellent wear resistance and plastic deformation resistance, and is also rich in toughness. As a result of research to obtain surface-coated cemented carbide members, (
a) When the hardness of the surface portion of the cemented carbide substrate immediately below the coating layer is a hardened layer having an intermediate curvature between the covering property and the inside of the cemented carbide substrate, a decrease in toughness of the cemented carbide substrate is suppressed. Furthermore, it is possible to significantly improve wear resistance and plastic deformation resistance.

(b)上記超硬合金基体の表面部の硬化層(以下表面硬
化層という)の直下に、超硬合金基体の内部より軟らか
く、靭性に富んだWC一鉄族金属系合金からなる軟化層
{以下中間軟化層という)を形成すると、被覆層よりの
クラツクの伝幡が抑制でき、靭囲の大幅な向上がはかれ
ること。
(b) Immediately below the hardened layer on the surface of the cemented carbide base (hereinafter referred to as the hardened surface layer), a softened layer made of a WC-iron group metal alloy that is softer and more tough than the inside of the cemented carbide base { By forming an intermediate softening layer (hereinafter referred to as an intermediate softening layer), propagation of cracks from the coating layer can be suppressed, and the toughness can be significantly improved.

以上(a)および(b)に示される知見を得たのである
。この発明は、上記知見にもとづいてなされたものであ
つて、超硬合金基体の表面に、周期律表の4a,5a,
および6a族の金属の炭化物、窒化物、炭窒化物,炭酸
化物、および炭酸窒化物、並びに酸化アルミニウム、さ
らにこれらの2種以上の固溶体からなる群のうちの1種
の単層または2種以上の多重層からなる層厚1〜20μ
mの被覆層を形成した表面被覆超硬合金部材において、
上記超硬合金基体の内部を、 炭化タングステン:40〜95%、 周期律表の4a,5a,および6a族の金属の炭化物、
窒化物、および炭窒化物のうちの1種または2種以上か
らなるNaCl型結晶構造化合物:5〜30%、鉄族金
属のうちの1種または2種以上:5〜30%、からなる
組成で構成し、また上記超硬合金基体の表面部を、その
表面より1〜30μmの深さに亘つて、周期律表の4a
,5a,および6a族の金属の炭窒化物のうちの1種ま
たは2種以上からなるNaCl型結晶構造化合物:70
〜98%、鉄族金属のうちの1種または2種以上:2〜
30%からなる組成を有し、かつ基体内部の硬さよりビ
ツカース硬さで5〜50%硬化した表面硬化層で構成し
、さらに上記基体内部と表面硬化層の間に、前記表面硬
化層の直下より2〜50μmの深さに亘つて、炭化タン
グステンリ70〜95%、 鉄族金属のうちの1種または2種以上:5〜30%、(
以上容量%)からなる組成を有し、かつ基体内部の硬さ
よりビツカース硬さで5〜50%軟化した中間軟化層を
介在させた組織とすることによつてすぐれた靭性、耐摩
粍性、および耐塑性変形hを付与した表面被覆超硬合金
部材に特徴を有するものである。
The findings shown in (a) and (b) above were obtained. This invention was made based on the above knowledge, and it is possible to coat the surface of the cemented carbide base with 4a, 5a,
and carbides, nitrides, carbonitrides, carbonates, and carbonitrides of group 6a metals, aluminum oxide, and a single layer or two or more of the group consisting of solid solutions of two or more of these metals. Layer thickness 1-20μ consisting of multiple layers of
In a surface-coated cemented carbide member in which a coating layer of m is formed,
The inside of the cemented carbide base is made of tungsten carbide: 40 to 95%, carbides of metals from groups 4a, 5a, and 6a of the periodic table,
A composition consisting of a NaCl-type crystal structure compound consisting of one or more types of nitrides and carbonitrides: 5 to 30%, and one or more types of iron group metals: 5 to 30%. 4a of the periodic table, and the surface part of the cemented carbide base is covered with 4a of the periodic table to a depth of 1 to 30 μm from the surface.
, 5a, and 6a group metal carbonitrides: NaCl type crystal structure compound consisting of one or more types of metal carbonitrides: 70
~98%, one or more iron group metals: 2~
The hardened surface layer has a composition of 30% and is 5 to 50% harder in terms of Vickers hardness than the hardness inside the base, and further, between the inside of the base and the hardened surface layer, directly below the hardened surface layer. At a depth of 2 to 50 μm, 70 to 95% of tungsten carbide, 5 to 30% of one or more iron group metals, (
or more (by volume%), and has an intermediate softened layer that is 5 to 50% softer in terms of Vickers hardness than the internal hardness of the base, resulting in excellent toughness, abrasion resistance, and It is characterized by a surface-coated cemented carbide member that has been given plastic deformation resistance h.

つぎに、この発明の表面被覆超硬合金部材における表面
硬化層、中間軟化層、および超硬合金基体内部組成につ
いて以下に詳述する。
Next, the surface hardening layer, intermediate softening layer, and internal composition of the cemented carbide substrate in the surface-coated cemented carbide member of the present invention will be described in detail below.

(a)表面硬化層 上記のように、表面硬化層を、化学的に安定な周期律表
の4a,5a,および6a族の金族の炭窒化物のうちの
1種または2種以上からなるNaCl型結晶構造化合物
(以下NaCl型化合物という)と、鉄族金属のうちの
1種または2種以上とからなる超硬合金で構成すること
によつて、靭性低下が抑制され、しかも被覆層が摩滅し
た後も、すぐれた耐摩耗性をもつようになるのである。
(a) Hardened surface layer As mentioned above, the hardened surface layer is made of one or more chemically stable metal carbonitrides of Groups 4a, 5a, and 6a of the periodic table. By using a cemented carbide made of a NaCl-type crystal structure compound (hereinafter referred to as a NaCl-type compound) and one or more iron group metals, a decrease in toughness is suppressed, and the coating layer is Even after being worn out, it has excellent wear resistance.

すなわち、例えば超硬合金部材を切削工具として鋼の切
削に使用した場合、前記切削工具に生ずるクレータ摩耗
は、工具損傷をもたらす凝着、拡散、および腐食(酸化
)などによる摩耗に主として帰因して発生するものであ
るが、超硬合金における結合相の量と、同じく超硬合金
を構成する。例えばWC,TlC,TaC,およびNb
Cなどの硬質相の化学的安定性とに密接な関係をもち、
例えば結晶構造が六方晶のWCを硬質相としたWC−C
O系超硬合金では、鋼切削においてクレータ摩耗の発達
が著しく、切削工具としては適さないものであるのに対
して、硬質相形成成分としてNaCl型結晶構造をもつ
TiC,TaC,およびNbCを含有したWC−TaC
−NbC−CO系超硬合金においては、すぐれた耐クレ
ータ摩粍性を示し、鋼切削工具として適し、広く使用さ
れているという公知の事実、さらにTiCを主成分とし
た硬質相の超硬合金は、一段とすぐれた耐クレータ摩粍
性をもつという公知の事実から、六方晶結晶構造をもつ
WCに比してすぐれた化学的安定性を有するNaCl型
化合物からなる硬質相と、鉄族金属からなる結合相とで
構成された層を、超硬合金基体の表面部に形成すれば、
表面被覆超硬合金部材の耐摩粍性(耐クレータ摩粍性)
が大幅に向上するようになることが理解されるのである
。また、表面硬化層における成分組成範囲に関して、結
合相形成成分である鉄族金属の含有量が2%未満では、
相対的に硬質相形成成分であるNaCl型化合物の含有
量が98%を越えて多くなり過ぎて所望の靭性を確保す
ることができず、一方30%を越えて鉄族金属を含有さ
せると、相対的にNaCl型化合物の含有量が70%未
満と少なくなり過ぎて、所望の耐摩耗性を確保すること
ができなくなることから、表面硬化層の成分組成範囲を
、NaCl型化合物:70〜98%、鉄族金属:2〜3
0%(以上容量%)と定めたのである。
That is, for example, when a cemented carbide member is used as a cutting tool to cut steel, crater wear that occurs on the cutting tool is mainly attributable to wear due to adhesion, diffusion, corrosion (oxidation), etc. that cause tool damage. However, the amount of binder phase in cemented carbide and the amount of binder phase in cemented carbide constitute the same. For example WC, TlC, TaC, and Nb
It has a close relationship with the chemical stability of hard phases such as C,
For example, WC-C with a hard phase of WC with a hexagonal crystal structure
In O-based cemented carbide, crater wear develops significantly when cutting steel, making it unsuitable for use as a cutting tool, whereas O-based cemented carbide contains TiC, TaC, and NbC with an NaCl-type crystal structure as hard phase-forming components. WC-TaC
- It is a well-known fact that NbC-CO based cemented carbide exhibits excellent crater abrasion resistance, is suitable as a steel cutting tool, and is widely used; Due to the well-known fact that WC has superior crater abrasion resistance, it has a hard phase consisting of a NaCl-type compound that has superior chemical stability compared to WC with a hexagonal crystal structure, and a hard phase consisting of an iron group metal. If a layer consisting of a binder phase is formed on the surface of a cemented carbide base,
Abrasion resistance of surface-coated cemented carbide parts (crater abrasion resistance)
It is understood that this will result in a significant improvement. Regarding the component composition range in the surface hardening layer, if the content of iron group metal, which is a binder phase forming component, is less than 2%,
If the content of the NaCl type compound, which is a relatively hard phase-forming component, exceeds 98%, it is impossible to secure the desired toughness, and on the other hand, if the content exceeds 30% of the iron group metal, Since the content of the NaCl-type compound is relatively too small (less than 70%) and it becomes impossible to secure the desired wear resistance, the component composition range of the surface hardening layer is changed to NaCl-type compound: 70 to 98%. %, iron group metal: 2-3
It was set at 0% (capacity %).

また、上記のように被覆層を有する表面被覆超硬合金切
削工具は、被覆層を有さない超硬合金切削工具に比して
、高送りおよび高切り込みなどの発熱量の高い切削領域
で大幅に改善された耐塑性変形性を示すものの、硬質物
質からなる被覆層形成によつて靭性が低下するのを避け
ることができないことから、超硬合金基体には、硬さを
犠牲にして靭性に富んだ材料を選択せねはならず、この
結果超硬合金基体の耐塑性変形性は満足するものにはな
つていないのが現状であることは上記のとおりである。
In addition, as mentioned above, surface-coated cemented carbide cutting tools with a coating layer are significantly more effective in cutting areas with high heat generation, such as high feed and high depth of cut, compared to cemented carbide cutting tools without a coating layer. Although it shows improved plastic deformation resistance, it is impossible to avoid a decrease in toughness due to the formation of a coating layer made of a hard material. As mentioned above, it is necessary to select a material with a high quality of material, and as a result, the plastic deformation resistance of the cemented carbide substrate is currently unsatisfactory.

一方、一般に、切削工具の場合、被削材中の硬粒子の引
かき作用による摩耗、および切刃の塑性変形による摩耗
に帰因する工具損傷は、切削工具の硬さと密な関係があ
るのであつて、特に後者の工具損傷は、切削時に発生す
る熱により基体たる超硬合金が軟化して、切削時に刃先
に加わる応力に抗しきれずに変形することに帰因するも
のである。このように表面被覆超硬合金部材の塑性変形
は、超硬合金基体のもつ硬さと熱伝導率とに密接な関係
があるのであつて、本発明者等の研究によつて、表面被
覆超硬合金部材における超硬合金基体の表面より1〜3
0μmの深さを、基体内 1部硬さよりビツカース硬さ
で5〜50%硬化したものとすると、前記超硬合金基体
の靭性低下を抑制した状態で、その耐塑性変形性を著し
く向上させることができるという結論が得られたのであ
る。なお、この場合、基体内部に比してビツカース硬さ
で5%未満の硬化では、所望の改善効果が得られず、一
方50%を越えて硬化させると、靭性低下が著しいこと
から、基体内部硬さよりビツカース硬さで5〜50%硬
化させたのであ 〉り、またその深さ(層厚)が1μm
未満では、同様に所望の改善効果がなく、し力化30μ
mを越えた層厚にすると靭性低下をきたすという理由に
より、その深さ(層厚)を1〜30Itmと定めたので
ある。
On the other hand, in the case of cutting tools, tool damage caused by wear due to the scratching action of hard particles in the work material and wear due to plastic deformation of the cutting edge is generally closely related to the hardness of the cutting tool. Particularly, the latter type of tool damage is caused by the fact that the cemented carbide base is softened by the heat generated during cutting, and deforms without being able to withstand the stress applied to the cutting edge during cutting. In this way, the plastic deformation of a surface-coated cemented carbide member is closely related to the hardness and thermal conductivity of the cemented carbide base. 1 to 3 from the surface of the cemented carbide base in the alloy member
If the depth of 0 μm is hardened by 5 to 50% to the Bitkers hardness than the part hardness within the base, the plastic deformation resistance of the cemented carbide base can be significantly improved while suppressing a decrease in toughness of the base. The conclusion was that it is possible. In this case, if the hardness is less than 5% in terms of Bitkers hardness compared to the inside of the base, the desired improvement effect will not be obtained, while if it is hardened to more than 50%, the toughness will be significantly reduced. It was hardened by 5 to 50% to the Bitkers hardness, and the depth (layer thickness) was 1 μm.
If it is less than 30μ, the desired improvement effect will not be achieved.
The depth (layer thickness) was determined to be 1 to 30 Itm because a layer thickness exceeding m would cause a decrease in toughness.

(b)中間軟化層 上記のように表面被覆超硬合金工具の欠損は、通常被覆
層よりの超硬合金基体内部へのクラツク伝幡により生じ
ると考えられており、したがつてこの発明においては、
上記表面硬化層の直j下に2〜501tmの深さに亘つ
て、基体内部よリビツカース硬さで5〜50%軟化した
、WC:70〜95%、鉄族金属:5〜30%からなる
成分組成の靭性に富んだ軟化層を形成することによつて
、硬質被覆層よりのクラツクの伝幡を抑制すると共に、
強度および靭性の向上をはかつたのである。
(b) Intermediate Softened Layer As mentioned above, it is thought that cracks in a surface-coated cemented carbide tool are usually caused by propagation of cracks from the coating layer into the interior of the cemented carbide base. ,
Immediately below the surface hardening layer, over a depth of 2 to 501 tm, a layer made of WC: 70 to 95% and iron group metal: 5 to 30%, softened by 5 to 50% in terms of Ribbickas hardness from the inside of the base. By forming a softened layer with a high component composition, it suppresses the propagation of cracks from the hard coating layer, and
The aim was to improve strength and toughness.

なお、この場合、鉄属金属の含有量が5%未満では、相
対的にWCの含有量が95%を越えて多くなり過ぎて所
望の靭性改善効果が得られず、一方30%を越えて鉄族
金属を含有させると、相対的にWCの含有量が70%未
満と少なくなり過ぎて耐摩耗性および耐塑性変形性が低
下するようになることから、その成分組成範囲を、WC
:70〜95%、鉄族金属:5〜30%(以上容量%)
と定めたのである。また、基体内部に比してビツカース
硬さで5%未満の軟化では、所望の靭性改善効果を確保
することができず、一方50%を越えて軟化させると、
耐塑性変形性および耐摩耗性の低下が著しいことから、
中間軟化層の硬さを基体内部硬さよりビツカース硬さで
5〜50%軟化させた硬さとしたのである。さらに、そ
の深さ(層厚)が2μm未満では、同様に所望の靭性改
善効果が得られず、一方50μmを越えた層厚にすると
、著しい耐塑性変形性の低下をきたすことから、中間軟
化層の深さ(層厚)を2〜501tmと定めたのである
。−)超硬合金基体内部組成 超硬合金基体の内部は、被覆層および表面硬化層が摩耗
により摩滅した後においても所定の耐摩耗性をもつもの
でなければならないし、また中間軟化層と共に、部材に
靭性を付与するものでなければならない。
In this case, if the ferrous metal content is less than 5%, the WC content will be relatively too high, exceeding 95%, and the desired toughness improvement effect cannot be obtained; When iron group metals are included, the WC content becomes relatively too low (less than 70%), resulting in a decrease in wear resistance and plastic deformation resistance.
: 70-95%, iron group metal: 5-30% (capacity%)
It was established that In addition, if the softening is less than 5% in terms of Bitkers hardness compared to the inside of the base, the desired toughness improvement effect cannot be secured, whereas if it is softened by more than 50%,
Due to the significant decrease in plastic deformation resistance and wear resistance,
The hardness of the intermediate softened layer was set to be 5 to 50% softer in terms of Vickers hardness than the internal hardness of the base. Furthermore, if the depth (layer thickness) is less than 2 μm, the desired toughness improvement effect cannot be obtained, while if the layer thickness exceeds 50 μm, the plastic deformation resistance will be significantly reduced. The depth (layer thickness) of the layer was determined to be 2 to 501 tm. -) Internal composition of cemented carbide substrate The interior of the cemented carbide substrate must have a specified wear resistance even after the coating layer and surface hardening layer are worn away by wear, and together with the intermediate softening layer, It must impart toughness to the member.

しかしながら、結合相形成成分である鉄族金属の含有量
が5%未満では、部材に所望の靭性を確保することがで
きず、一方30%を越えて含有させると、被覆層および
表面硬化層が存在していても、切削時に加わる切削抵抗
に抗しきれず、切刃に著しい塑性変形が生じるようにな
ることから、その含有量を5〜30容量%と定めた。
However, if the content of the iron group metal, which is a binder phase-forming component, is less than 5%, the desired toughness cannot be secured in the member, while if the content exceeds 30%, the coating layer and hardened surface layer will deteriorate. Even if it were present, it would not be able to withstand the cutting resistance applied during cutting, resulting in significant plastic deformation of the cutting edge, so its content was set at 5 to 30% by volume.

また、NaCl型化合物は、化学的に安定な成分であり
、被覆層および表面硬化層が摩耗により摩滅した後にお
いても部材が所定の耐摩粍性を有するように含有される
成分であるが、その含有量が5%未満では所望の耐摩耗
性改善効果が得られず、一方30%を越えて含有させる
と、部材の靭性低下が著しくなることから、その含有量
を5〜30容量%と定めた。
In addition, the NaCl type compound is a chemically stable component, and is a component that is contained so that the member has a predetermined wear resistance even after the coating layer and the hardened surface layer are worn away due to wear. If the content is less than 5%, the desired effect of improving wear resistance cannot be obtained, while if the content exceeds 30%, the toughness of the member will be significantly reduced. Therefore, the content is set at 5 to 30% by volume. Ta.

なお、被覆層の層厚に関しては、その層厚が1μm未満
では所望の耐摩耗性改善効果が確保できず、一方20μ
mを越えた層厚にすると、靭性低下が著しいことから、
1〜201tmと定めた。
Regarding the thickness of the coating layer, if the layer thickness is less than 1 μm, the desired effect of improving wear resistance cannot be secured;
If the layer thickness exceeds m, the toughness decreases significantly, so
It was set as 1 to 201 tm.

また、この発明の表面被覆超硬合金部材における被覆層
は、通常の化学蒸着法、イオンプレーティング法、およ
びスパツタリング法などの被覆層形成手段によつて形成
することができる。
Further, the coating layer in the surface-coated cemented carbide member of the present invention can be formed by conventional coating layer forming methods such as chemical vapor deposition, ion plating, and sputtering.

さらに、この発明の表面被覆超硬合金部材における表面
硬化層および中間軟化層を有する超硬合金基体は、(a
)超硬合金基体の内部を構成する超硬合金に比して、焼
結後ビツカース硬さで5〜50%軟らかい硬さをもつた
中間軟化層を形成すべく、NaCl型化合物のうちの例
えばWC粉末と鉄族金属とを通常の粉末冶金法によつて
調合し、しかる後スラリーとなし、また別に同じく焼結
後ビツカース硬さで5〜50%硬い硬さをもつた表面硬
化層を形成すべく、NaCl型化合物粉末と鉄族金属と
を通常の粉末冶金法によつて調合してスラリーとなし(
この場合、いずれもその硬さはNaCl型化合物粉末の
粒度と鉄族金属粉末の配合量との関係で決まる)、つい
で超硬合金基体の内部を形成すべく通常の粉末冶金法に
よつて別途形成された圧粉体の表面に、まず前記のよう
にそれぞれ調製されたスラリーのうちの中間軟化層形成
のためのスラリーをN2雰囲気中において噴霧して2〜
50μmの厚さ付着させた後、減圧下で乾燥し、引続い
て表面硬化層形成のためスラリーを同様に1〜301t
mの厚さ付着させて乾燥し、最終的にこれら全体を通常
の粉末冶金法によつて焼結する方法。
Furthermore, the cemented carbide substrate having the surface hardening layer and the intermediate softening layer in the surface-coated cemented carbide member of the present invention has (a
) In order to form an intermediate softened layer having a hardness that is 5 to 50% softer in terms of Vickers hardness after sintering than the cemented carbide constituting the interior of the cemented carbide substrate, for example, NaCl type compounds are used. WC powder and iron group metal are mixed by a normal powder metallurgy method, then made into a slurry, and a hardened surface layer having a hardness of 5 to 50% of the Vickers hardness after sintering is also formed separately. In order to achieve this, NaCl-type compound powder and iron group metal were mixed together to form a slurry using a normal powder metallurgy method (
In this case, the hardness is determined by the relationship between the particle size of the NaCl-type compound powder and the amount of iron group metal powder), and then the inside of the cemented carbide base is formed separately by a normal powder metallurgy method. First, a slurry for forming an intermediate softened layer among the slurries prepared as described above was sprayed onto the surface of the formed green compact in an N2 atmosphere.
After depositing to a thickness of 50 μm, the slurry was dried under reduced pressure, and then 1 to 301 tons of slurry was deposited in the same manner to form a surface hardening layer.
A method of depositing the material to a thickness of m and drying it, and finally sintering the entire product using a conventional powder metallurgy method.

(b)基体内部を構成する超硬合金がNaCl型結晶構
造をもつ周期律表の4a,5a,および6a族の金属の
窒化物または炭窒化物を含有する場合には、予め通常の
粉末冶金法によつて焼結成形された所定組成の超硬合金
基体素材を、まずCOガス雰囲気中、超硬合金の液相出
現温度以上の温度に所定時間保持することによつて再焼
結し、続いてN2ガスを導入して雰囲気をCOガスとN
2ガスの混合ガス雰囲気として、再び超硬合金の液相出
現温度以上の温度に所定時間保持する方法。なお、この
場合表面硬化層および中間軟化層の組成、層厚、および
硬さは、PcO分圧、PcO+PN25+圧J)N2/
PCO+PN2比、および再焼結温度なでを調整するこ
とによつて所望のものとすることができる。などの方法
によつて製造することができる。ついで、この発明の表
面被覆超硬合金部材を実施例により説明する。実施例
1 超硬合金基体の内部における最終成分組成がWC−15
%CO−10%TaC−2%NbClO%TiC−5%
TiN(容量%)となるように、市販の原料粉末を配合
し、ボールミルにて48時間湿式混合し、乾燥した後、
15kg/m礒の圧力でプレスして圧粉体を成形し、こ
の圧粉体を真空中、温度1400℃に1時間保持して焼
結することによつてビツカース硬さ:1420をもつた
SNP432型スローアウエイチツプ素材を製造した。
(b) If the cemented carbide constituting the inside of the base body contains nitrides or carbonitrides of metals in Groups 4a, 5a, and 6a of the periodic table that have an NaCl type crystal structure, conventional powder metallurgy is used in advance. A cemented carbide base material of a predetermined composition sintered and formed by the method is first re-sintered by holding it at a temperature equal to or higher than the liquid phase appearance temperature of the cemented carbide in a CO gas atmosphere for a predetermined time, Next, N2 gas is introduced to change the atmosphere to CO gas and N.
A method in which a mixed gas atmosphere of two gases is maintained at a temperature higher than the liquid phase appearance temperature of the cemented carbide for a predetermined period of time. In this case, the composition, layer thickness, and hardness of the surface hardening layer and the intermediate softening layer are PcO partial pressure, PcO + PN25 + pressure J) N2/
A desired result can be obtained by adjusting the PCO+PN2 ratio and the resintering temperature. It can be manufactured by a method such as. Next, the surface-coated cemented carbide member of the present invention will be explained using examples. Example
1 The final component composition inside the cemented carbide base is WC-15.
%CO-10%TaC-2%NbClO%TiC-5%
Commercially available raw material powders were blended to give TiN (volume %), wet mixed in a ball mill for 48 hours, and dried.
SNP432 with a Vickers hardness of 1420 was formed by pressing at a pressure of 15 kg/m to form a compact, and by holding the compact in a vacuum at a temperature of 1400°C for 1 hour and sintering it. Manufactured throw-away tip material.

ついで、この結果得られたスローアウエイチツプ素材の
上下面および外周部に研摩加工を施すと共に、刃先にプ
レホーニングを施して所定形状とした後、20t0rr
の減圧下におけるCOガス雰囲気中、温度1400℃に
2時間保持して再焼結し、続いてN2ガスを導入してC
Oガス分圧:30t0rr,N2ガス分圧:270t0
rrの混合ガス減圧雰囲気とし、再度温度1400℃に
2時間保持の再焼結を施すことによつて、この発明にか
かる超硬合金基体たるスローアウエイチツプを製造した
。このスローアウエイチツプにおいては、表面より10
1J,mの深さに亘つて、ビツカース硬さ:Hv:16
20を有し、かつ57%TiClO%TiN−10%T
aC−2%NbC−3%CO−18%WC(以上容量%
)からなる組成をもつた表面硬質層が形成され、さらに
前記表面硬質層の直下から30μmの深さに亘つて、ビ
ツカース硬さ:Hv:1010を有し、かつWC一25
%CO(容量%)からなる組成をもつた中間軟化層が形
成されていた。ついで、上記スローアウエイチツプを化
学蒸着用処理炉内に装入し、大気圧下でTiC24:4
%,CH4:4%,H2:92%(容量%)からなる組
成を有するガスを導入しながら、温度:1050℃に2
時間保持することによつて、層厚:5μmのTlC層で
被覆された本発明表面被覆スローアウエイチツプを製造
した。
Next, the upper and lower surfaces and outer periphery of the resulting throw-away tip material were polished, and the cutting edge was prehoned to a desired shape.
Re-sintering was performed by holding the temperature at 1400°C for 2 hours in a CO gas atmosphere under a reduced pressure of
O gas partial pressure: 30t0rr, N2 gas partial pressure: 270t0
A throw-away chip, which is a cemented carbide base according to the present invention, was manufactured by re-sintering the product in a reduced pressure mixed gas atmosphere of RR and holding the temperature at 1400° C. for 2 hours. In this throw-away tip, 10
Vickers hardness: Hv: 16 over a depth of 1 J, m
20 and 57%TiClO%TiN-10%T
aC-2%NbC-3%CO-18%WC (capacity%
A hard surface layer having a composition of
An intermediate softened layer having a composition of %CO (volume %) was formed. Next, the throw-away chip was placed in a chemical vapor deposition furnace, and TiC24:4 was heated under atmospheric pressure.
%, CH4: 4%, H2: 92% (volume %) while introducing a gas at a temperature of 1050°C.
By holding for a period of time, a surface-coated throw-away chip according to the invention was produced which was coated with a TLC layer with a layer thickness of 5 μm.

また、比較の目的で、上記のように表面硬化層および中
間軟化層を形成することなく、上記のスローアウエイチ
ツプ素材の表面に、直接同一の条件でTiC層を被覆す
ることによつて比較表面被覆スローアウエイチツプを製
造した。
For the purpose of comparison, a TiC layer was directly coated on the surface of the above throwaway chip material under the same conditions without forming a surface hardening layer and an intermediate softening layer as described above. A coated throw-away tip was manufactured.

つぎに、上記本発明表面被覆スローアウエイチツプおよ
び比較表面被覆スローアウエイチツプについて) 被削材:SNCM−8(硬さ:HB25O)、切削速度
:200m/Minl送り:0.5能/Rev・) 切込み:2mm1 の条件で連続切削試験を行ない、切削時間に対する逃げ
面摩耗およびクレータ摩耗をそれぞ櫂u定した。
Next, regarding the above-mentioned surface-coated throw-away chip of the present invention and comparative surface-coated throw-away chip) Work material: SNCM-8 (hardness: HB25O), Cutting speed: 200 m/Minl Feed: 0.5 No./Rev.) Continuous cutting tests were conducted under conditions of depth of cut: 2 mm1, and flank wear and crater wear were determined as a function of cutting time.

この測定結果をそれぞれ第1図および第2図に示した。
図示されるように、本発明表面被覆スローアウエイチツ
プにおいては、比較表面被覆スローアウエイチツプに見
られるような急激な摩耗進行は認められず、すぐれた耐
摩耗性を示すことが明らかである。さらに、靭性を評価
する目的で、第3図および第4図にそれぞれ正面図およ
び側面図で示されるように、回転ドラム1の外周面上の
相互反対側位置に、長さ方向に沿つて角柱状被削材2を
嵌め込み固定し、図示の位置に上記チツプ3をあてがい
、被削材:SNCM−8(硬さ:HB25O)、切削速
度:100m/Minl送り:0.365m71/Re
v.、 切込み:2mm1 切削時間:3min1 の条件で断続切削試験を行ない、試験チツプ:50個の
欠損率(欠損チツプ数/試験チツプ数XlOO)を測定
した。
The measurement results are shown in FIG. 1 and FIG. 2, respectively.
As shown in the figure, the surface-coated throw-away chip of the present invention does not show the rapid progression of wear seen in the comparative surface-coated throw-away chip, and it is clear that it exhibits excellent wear resistance. Furthermore, for the purpose of evaluating toughness, as shown in FIGS. 3 and 4 in front and side views, respectively, angles are placed at opposite positions on the outer peripheral surface of the rotating drum 1 along the length direction. Insert and fix the columnar work material 2, apply the chip 3 to the position shown in the figure, work material: SNCM-8 (hardness: HB25O), cutting speed: 100 m/Minl feed: 0.365 m71/Re
v. An intermittent cutting test was conducted under the following conditions: depth of cut: 2 mm1 cutting time: 3 min1, and the defect rate (number of defective chips/number of test chips XlOO) of 50 test chips was measured.

この結果本発明表面被覆スローアウエイチツプは、欠損
率:4%を示し、すぐれた靭性を有するものであるのに
対して、比較表面被覆スローアウエイチツプは、欠損率
:8%を示し、靭性の劣るものであつた。実施例 2 超硬合金基体の内部における最終成分組成がWC−15
%CO−10%TaC−2%NbC一15%TiC(容
量%)となるように、市販の原料粉末を配合し、ボール
ミルにて48時間湿式混合し、乾燥し、プレスすること
によつて圧粉体を成形し、ついで、前記圧粉体の表面に
、別途予め用意したWC粉末:75%,CO粉末: 2
5%(容量%)からなる混合スラリーを30μmの厚さ
にN2ガス雰囲気中で一様に噴霧して減圧下で乾燥し、
引続いてTiC粉末:55%,TiN粉末:20%、T
aC粉末:5%、NbC粉末:5%、CO粉末:5%(
容量%)からなる混合粉末スラリーを同様に30μmの
厚さにN2ガス雰哄気中で一様に噴霧し、減圧下で乾燥
した。
As a result, the surface-coated throw-away chip of the present invention showed a chipping rate of 4% and had excellent toughness, whereas the comparative surface-coated throwaway chip showed a chipping rate of 8% and had excellent toughness. It was inferior. Example 2 The final component composition inside the cemented carbide base is WC-15
%CO - 10% TaC - 2% NbC - 15% TiC (volume %) by blending commercially available raw material powders, wet mixing in a ball mill for 48 hours, drying, and pressing. The powder was molded, and then WC powder: 75% and CO powder: 2, which were separately prepared in advance, were applied to the surface of the green compact.
A mixed slurry consisting of 5% (volume %) was uniformly sprayed to a thickness of 30 μm in a N2 gas atmosphere and dried under reduced pressure.
Subsequently, TiC powder: 55%, TiN powder: 20%, T
aC powder: 5%, NbC powder: 5%, CO powder: 5% (
A mixed powder slurry consisting of % by volume) was similarly uniformly sprayed to a thickness of 30 μm in a N2 gas atmosphere and dried under reduced pressure.

ついで、このように3重構造とした圧粉体を、真空雰囲
気IZ中で一様に噴霧し、減圧下で乾燥した。
Then, the green compact having the triple structure was uniformly sprayed in a vacuum atmosphere IZ and dried under reduced pressure.

ついで、このように3重構造とした圧粉体を、真空雰囲
気中、温度:1400℃に1時間保持して焼結すること
によつて本発明にかかる超硬合金基体たるSNU432
型スローアウエイチツプを製造した。この結果得られた
本発明かかるスローアウエイチツプにおいては、その表
面より27μmの深さに亘つて、ビツカース硬さ:Hv
l56Oを有し、かつTiC−16%TiN−5%Ta
C−5%NbC7%CO(容量%)からなる組成をもつ
た表面硬化層が形成され、さらにこの表面硬化層の直下
から26μmの深さに亘つて、ビツカース硬さ:Hll
2Oを有し、かつWC−21%CO(容量%)からなる
組成をもつた中間軟化層が形成されており、しかも内部
硬さ:Hvl45Oをもつものであつた。また、比較の
目的で、表面硬化層を形成するためのスラリーの組成を
、TiN粉末を含有しない、すなわちTiC粉末:85
%、TaC粉末:5%、NbC粉末:5%、CO粉末:
5%(容量%)からなる混合粉末スラリーとする以外は
、上記本発明スローアウエイチツプの製造におけると同
一の条件にて比較スローアウエイチツプを製造した。
Next, the powder compact having the triple structure was sintered by holding it at a temperature of 1400° C. for 1 hour in a vacuum atmosphere to obtain SNU432, which is the cemented carbide substrate according to the present invention.
Manufactured a throw-away chip. In the throwaway chip according to the present invention obtained as a result, the Vickers hardness: Hv
156O and TiC-16%TiN-5%Ta
A surface hardening layer having a composition consisting of C-5%NbC7%CO (volume %) is formed, and furthermore, from just below this surface hardening layer to a depth of 26 μm, the surface hardness has a Vickers hardness: Hll.
An intermediate softened layer was formed having a composition of 2O and WC-21%CO (volume %), and had an internal hardness of Hvl45O. In addition, for the purpose of comparison, the composition of the slurry for forming the surface hardening layer was changed to one containing no TiN powder, that is, TiC powder: 85
%, TaC powder: 5%, NbC powder: 5%, CO powder:
A comparative throw-away chip was manufactured under the same conditions as in the manufacture of the throw-away chip of the present invention, except that a mixed powder slurry consisting of 5% (volume %) was used.

この結果得られた比較スローアウエイチツプにおいては
、中間軟化層の組成、ビツカース硬さ、および層厚、並
びに内部組成および内部硬さについては上記本発明スロ
ーアウエイチツプと同じ値を示したが、表面硬化層につ
いては、層厚は同じであるが、その組成はTiC−5%
TaC−5%NbC7%CO(容量%)からなり、この
発明に定めた炭窒化物を含有しないものであり、ビツカ
ース硬さ:Hvl59Oを示すものであつた。つぎに、
上記本発明スローアウエイチツプおよび比較スローアウ
エイチツプの表面に、0.05mmのプレホーニングを
施した後、実施例1におけると同一の条件で層厚5μM
O)TiC層を被覆することによつて本発明表面被覆ス
ローアウエイチツプおよび比較表面被覆スローアウエイ
チツプを製造した。
The comparative throwaway chip obtained as a result showed the same values as the above-mentioned throwaway chip of the present invention in terms of the composition, Vickers hardness, and layer thickness of the intermediate softening layer, as well as the internal composition and internal hardness, but the surface As for the hardened layer, the layer thickness is the same, but its composition is TiC-5%.
It was made of TaC-5%NbC7%CO (volume %), did not contain carbonitrides defined in the present invention, and exhibited a Vickers hardness: Hvl 59O. next,
After performing prehoning to a thickness of 0.05 mm on the surfaces of the throwaway chips of the present invention and comparative throwaway chips, a layer thickness of 5 μM was applied under the same conditions as in Example 1.
O) A surface-coated throwaway chip according to the invention and a comparative surface-coated throwaway chip were prepared by coating with a TiC layer.

これら両スローアウエイチツプについて、被削材:S4
5C(硬さ:HB25O) 切削速度:160m/Minl 送り:0.35mm/ReV・1 切込み:2mm1 の条件で連続切削試験を行ない、切削時間に対する逃げ
面摩耗およびクレータ摩粍をそれぞれ測定した。
For both throwaway tips, work material: S4
5C (Hardness: HB25O) Cutting speed: 160 m/Minl Feed: 0.35 mm/ReV 1 Depth of cut: 2 mm 1 Continuous cutting tests were conducted under the following conditions, and flank wear and crater wear with respect to cutting time were measured.

この測定結果を第5図および第6図に示した。図示され
るように、本発明表面被覆スローアウエイチツプは比較
表面被覆スローアウエイチツプに比してすぐれた切削特
性をもつことが明らかである。実施例 3 超硬合金基体の内部における最終成分組成がWC−15
%CO−10%TaC−2%NbCl5%TiC(容量
%)となるように原料粉末を配合する以外は、実施例2
において本発明表面被覆スローアウエイチツプを製造し
たのと同一の条件で内部硬さ:Hvl45Oを有する本
発明表面被覆スローアウエイチツプを製造した。
The measurement results are shown in FIGS. 5 and 6. As shown in the figure, it is clear that the surface-coated throw-away tip of the present invention has superior cutting characteristics as compared to the comparative surface-coated throw-away tip. Example 3 The final component composition inside the cemented carbide base is WC-15
%CO-10%TaC-2%NbCl5%TiC (volume%) Except for blending the raw material powder, Example 2
A surface-coated throw-away chip of the present invention having an internal hardness of Hvl45O was manufactured under the same conditions as those used to manufacture the surface-coated throw-away chip of the present invention.

また、比較の目的で、超硬合金基体の内部における最終
成分組成を、この発明の範囲から外れたWC−15容量
%COとする以外は、同一の条件にて内部硬さ:Hvl
23Oを有する比較表面被覆スローアウエイチツプを製
造した。
For comparison purposes, the internal hardness: Hvl was measured under the same conditions except that the final component composition inside the cemented carbide base was WC-15% CO by volume, which is outside the scope of the present invention.
A comparative surface coated throwaway chip with 23O was prepared.

ついで、この結果得られた両スローアウエイチツプを用
いて、切削速度:80m/Minl 送り:1.3mm/Rev・) 切込み:8顛、 切削工具形状:SNU644、 の条件で13クロム鋼ロール(硬さ:HB28O)の切
削を行なつたところ、比較表面被覆スローアウエイチツ
プは、刃先の脱落により30分で寿命に達したのに対し
て、本発明表面被覆スローアウエイチツプは、切削開始
50分後に逃げ面摩耗が0.35mmに達する正常摩耗
で寿命となつた。
Next, using both of the throw-away tips obtained as a result, cutting speed: 80 m/Minl feed: 1.3 mm/Rev.) Depth of cut: 8 mm Cutting tool shape: SNU644 When cutting HB28O), the comparison surface-coated throw-away tip reached the end of its life in 30 minutes due to the cutting edge falling off, whereas the surface-coated throw-away tip of the present invention reached the end of its life 50 minutes after the start of cutting. The life span was reached when normal wear reached 0.35 mm on the flank surface.

上述のように、この発明の表面被覆超硬合金部材は、超
硬合金基体に表面硬化層および中間軟化層を形成するこ
とによつて著しくすぐれた靭性、耐摩耗性、および耐塑
性変形性をもつたものになつており、特に切削工具とし
て使用した場合にすぐれた特性を発揮するものである。
As mentioned above, the surface-coated cemented carbide member of the present invention has extremely excellent toughness, wear resistance, and plastic deformation resistance by forming a surface hardening layer and an intermediate softening layer on the cemented carbide base. It is durable and exhibits excellent properties especially when used as a cutting tool.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第5図は本発明表面被覆スローアウエイチ
ツプと比較スローアウエイチツプに関して連続切削試験
における切削時間と逃げ面摩粍との関係を示した曲線図
、第2図および第6図は同じく切削時間とクレータ摩耗
の関係を示した曲線図、第3図および第4図は断続切削
試,験態様を示した正面図および側面図である。
Figures 1 and 5 are curve diagrams showing the relationship between cutting time and flank wear in continuous cutting tests for the surface-coated throw-away chip of the present invention and a comparative throw-away chip, and Figures 2 and 6 are the same. A curve diagram showing the relationship between cutting time and crater wear, and FIGS. 3 and 4 are a front view and a side view showing an intermittent cutting test and a test mode.

Claims (1)

【特許請求の範囲】 1 超硬合金基体の表面に、周期律表の4a、5a、お
よび6a族の金属の炭化物、窒化物、炭窒化物、炭酸化
物、および炭酸窒化物、並びに酸化アルミニウム、さら
にこれらの2種以上の固溶体からなる群のうちの1種の
単層または2種以上の多重層からなる層厚1〜20μm
の被覆層を形成した表面被覆超硬合金部材において、上
記超硬合金基体の内部を、 炭化タングステン:40〜95%、 周期律表の4a、5a、および6a族の金属の炭化物、
窒化物、および炭窒化物のうちの1種または2種以上か
らなるNaCl型結晶構造化合物:5〜30%、鉄族金
属のうちの1種または2種以上5〜30%、からなる組
成で構成し、また上記超硬合金基体の表面部を、その表
面より1〜30μmの深さに亘つて、周基律表の4a、
5a、および6a族の金属の炭窒化物のうちの1種また
は2種以上からなるNaCl型結晶構造化合物:70〜
98%、鉄族金属のうちの1種または2種以上:2〜3
0%、からなる組成を有し、かつ基体内部の硬さよりビ
ッカース硬さで5〜50%硬化した表面硬化層で構成し
、さらに上記基体内部と表面硬化層の間に、前記表面硬
化層の直下より2〜50μmの深さに亘つて、炭化タン
グステン:70〜95%、 鉄族金属のうちの1種または2種以上:5〜30%、(
以上容量%)からなる組成を有し、かつ基体内部の硬さ
よりビッカース硬さで5〜50%軟化した中間軟化層を
介在させた組織をもつことを特徴とする表面被覆超硬合
金部材。
[Scope of Claims] 1. On the surface of the cemented carbide substrate, carbides, nitrides, carbonitrides, carbonates, and carbonitrides of metals of groups 4a, 5a, and 6a of the periodic table, as well as aluminum oxide, Furthermore, a layer thickness of 1 to 20 μm consisting of a single layer of one type or a multilayer of two or more types of solid solutions from the group consisting of two or more types of solid solutions.
In a surface-coated cemented carbide member having a coating layer formed thereon, the interior of the cemented carbide base is made of: tungsten carbide: 40 to 95%, carbides of metals from groups 4a, 5a, and 6a of the periodic table;
NaCl-type crystal structure compound consisting of one or more types of nitrides and carbonitrides: 5 to 30%, and a composition consisting of 5 to 30% of one or more types of iron group metals. 4a of the circumferential law table,
NaCl-type crystal structure compound consisting of one or more carbonitrides of group 5a and 6a metals: 70-
98%, one or more iron group metals: 2-3
0%, and is composed of a surface hardened layer that is 5 to 50% harder in terms of Vickers hardness than the hardness inside the base, and further between the inside of the base and the hardened surface layer. Over a depth of 2 to 50 μm from directly below, tungsten carbide: 70 to 95%, one or more iron group metals: 5 to 30%, (
1. A surface-coated cemented carbide member characterized in that it has a composition consisting of 5% to 50% less hardness in terms of Vickers hardness than the internal hardness of the base body, with an intermediate softened layer interposed therebetween.
JP4061579A 1979-04-04 1979-04-04 Surface coated cemented carbide parts Expired JPS5935435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4061579A JPS5935435B2 (en) 1979-04-04 1979-04-04 Surface coated cemented carbide parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4061579A JPS5935435B2 (en) 1979-04-04 1979-04-04 Surface coated cemented carbide parts

Publications (2)

Publication Number Publication Date
JPS55134107A JPS55134107A (en) 1980-10-18
JPS5935435B2 true JPS5935435B2 (en) 1984-08-28

Family

ID=12585424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4061579A Expired JPS5935435B2 (en) 1979-04-04 1979-04-04 Surface coated cemented carbide parts

Country Status (1)

Country Link
JP (1) JPS5935435B2 (en)

Also Published As

Publication number Publication date
JPS55134107A (en) 1980-10-18

Similar Documents

Publication Publication Date Title
US5697994A (en) PCD or PCBN cutting tools for woodworking applications
AU683070B2 (en) Diamond-coated tools and process for making
KR101326325B1 (en) A cutting tool milling insert, method of making a cutting tool milling insert and method of using an insert
US5643658A (en) Coated cemented carbide member
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JP2008183708A (en) Coated insert for milling and its manufacturing method
JP2009012167A (en) Coated cutting tool insert
KR20110100621A (en) Improved coated cutting insert for rough turning
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
JP2002144109A (en) Surface coat cemented carbide cutting tool having excellent chipping resistance
JP2007160467A (en) Surface coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed cutting of material hard to cut
JP4142955B2 (en) Surface coated cutting tool
JPS5952703B2 (en) Surface coated cemented carbide parts
WO2009035404A1 (en) Insert for milling of cast iron
EP1352697B1 (en) Coated cutting tool insert
JPS5928628B2 (en) Surface coated cemented carbide tools
JP3087503B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JPS5935435B2 (en) Surface coated cemented carbide parts
JPS5935434B2 (en) Surface coated cemented carbide parts
JPS6343453B2 (en)
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPS5953342B2 (en) A tungsten carbide-based cemented carbide member with a multilayer structure on the surface and excellent wear resistance and impact resistance.
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting