JPS593541B2 - Coated cemented carbide parts - Google Patents

Coated cemented carbide parts

Info

Publication number
JPS593541B2
JPS593541B2 JP2355978A JP2355978A JPS593541B2 JP S593541 B2 JPS593541 B2 JP S593541B2 JP 2355978 A JP2355978 A JP 2355978A JP 2355978 A JP2355978 A JP 2355978A JP S593541 B2 JPS593541 B2 JP S593541B2
Authority
JP
Japan
Prior art keywords
metals
group
cemented carbide
carbonitrides
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2355978A
Other languages
Japanese (ja)
Other versions
JPS54116343A (en
Inventor
泰次郎 大西
昭雄 西山
俊一 村井
則文 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP2355978A priority Critical patent/JPS593541B2/en
Publication of JPS54116343A publication Critical patent/JPS54116343A/en
Publication of JPS593541B2 publication Critical patent/JPS593541B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、著しくすぐれた耐摩耗性を有し、特に切削
工具や耐摩耗用部品として使用するのに適した被覆超硬
合金部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to coated cemented carbide parts which have excellent wear resistance and are particularly suitable for use as cutting tools and wear-resistant parts.

従来、硬質相形成成分として、周期律表の4a,5a.
卦よび6a族金属の炭化物、窒化物、炭窒化物、}よび
炭酸窒化物のうちの1種または2種以上:60〜97重
量%を含有し、さらに必要に応じて結合相形成成分とし
て、結合相の耐摩耗性訃よび耐塑性変形性を向上させる
目的で、Cr族金属、Si、およびAlのうちの1種ま
たは2種以上:1〜20重量%を含有し、残ジが結合相
形成成分としての鉄族金属のうちの1種または2種以上
と不可避不純物からなる組成を有する超硬合金基材の表
面に、周期律表の4a卦よび5a族金属のうちの1種ま
たは2種以上の金属の炭化物、窒化物、または炭窒化物
の内層と、周期律表の4a卦よび5a族金属のうちの1
種または2種以上の金属の炭酸化物、窒酸化物、または
炭窒酸化物の外層とからなる面心立方晶の高融点化合物
で構成された硬質被覆層を形成してなる被覆超硬合金部
材は公知であり、この従来被覆超硬合金部材はすぐれた
耐摩耗性をもつことから、特にスローアウエイチツプと
して適用されているが、この従来被覆超硬合金部材によ
つても十分満足する耐摩耗性を期待することはできず、
したがつてな卦一層すぐれた耐摩耗性を有する被覆超硬
合金部材の開発が望まれるところである。
Conventionally, as hard phase forming components, 4a, 5a.
Contains 60 to 97% by weight of one or more of carbides, nitrides, carbonitrides, } and carbonitrides of group 6a metals, and optionally as a binder phase forming component, In order to improve the wear resistance and plastic deformation resistance of the binder phase, one or more of Cr group metals, Si, and Al: 1 to 20% by weight is contained, and the residue is the binder phase. On the surface of a cemented carbide base material having a composition consisting of one or more iron group metals as forming components and unavoidable impurities, one or two metals of group 4a and group 5a of the periodic table are applied. an inner layer of carbides, nitrides, or carbonitrides of one or more metals and one of the group 4a and 5a metals of the periodic table;
A coated cemented carbide member formed by forming a hard coating layer composed of a face-centered cubic high-melting point compound consisting of a seed or an outer layer of carbonate, nitoxide, or carbonitoxide of two or more metals. is well known, and this conventional coated cemented carbide member has excellent wear resistance, so it is particularly applied as a throw-away chip, but this conventional coated cemented carbide member also has sufficient wear resistance. You can't expect sex,
Therefore, it is desirable to develop a coated cemented carbide member having even better wear resistance.

そこで、本発明者等は、上述のような観点からよりすぐ
れた耐摩耗性を有する被超合金部材を得べく、上記従来
被覆超硬合金部材に着目し研究を行なつた結果、上記従
来被覆超硬合金部材の硬質被覆層に訃ける外層を、周期
律表の4aおよび5a族金属のうちの1種または2種以
上の金属の炭酸化物、窒酸化物、または炭窒酸化物、あ
るいは同4aおよび5a族金属のうちの1種または2種
以上の金属と、ほう素およびけい素のうちの1種または
2種の炭酸化物、窒酸化物、または炭窒酸化物(この場
合ほう素およびけい素は外層の硬さおよび耐酸化性を向
上させるために固溶させるものであジ、その固溶割合は
、炭素、窒素、および酸素との総和に占める割合(モル
比)で0.001から固溶限の0.2までを含有するも
のである)からなる面心立方晶の高融点化合物で構成し
、かつその固溶酸素含有量を、内層との接合面から表面
に向つて単調に増加させると、(a)上記硬質被覆層に
おける外層は、固溶酸素の濃度勾配によつて、その表面
から内層接合面に亘つて変化する種々の特性をもつよう
になる。
Therefore, the present inventors conducted research focusing on the conventionally coated cemented carbide members described above in order to obtain superalloyed members having better wear resistance from the above-mentioned viewpoints. The outer layer of the hard coating layer of the cemented carbide member is made of carbonate, nitride, or carbonitoxide of one or more metals from Groups 4a and 5a of the periodic table, or the like. One or more metals from Groups 4a and 5a and one or more carbonates, nitoxides, or carbonitoxides of boron and silicon (in this case boron and Silicon is dissolved in solid solution to improve the hardness and oxidation resistance of the outer layer, and its solid solution ratio is 0.001 as a proportion (molar ratio) to the total of carbon, nitrogen, and oxygen. It is composed of a face-centered cubic, high-melting point compound consisting of a compound with a solid solubility limit of 0.2 (from (a) The outer layer of the hard coating layer has various properties that vary from its surface to the inner layer bonding surface depending on the concentration gradient of solid solution oxygen.

(b)内層との接合面に}ける外層の組成として内層と
の結合力が最強の酸素を含有しない組成のものを自由に
選択することができる。(c)通常の酸素を固溶する均
質組成の硬質被覆層では層厚が2〜3μmを越えると粒
子が粗くなつて柱状晶となつてしまうが、固溶酸素に濃
度勾配があると粒成長が抑制されて微細粒状組織が確保
されること。
(b) The composition of the outer layer at the joint surface with the inner layer can be freely selected from a composition that does not contain oxygen and has the strongest bonding force with the inner layer. (c) In a normal hard coating layer with a homogeneous composition that contains oxygen as a solid solution, if the layer thickness exceeds 2 to 3 μm, the particles will become coarse and become columnar crystals, but if there is a concentration gradient in the solid solution oxygen, grain growth will occur. is suppressed and a fine grain structure is ensured.

などの特性が得られるようになり、この結果被覆超硬合
金部材はすぐれた耐摩耗性をもつようになると共に、例
えば使用条件が広範囲に亘る切削工具として使用するこ
とができるという知見を得たのである。
As a result, coated cemented carbide parts have excellent wear resistance and have been found to be able to be used, for example, as cutting tools under a wide range of usage conditions. It is.

この発明は、上記知見にもとづいてなされたもので、以
下に実施例により具体的に説明する。
This invention was made based on the above findings, and will be specifically explained below using Examples.

実施例 1平均粒径2μmのタングステン炭化物WC粉
末:94重量%と、同1μmのCO粉末:6重量%とを
ボールミル中で24時間湿式混合し、乾燥して得られた
混合粉末より圧粉体を成形し、この圧粉体を温度140
0℃に1時間保持して焼結を行ない、超硬合金基材を製
造した。
Example 1 94% by weight of tungsten carbide WC powder with an average particle size of 2 μm and 6% by weight of CO powder with an average particle size of 1 μm were wet-mixed in a ball mill for 24 hours, and a green compact was obtained from the mixed powder obtained by drying. molded, and this green compact was heated to a temperature of 140
Sintering was performed by holding at 0° C. for 1 hour to produce a cemented carbide base material.

ついで、横型環状炉の中に耐熱鋼製反応管を挿入した型
式にして、金属の塩化物の気化器卦よび各種ガスの流量
調整設備を備えたコーテイング装置内に上記超硬合金基
材を装入し、非酸化性雰囲気で温度1020℃に加熱し
た後、H2:96%、TiCl:2%、CH4:2%(
容量%)の組成を有する反応ガスを1時間流して内層と
しての炭化チタンTiC被覆層を前記超硬合金基材の表
面に形成し、ついでH2:96%、TiCl4:2.0
%.CH4:1.95%、CO:0.05%(容量%)
の組成を有する反応ガスを10分間流し、引続いて10
分毎にCOを0.05%づつ増加させる一方、CH4を
0.05%づつ減少させる反応ガス調整を行ないながら
2時間の反応を施して前記内層上に外層としての硬質被
覆層を形成した本発明被覆超合金部材を製造した。
Next, the above-mentioned cemented carbide base material was installed in a coating device equipped with a heat-resistant steel reaction tube inserted into a horizontal annular furnace, and equipped with a metal chloride vaporizer and various gas flow rate adjustment equipment. After heating to 1020°C in a non-oxidizing atmosphere, H2: 96%, TiCl: 2%, CH4: 2% (
A titanium carbide TiC coating layer as an inner layer was formed on the surface of the cemented carbide base material by flowing a reaction gas having a composition of
%. CH4: 1.95%, CO: 0.05% (volume%)
for 10 minutes, followed by a reaction gas having a composition of 10
A hard coating layer as an outer layer was formed on the inner layer by conducting a reaction for 2 hours while adjusting the reaction gas to increase CO by 0.05% and decrease CH4 by 0.05% every minute. An inventive coated superalloy member was produced.

なお、反応終了時の反応ガス組成は、H2:96%、T
iCl4:2.0%、CH4:1.4%、CO:0.6
%(容量%)からなつていた。この結果得られた本発明
被覆超硬合金部材の断面を観察したところ、層厚:7μ
mの硬質被覆層を有し、この硬質被覆層は、基材の接合
面から層厚4μmまでが均一の銀白色を呈し、その表面
に向うにしたがつて銀灰色へと変化して卦り、X線解析
およびX線マイクロアナライザーによる分析では面心立
方晶を示し、しかも基材との接合面より層厚約3.5μ
mまでは酸素が検出されないのに対して、表面では組成
式:TiCO.7OO.3に相当する酸素量が検出され
、外層の酸素濃度は内層との接合面から表面に向つて単
調に増加するものであつた。
The reaction gas composition at the end of the reaction was H2:96%, T
iCl4: 2.0%, CH4: 1.4%, CO: 0.6
% (volume %). When the cross section of the coated cemented carbide member of the present invention obtained as a result was observed, the layer thickness was 7 μm.
This hard coating layer has a uniform silvery white color from the bonding surface of the base material to a layer thickness of 4 μm, and changes to silvery gray toward the surface, X-ray analysis and X-ray microanalyzer analysis showed a face-centered cubic crystal, and the layer thickness was approximately 3.5μ from the bonding surface to the base material.
While no oxygen is detected up to the surface, the compositional formula: TiCO. 7OO. 3 was detected, and the oxygen concentration in the outer layer monotonically increased from the interface with the inner layer toward the surface.

実施例 2 実施例1に}けると同一の超硬合金基材からなるCIS
規格SNGN432の形状のスローアウエイチツプおよ
びコーテイング装置を使用し、炭化チタンTlC被覆の
条件として、反応温度・・・1020℃、 反応ガス組成・・・H2・・・96%、TiCl4:2
%、CH4:2%(容量%)、を採用し、また炭酸化チ
タンTiCO.5OO.5被覆の条件として、反応温度
・・・1020′C、 反応ガス組成・・・H2:97%、TiCl4:2%、
CO:1%(容量%)を採用し、全体反応時間を210
分とし、このうちの最初の20分間をTiC被覆条件で
行なつて内層としての硬質被覆層を形成し、ついで残り
の190分に関して、1サイクルを10分として、1サ
イクルに卦ける前半をTiCO.5OO.5被覆、後半
をTiC被覆の条件で19サイクル繰り返し行なつて外
層としての硬質被覆層を形成したが、この外層形成反応
に際しては、各サイクルにおけるTiC被覆の反応時間
を1サイクル当V)0.5分づつ漸次短縮する一方、T
iCO.5OO.5被覆の反応時間を1サイクル当り0
.5分づつ延長させる操作を施すことによつて本発明被
覆超硬合金部材を製造した。
Example 2 CIS made of the same cemented carbide base material as in Example 1
Using a throw-away chip and coating device in the shape of standard SNGN432, the conditions for titanium carbide TLC coating were as follows: reaction temperature: 1020°C, reaction gas composition: H2...96%, TiCl4:2
%, CH4: 2% (volume %), and titanium carbonate TiCO. 5OO. 5 Coating conditions: reaction temperature...1020'C, reaction gas composition...H2:97%, TiCl4:2%,
CO: 1% (volume %) was adopted, and the overall reaction time was 210%.
The first 20 minutes of this are carried out under TiC coating conditions to form a hard coating layer as an inner layer, and then for the remaining 190 minutes, one cycle is 10 minutes, and the first half of one cycle is covered with TiCO. .. 5OO. A hard coating layer as an outer layer was formed by repeating 19 cycles under the conditions of 5 coating and TiC coating in the latter half.In this outer layer forming reaction, the reaction time of TiC coating in each cycle was set to 0.5 V) per cycle. While gradually shortening by 5 minutes, T
iCO. 5OO. 5 Coating reaction time per cycle 0
.. A coated cemented carbide member of the present invention was manufactured by performing an operation of increasing the length of time in 5 minute increments.

この結果得られた本発明被覆超硬合金部材の断面を観察
したところ、層厚:9μmの全体が微細な粒状組織から
なる硬質被覆層を有し、この硬質被覆層は、基材との接
合面から層厚:約2μmまでが内層としてのTiCで、
これより表面までが外層としてのTiCO.5OO.5
で構成され、内層接合面から表面に向つて固溶酸素含有
量が単調に増加する濃度勾配を有するものであつた。
When the cross section of the coated cemented carbide member of the present invention obtained as a result was observed, it was found that it had a hard coating layer having a layer thickness of 9 μm and consisting of a fine granular structure as a whole, and this hard coating layer was not bonded to the base material. Layer thickness from the surface to about 2 μm is TiC as an inner layer,
From this point to the surface is TiCO as an outer layer. 5OO. 5
The solid solution oxygen content had a concentration gradient that monotonically increased from the inner layer bonding surface toward the surface.

ついで、比較の目的で、同一の超硬合金基材およびコー
テイング装置を使用し、前記超硬合金基材の表面に、層
厚:約2μmの内層としてのTiC被覆層と、外層とし
ての均質組成のTiCO.5OO.5被覆層とからなる
硬質被覆層を9μmの層厚に形成した比較被覆超硬合金
部材を製造した。
Then, for the purpose of comparison, using the same cemented carbide base material and coating equipment, a TiC coating layer with a layer thickness of about 2 μm as an inner layer and a homogeneous composition as an outer layer was coated on the surface of the cemented carbide base material. TiCO. 5OO. A comparative coated cemented carbide member was manufactured in which a hard coating layer consisting of 5 coating layers was formed with a layer thickness of 9 μm.

このようにして得られた本発明被覆超硬合金部材}よび
比較被覆超硬合金部材について、被削材:FC25丸材
(硬さHB:250)、切削速度:250m/Min、
切込み:3m7!L、 送り:・0.5m71L/Rev.、 の条件で切削試験を行なつたところ、 本発明被覆超硬合金部材:16分、 比較被覆超硬合金部材:9分、 の寿命時間をそれぞれ示し、本発明被覆超硬合金部材は
すぐれた切削特性をもつことが明らかである。
Regarding the coated cemented carbide member of the present invention thus obtained and the comparative coated cemented carbide member, work material: FC25 round material (hardness HB: 250), cutting speed: 250 m/Min,
Depth of cut: 3m7! L, Feed: ・0.5m71L/Rev. When a cutting test was conducted under the conditions of , the life time of the coated cemented carbide member of the present invention was 16 minutes, the comparison coated cemented carbide member was 9 minutes, and the life time of the coated cemented carbide member of the present invention was excellent. It is clear that it has cutting properties.

実施例 3 超硬合金基材として超硬合金JIS−P3OのCIS規
格SNGN432の形状のスローアウエイチツプを適用
し、実施例1におけると同一のコーテイング装置を使用
し、炭窒化チタンTiCO.4NO.6被覆の条件とし
て反応温度・・・1000℃、 反応ガス組成・・・H2:60%、N2:37%、Ti
Cl4:2%、CH4:1%(容量%)、 を採用し、また炭窒酸化チタ41C0.2N0.600
.2被覆の条件として、反応温度・・・1000℃、 反応ガス組成・・・H2:60%、N2:37%、Ti
Cl4:2%、CO:1%(容量%)、 を採用し、全体反応時間を150分とし、このうち最初
の60分をTiCO.4NO.6被覆条件で行なつて内
層としての硬質被覆層を形成し、ついで残りの90分に
関して、1サイクルを10分として、1サイクルにおけ
る前半をTiCO.2NO.6OO.2被覆、後半をT
iCO.4NO.6被覆の条件で9サイクル繰り返し行
なつて外層としての硬質被覆層を形成したが、この外層
形成反応に際して、各サイクルにおけるTiCO.2N
O.6OO.2被覆の反応時間を1サイクル当り1分づ
つ延長する一方、TiCO.4NO.6被覆の反応時間
を1サイクル当り1分づつ短縮した操作を行なうことに
よつて本発明被覆超硬合金部材を製造した。
Example 3 A throw-away chip of CIS standard SNGN432 of cemented carbide JIS-P3O was applied as the cemented carbide base material, and the same coating equipment as in Example 1 was used to coat titanium carbonitride TiCO. 4NO. 6 Coating conditions: Reaction temperature: 1000°C, reaction gas composition: H2: 60%, N2: 37%, Ti
Cl4: 2%, CH4: 1% (volume %), titanium carbonitride oxide 41C0.2N0.600
.. 2 Coating conditions: reaction temperature: 1000°C, reaction gas composition: H2: 60%, N2: 37%, Ti
Cl4: 2%, CO: 1% (volume %) were adopted, and the total reaction time was 150 minutes, of which the first 60 minutes were used as TiCO. 4NO. 6 coating conditions to form a hard coating layer as an inner layer, and then for the remaining 90 minutes, one cycle is 10 minutes, and the first half of one cycle is TiCO. 2NO. 6OO. 2 coats, T the second half
iCO. 4NO. A hard coating layer as an outer layer was formed by repeating 9 cycles under the condition of 6 coatings. During this outer layer forming reaction, TiCO. 2N
O. 6OO. 2 coating reaction time was increased by 1 minute per cycle, while the TiCO. 4NO. A coated cemented carbide member of the present invention was manufactured by performing an operation in which the reaction time of the coating was shortened by 1 minute per cycle.

この結果得られた本発明被覆超硬合金部材の断面をX線
マイクロアナライザーにより観察したところ、層厚:6
μmの硬質被覆層が形成されており、前記硬質被覆層は
、内層が層厚:約3μmのTiCO.4NO.6で、外
層がTiCO.2NO.6OO.2で構成され、外層に
おける固溶酸素は内層接合面から表面に向つて単調に増
加していた。
When the cross section of the coated cemented carbide member of the present invention obtained as a result was observed using an X-ray microanalyzer, the layer thickness: 6
A hard coating layer with a thickness of about 3 μm is formed, and the hard coating layer has an inner layer of TiCO. 4NO. 6, the outer layer is TiCO. 2NO. 6OO. 2, and the solid solution oxygen in the outer layer monotonically increased from the inner layer bonding surface toward the surface.

ついで、比較の目的で、同一の超硬合金基材およびコー
テイング装置を使用し、前記超硬合金基材の表面に、層
厚:約3μmの内層としてのTiCO.4NO.6被覆
層と、外層としての均質組成のTiCO.2NO.6O
O.2被覆層とからなる硬質被覆層を6μmの層厚に形
成した比較被覆超硬合金部材を製造した。
Then, for comparison purposes, using the same cemented carbide substrate and coating equipment, TiCO. 4NO. 6 coating layer and a homogeneous composition TiCO.6 as outer layer. 2NO. 6O
O. A comparative coated cemented carbide member was manufactured in which a hard coating layer consisting of two coating layers was formed to have a layer thickness of 6 μm.

このようにして得られた本発明被覆超硬合金部材と比較
被覆超硬合金部材について、被削材:JIS−SNCM
−8(硬さHB:300)、切削速度:180m/Mi
n、切込み:3m1L、 送ジ:0.4m7!L/Rev.、 の条件で切削試験を行なつたところ、 本発明被覆超硬合金部材:15分、 比較被覆超硬合金部材:10分、 の寿命時間を示した。
Regarding the coated cemented carbide member of the present invention and the comparative coated cemented carbide member thus obtained, the work material: JIS-SNCM
-8 (hardness HB: 300), cutting speed: 180m/Mi
n, depth of cut: 3m1L, feed: 0.4m7! L/Rev. When a cutting test was conducted under the following conditions, the service life of the coated cemented carbide member of the present invention: 15 minutes, and the comparative coated cemented carbide member: 10 minutes.

実施例 4 超硬合金JIS規格P3Oの表面に層厚:4μmヴNC
被覆層を形成したものからなるスローアウ牛イチツプを
用いると共に、実施例1におけるコーテイング装置にさ
らに3塩化ほう素およびジグロールメチルシランのガス
流量調整装置を取り付けたコーテイング装置を使用し、
前記スローアウエイチツプを前記コーテイング装置にお
いて非酸化性雰囲気で温度1020℃に加熱し、ついで
H2:95.6%、TiCl4:2%、CH4:1.9
5%、CO:0.05%、BCl3:0.2%、SiC
H3・Cl2:0.2%(容量%)からなる混合反応ガ
スを10分間流して反応を行ない、引続いて10分毎に
COを0.05%づつ増加させる一方、CH4を0.0
5%づつ減少させる操作を行ないながら2時間の反応を
施して本発明被覆超硬合金部材を製造した。
Example 4 Layer thickness: 4 μm on the surface of cemented carbide JIS standard P3O
In addition to using throw-out beef chips with a coating layer formed thereon, the coating device of Example 1 was further equipped with a gas flow rate adjusting device for boron trichloride and diglormethylsilane.
The throwaway chip was heated to 1020° C. in a non-oxidizing atmosphere in the coating device, and then H2: 95.6%, TiCl4: 2%, CH4: 1.9
5%, CO: 0.05%, BCl3: 0.2%, SiC
The reaction was carried out by flowing a mixed reaction gas consisting of H3/Cl2: 0.2% (volume %) for 10 minutes, and then CO was increased by 0.05% every 10 minutes, while CH4 was increased by 0.0%.
A coated cemented carbide member of the present invention was manufactured by reacting for 2 hours while reducing the amount by 5%.

この結果得られた本発明被覆超硬合金部材の断面を観察
したところ、層厚:8μmの硬質被覆層を有し、この硬
質被覆層は、X線回析によV)TiC結晶と同一の面心
立方晶構造をもつことが判明し、また前記硬質被覆層の
ほう素卦よびけい素含有状況を螢光X線およびX線マイ
クロアナライザーにより分析したところ、組成式:Ti
CO.69OO.28BO.O2SiO.Olに相当す
るほう素とけい素が検出され、さらに内層接合面から外
層表面に向かうにしたがつて酸素含有量は単調に増加し
ていた。
When the cross section of the coated cemented carbide member of the present invention obtained as a result was observed, it was found that it had a hard coating layer with a layer thickness of 8 μm. Ti
C.O. 69OO. 28BO. O2SiO. Boron and silicon, which correspond to Ol, were detected, and the oxygen content monotonically increased from the inner layer bonding surface to the outer layer surface.

Claims (1)

【特許請求の範囲】 1 硬質相形成成分として、周期律表の4a、5a、お
よび6a族金属の炭化物、窒化物、炭窒化物、および炭
酸窒化物のうちの1種または2種以上:60〜97重量
%を含有し、残りが結合相形成成分としての鉄族金属の
うちの1種または2種以上と不可避不純物からなる組成
を有する超硬合金基材の表面に、周期律表の4aおよび
5a族金属のうちの1種または2種以上の金属の炭化物
、窒化物、または炭窒化物からなる面心立方晶の高融点
化合物で構成された内層と、周期律表の4aおよび5a
族金属のうちの1種または2種以上の金属の炭酸化物、
窒酸化物、または炭窒酸化物からなる面心立方晶の高融
点化合物で構成された外層、とからなる硬質被覆層を形
成してなる被覆超硬合金部材において、上記硬質被覆層
の外層における固溶酸素含有量を、上記内層との接合面
から表面に向つて単調に増加させたことを特徴とする被
覆超硬合金部材。 2 硬質相形成成分として、周期律表の4a、5a、お
よび6a族金属の炭化物、窒化物、炭窒化物、および炭
酸窒化物のうちの1種または2種以上:60〜97重量
%を含有し、さらに結合相形成成分として、Cr族金属
、Si、およびAlのうちの1種または2種以上:1〜
20重量%を含有し、残りが結合相形成成分としての鉄
族金属のうちの1種または2種以上と不可避不純物から
なる組成を有する超硬合金基材の表面に、周期律表の4
aおよび5a族金属のうちの1種または2種以上の金属
の炭化物、窒化物、または炭窒化物からなる面心立方晶
の高融点化合物で構成された内層と、周期律表の4aお
よび5a族金属のうちの1種または2種以上の金属の炭
酸化物、窒酸化物、または炭窒酸化物からなる面心立方
晶の高融点化合物で構成される外層、とからなる硬質被
覆層を形成してなる被覆超硬合金部材において、上記硬
質被覆層の外層における固溶酸素含有量を、上記内層と
の接合面から表面に向つて単調に増加させたことを特徴
とする被覆超硬合金部材。 3 硬質相形成成分として、周期律表の4a、5a、お
よび6a族金属の炭化物、窒化物、炭窒化物、および炭
酸窒化物のうちの1種または2種以上:60〜97重量
%を含有し、残りが結合相形成成分としての鉄族金属の
うちの1種または2種以上と不可避不純物からなる組成
を有する超硬合金基材の表面に、周期律表の4aおよび
5a族金属のうちの1種または2種以上の金属の炭化物
、窒化物、または炭窒化物からなる面心立方晶の高融点
化合物で構成された内層と、周期律表の4aおよび5a
族金属のうちの1種または2種以上の金属と、ほう素お
よびけい素のうちの1種または2種の炭酸化物、窒酸化
物、または炭窒酸化物からなる面心立方晶の高融点化合
物で構成された外層、とからなる硬質被覆層を形成して
なる被覆超硬合金部材において、上記硬質被覆層の外層
における固溶酸素含有量を、上記内層との接合面から表
面に向つて単調に増加させたことを特徴とする被覆超硬
合金部材。 4 硬質相形成成分として、周期律表の4a、5a、お
よび6a族金属の炭化物、窒化物、炭窒化物、および炭
酸窒化物のうちの1種または2種以上:60〜97重量
%を含有し、さらに結合相形成成分として、Cr族金属
、Si、およびAlのうちの1種または2種以上:1〜
20重量%を含有し、残りが結合相形成成分としての鉄
族金属のうちの1種または2種以上と不可避不純物から
なる組成を有する超硬合金基材の表面に、周期律表の4
aおよび5a族金属のうちの1種または2種以上の金属
の炭化物、窒化物、または炭窒化物からなる面心立方晶
の高融点化合物で構成された内層と、周期律表の4aお
よび5a族金属のうちの1種または2種以上の金属と、
ほう素およびけい素のうちの1種または2種の炭酸化物
、窒酸化物、または炭窒酸化物からなる面心立方晶の高
融点化合物で構成された外層、とからなる硬質被覆層を
形成してなる被覆超硬合金部材において、上記硬質被覆
層の外層における固溶酸素含有量を、上記内層との接合
面から表面に向つて単調に増加させたことを特徴とする
被覆超硬合金部材。
[Scope of Claims] 1. As a hard phase forming component, one or more of carbides, nitrides, carbonitrides, and carbonitrides of metals from groups 4a, 5a, and 6a of the periodic table: 60 4a of the periodic table on the surface of a cemented carbide base material having a composition of 97% by weight and the remainder consisting of one or more iron group metals as binder phase forming components and unavoidable impurities. and an inner layer composed of a face-centered cubic high melting point compound consisting of carbides, nitrides, or carbonitrides of one or more metals of group 5a metals, and 4a and 5a of the periodic table.
Carbonates of one or more metals of group metals,
In the coated cemented carbide member formed by forming a hard coating layer consisting of an outer layer made of a face-centered cubic high melting point compound made of nitride oxide or carbonitride oxide, in the outer layer of the hard coating layer. A coated cemented carbide member characterized in that the solid solution oxygen content increases monotonically from the bonding surface with the inner layer toward the surface. 2 Contains 60 to 97% by weight of one or more of carbides, nitrides, carbonitrides, and carbonitrides of group 4a, 5a, and 6a metals of the periodic table as a hard phase forming component. Furthermore, as a bonding phase-forming component, one or more of Cr group metals, Si, and Al: 1-
20% by weight, and the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities.
an inner layer composed of a face-centered cubic high melting point compound consisting of a carbide, nitride, or carbonitride of one or more metals of group a and group 5a metals, and 4a and 5a of the periodic table. Forming a hard coating layer consisting of an outer layer made of a face-centered cubic high melting point compound made of carbonate, nitride oxide, or carbonitride oxide of one or more metals in the group metals. A coated cemented carbide member characterized in that the solid solution oxygen content in the outer layer of the hard coating layer increases monotonically from the bonding surface with the inner layer toward the surface. . 3 Contains 60 to 97% by weight of one or more of carbides, nitrides, carbonitrides, and carbonitrides of group 4a, 5a, and 6a metals of the periodic table as a hard phase forming component. However, on the surface of a cemented carbide base material having a composition in which the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities, metals from groups 4a and 5a of the periodic table are applied. 4a and 5a of the periodic table.
High melting point face-centered cubic crystal consisting of one or more metals from the group metals and one or two carbonates, nitrides, or carbonitoxides of boron and silicon In a coated cemented carbide member formed by forming a hard coating layer consisting of an outer layer made of a compound and A coated cemented carbide member characterized in that it increases monotonically. 4 Contains 60 to 97% by weight of one or more of carbides, nitrides, carbonitrides, and carbonitrides of group 4a, 5a, and 6a metals of the periodic table as a hard phase forming component. Furthermore, as a bonding phase-forming component, one or more of Cr group metals, Si, and Al: 1-
20% by weight, and the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities.
an inner layer composed of a face-centered cubic high melting point compound consisting of carbides, nitrides, or carbonitrides of one or more metals of group a and group 5a metals, and 4a and 5a of the periodic table. one or more metals from the group metals;
Forming a hard coating layer consisting of an outer layer composed of a face-centered cubic high melting point compound made of one or two of boron and silicon carbonates, nitrides, or carbonitrides. A coated cemented carbide member characterized in that the solid solution oxygen content in the outer layer of the hard coating layer increases monotonically from the bonding surface with the inner layer toward the surface. .
JP2355978A 1978-03-03 1978-03-03 Coated cemented carbide parts Expired JPS593541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2355978A JPS593541B2 (en) 1978-03-03 1978-03-03 Coated cemented carbide parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2355978A JPS593541B2 (en) 1978-03-03 1978-03-03 Coated cemented carbide parts

Publications (2)

Publication Number Publication Date
JPS54116343A JPS54116343A (en) 1979-09-10
JPS593541B2 true JPS593541B2 (en) 1984-01-24

Family

ID=12113861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2355978A Expired JPS593541B2 (en) 1978-03-03 1978-03-03 Coated cemented carbide parts

Country Status (1)

Country Link
JP (1) JPS593541B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913877A (en) * 1987-12-07 1990-04-03 Gte Valenite Corporation Surface modified cemented carbides
US4828612A (en) * 1987-12-07 1989-05-09 Gte Valenite Corporation Surface modified cemented carbides

Also Published As

Publication number Publication date
JPS54116343A (en) 1979-09-10

Similar Documents

Publication Publication Date Title
JPS60502244A (en) Coated silicon nitride cutting tools
JPS627267B2 (en)
JPS58211862A (en) Composite silicon nitride cutting tool also executing coating
JPS6053721B2 (en) Composite sintered parts for cutting tools
JPH0568548B2 (en)
JPS6210301B2 (en)
JPS6119367B2 (en)
JPS593541B2 (en) Coated cemented carbide parts
CA1064787A (en) Wear resisting cemented carbide articles
JPH10237650A (en) Wc base cemented carbide and its production
US4640693A (en) Coated silicon nitride cutting tool and process for making
JPS625993B2 (en)
JP2917555B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JPS5921387B2 (en) Coated cemented carbide parts
JP3519127B2 (en) High thermal conductive coated tool
JPS6059085B2 (en) coated ceramic tools
JP2974285B2 (en) Manufacturing method of coated carbide tool
JP2660180B2 (en) Coated carbide tool
JP3115247B2 (en) Coated cemented carbide indexable inserts
JPS593542B2 (en) Coated cemented carbide parts
JP2000080432A (en) Coated cemented carbide
JP4484500B2 (en) Surface coated cutting tool
JP2001179508A (en) Cutting tool
JP2974284B2 (en) Manufacturing method of coated carbide tool
JPS59166673A (en) Surface-coated tool member excellent in wear resistance