JPS593540B2 - Nitride film formation method - Google Patents

Nitride film formation method

Info

Publication number
JPS593540B2
JPS593540B2 JP11340179A JP11340179A JPS593540B2 JP S593540 B2 JPS593540 B2 JP S593540B2 JP 11340179 A JP11340179 A JP 11340179A JP 11340179 A JP11340179 A JP 11340179A JP S593540 B2 JPS593540 B2 JP S593540B2
Authority
JP
Japan
Prior art keywords
nitride film
laser beam
semiconductor
silicon substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11340179A
Other languages
Japanese (ja)
Other versions
JPS5638464A (en
Inventor
克博 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11340179A priority Critical patent/JPS593540B2/en
Publication of JPS5638464A publication Critical patent/JPS5638464A/en
Publication of JPS593540B2 publication Critical patent/JPS593540B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 本発明は、半導体または金属の表面を窒化させ、窒化膜
を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for nitriding the surface of a semiconductor or metal to form a nitride film.

従来、半導体または金属の表面を窒化させ、窒化膜を形
成する方法として、半導体または金属の表面を直接窒化
する方法と、半導体または金属の表面に、半導体または
金属の窒化膜をデポジット5 する方法とがあつた。表
面を直接窒化する方法として、金属などでは、一部イオ
ン窒化法が開発されているが、実用段階には至つていな
い。また、半導体表面の直接窒化は、通常窒素雰囲気で
熱処理する方法が考えられているが、例えば1200℃
10の高温で熱処理しても、窒化反応はほとんど起こら
ず、正規の半導体窒化膜は得られていない。半導体にお
いては、表面に半導体窒化膜をデポジットする方法が実
用化されており、化学的蒸着法(CVD法■Chemi
calVaporDep0一15sition法)、ス
パッタリング法、プラズマ、デポジション法など、いく
つかの技術が開発されている。しかしながら、表面に半
導体窒化膜をデポジットする方法では、半導体を直接窒
化するものではないので、半導体と半導体窒化膜との界
面20に、不純物が堆積しやすく、界面での不対電子な
どに起因する界面電荷が異常に大きくなる。したがつて
、半導体表面にデポジットする方法で形成した半導体窒
化膜は、半導体装置の保護膜として用いられることはあ
つても、半導体装置の活性領25域として使用すること
は不可能であつた。上記のように、従来の窒化膜形成法
は、ほとんど半導体または、金属の表面に窒化膜をデポ
ジットする方法であり、半導体または金属の表面を直接
に窒化することができなかつたので、不純物の30堆積
や、界面電荷の増大など避けられない欠点を有していた
。本発明は、半導体または金属の表面に、これらの半導
体または、金属を直接に窒化することによつて、窒化膜
を形成する方法を提供することを目35的としたもので
ある。
Conventionally, methods for nitriding the surface of a semiconductor or metal to form a nitride film include a method of directly nitriding the surface of the semiconductor or metal, and a method of depositing a nitride film of the semiconductor or metal on the surface of the semiconductor or metal. It was hot. As a method for directly nitriding the surface, ion nitriding methods have been developed for some metals, but they have not yet reached the practical stage. In addition, for direct nitriding of semiconductor surfaces, a method of heat treatment in a nitrogen atmosphere is usually considered;
Even if the heat treatment was performed at a high temperature of 10°C, almost no nitriding reaction occurred, and a regular semiconductor nitride film was not obtained. For semiconductors, a method of depositing a semiconductor nitride film on the surface has been put into practical use.
Several techniques have been developed, including the calVaporDep0-15site method), sputtering method, plasma, and deposition method. However, in the method of depositing a semiconductor nitride film on the surface, since the semiconductor is not directly nitrided, impurities are likely to accumulate at the interface 20 between the semiconductor and the semiconductor nitride film, resulting in unpaired electrons at the interface. The interfacial charge becomes abnormally large. Therefore, although a semiconductor nitride film formed by depositing on a semiconductor surface may be used as a protective film of a semiconductor device, it has not been possible to use it as the active region 25 of a semiconductor device. As mentioned above, most conventional nitride film formation methods involve depositing a nitride film on the surface of a semiconductor or metal, and since it is not possible to directly nitride the surface of a semiconductor or metal, 30% of the impurity It has unavoidable drawbacks such as deposition and increased interfacial charge. An object of the present invention is to provide a method for forming a nitride film on the surface of a semiconductor or metal by directly nitriding the semiconductor or metal.

以下、実施例に基づいて本発明を説明する。Hereinafter, the present invention will be explained based on Examples.

第1図は、本発明の第1の実施例を実施するための装置
の模式図である。第1図において、1はレーザー発振器
、2はレーザー光線、3は光学レンズ系でめる。4はそ
の表面にシリコン窒化膜が形成されるシリコン基板、5
はプラズマ発生室、6は窒素ガス導入口、7は真空排気
口、8は基板保持台、9は高周波電磁界発生器、10は
プラズマ発生用コイルである。
FIG. 1 is a schematic diagram of an apparatus for carrying out a first embodiment of the present invention. In FIG. 1, 1 is a laser oscillator, 2 is a laser beam, and 3 is an optical lens system. 4 is a silicon substrate on which a silicon nitride film is formed, 5
1 is a plasma generation chamber, 6 is a nitrogen gas inlet, 7 is a vacuum exhaust port, 8 is a substrate holding stand, 9 is a high frequency electromagnetic field generator, and 10 is a plasma generation coil.

第1図に示す装置によつて、窒素雰囲気に高周波電磁界
を印加し、窒素ブラズマを発生させる。上記窒素プラズ
マ中のシリコン基板4の表面に、高エネルギー・高出力
のレーザー光線、例えば、ルビー・レーザーからの数ジ
ユール/CTn2のエネルギーる持つレーザー光線2を
照射すると、このレーザー光線2は、その波長程度まで
シリコン基板4の内部へ侵透し、レーザー光線2のエネ
ルギーが、シリコン基板4に吸収されて、シリコン基板
4の表面部が瞬間的に、1200℃〜1500℃の高温
になる。レーザー光線のエネルギーが十分大きい場合に
は、シリコン基板4の表面部が瞬間的に溶融する場合も
ある。このように1200℃〜1500℃程度の高温に
なつたシリコン基板4の表面は、ブラズマ中で励起され
た窒素ラジカルと反応し、シリコン基板4の表面に、シ
リコン窒化膜が形成される。従来の熱処理による表面の
直接窒化では、シリコン基板4全体の温度が高くなるた
め、シリコンが溶融する程度の高温で熱窒化することは
不可能であつた。しかしながら、本発明のレーザー光線
照射によると、シリコン基板4のレーザー光線2の波長
程度までの深さの表面部が瞬間的に、高温になるだけで
あジ、シリコン基板4のレーザー光線2の照射を受けな
い他の部分は何らの影響も受けない。さらに、窒素は、
プラズマによつて励起され、窒素ラジカルとなつている
ので、単なる窒素雰囲気だけの場合に比べて、シリコン
との反応速度は著しく大きくなつている。レーザー光線
2を照射することによつて、シリコン基板4の表面部に
形成されたシリコン窒化膜の厚さと、このレーザー光線
の強度との関係のグラフを第2図に示す。
Using the apparatus shown in FIG. 1, a high frequency electromagnetic field is applied to a nitrogen atmosphere to generate nitrogen plasma. When the surface of the silicon substrate 4 in the nitrogen plasma is irradiated with a high-energy, high-output laser beam, for example, a laser beam 2 with an energy of several Joules/CTn2 from a ruby laser, this laser beam 2 will emit light up to about that wavelength. The energy of the laser beam 2 that penetrates into the silicon substrate 4 is absorbed by the silicon substrate 4, and the surface portion of the silicon substrate 4 instantaneously becomes a high temperature of 1200° C. to 1500° C. If the energy of the laser beam is sufficiently large, the surface portion of the silicon substrate 4 may melt instantaneously. The surface of the silicon substrate 4 heated to a high temperature of about 1200° C. to 1500° C. reacts with the nitrogen radicals excited in the plasma, and a silicon nitride film is formed on the surface of the silicon substrate 4. In direct nitriding of the surface by conventional heat treatment, the temperature of the entire silicon substrate 4 becomes high, so it has been impossible to carry out thermal nitridation at a high enough temperature to melt silicon. However, according to the laser beam irradiation of the present invention, the surface portion of the silicon substrate 4 at a depth of about the wavelength of the laser beam 2 only instantaneously becomes high temperature, and is not irradiated with the laser beam 2 of the silicon substrate 4. Other parts are not affected in any way. Furthermore, nitrogen is
Since it is excited by the plasma and becomes nitrogen radicals, the reaction rate with silicon is significantly higher than in the case of a simple nitrogen atmosphere. FIG. 2 shows a graph of the relationship between the thickness of the silicon nitride film formed on the surface of the silicon substrate 4 by irradiation with the laser beam 2 and the intensity of this laser beam.

第2図において、横軸はレーザー光線強度を示し、縦軸
は窒化膜厚を示す。
In FIG. 2, the horizontal axis shows the laser beam intensity, and the vertical axis shows the nitride film thickness.

曲線A,b,cは、この順序に窒素ブラズマを励起する
高周波電磁界の強度が高くなつている。破線で示す曲線
c1は、後述の第2の実施例のようにシリコン基板を予
備加熱した場合を示している。第2図から、シリコン基
板を予備加熱すると、同一のレーザー光線強度に対する
シリコン窒化膜の厚さが厚くなることが分かる。
In curves A, b, and c, the intensity of the high-frequency electromagnetic field that excites the nitrogen plasma increases in this order. A curve c1 indicated by a broken line indicates the case where the silicon substrate is preheated as in the second embodiment described later. From FIG. 2, it can be seen that when the silicon substrate is preheated, the thickness of the silicon nitride film becomes thicker for the same laser beam intensity.

この知見に基づいたのが、本発明の第2の実施例である
。第3図は、本発明の第2の実施例を実施するための装
置の模式図である。第3図において、1は基板保持台8
の下から、シリコン基板4を加熱する加熱用ヒーターで
ある。本実施例では加熱用ヒーター11によつて、シリ
コン基板4を、あらかじめ、数100℃程度の温度に予
備加熱して、レーザー光線2を照射する。この実施例に
よれば、第2図から分かるように、レーザー光線2の照
射によつてシリコン窒化膜の生成反応が促進され、窒化
膜生成反応が生じるレーザー光線2の臨界強度を低下さ
せることができる。第4図は、本発明の第3の実施例を
実施するときのシリコン基板と、その上に載置された遮
光マスクとを示す断面図である。
The second embodiment of the present invention is based on this knowledge. FIG. 3 is a schematic diagram of an apparatus for carrying out a second embodiment of the invention. In FIG. 3, 1 is a substrate holding stand 8.
This is a heater that heats the silicon substrate 4 from below. In this embodiment, the silicon substrate 4 is preheated in advance to a temperature of about several hundred degrees Celsius by the heating heater 11, and then the laser beam 2 is irradiated. According to this embodiment, as can be seen from FIG. 2, the silicon nitride film formation reaction is promoted by the irradiation of the laser beam 2, and the critical intensity of the laser beam 2 at which the nitride film formation reaction occurs can be reduced. FIG. 4 is a sectional view showing a silicon substrate and a light shielding mask placed thereon when implementing the third embodiment of the present invention.

第4図において、12は、レーザー光線2を遮蔽する物
質、例えば金属からなり、シリコン基板4上に、所定の
パターンに形成された遮光マスクである。第4図の実施
例においては遮光マスク12をシリコン基板4上に載置
して、レーザー光線2を照射するので、シリコン基板4
の表面部の遮光マスク12に覆われた部分は、レーザー
光線及び窒素プラズマの作用を受けず、シリコン窒化膜
が形成されない。したがつて、遮光マスク12に覆われ
ていない部分にのみ、所望のパターンのシリコン窒化膜
を形成することができる。第5図は、本発明の第4の実
施例を実施するための装置の光学系統のみを示す模式図
である。
In FIG. 4, reference numeral 12 denotes a light-shielding mask made of a material that shields the laser beam 2, such as metal, and formed in a predetermined pattern on the silicon substrate 4. As shown in FIG. In the embodiment shown in FIG. 4, the light-shielding mask 12 is placed on the silicon substrate 4 and the laser beam 2 is irradiated.
The portion of the surface covered by the light-shielding mask 12 is not affected by the laser beam and nitrogen plasma, and no silicon nitride film is formed thereon. Therefore, a silicon nitride film having a desired pattern can be formed only in the portions not covered by the light-shielding mask 12. FIG. 5 is a schematic diagram showing only the optical system of an apparatus for carrying out the fourth embodiment of the present invention.

第5図に卦いて、3aはレーザー光線2をシリコン基板
4上にて走基させる光学系である。本実施例においては
光学系3aによつて、レーザー光線2をシリコン基板4
上にて、所望のパターンを描くように走査させ、シリコ
ン基板4の表面のレーザー光線2が走査した部分のみを
窒化させて、所望のパターンのシリコン窒化膜を形成す
ることができる。上記の各実施例においては、シリコン
基板の表面部にシリコン窒化膜を形成する場合について
述べたが、本発明は他の半導体、その他金属からなる基
体の表面部にその基体の構成物質の窒化膜を形成するの
に用いることができる。
In FIG. 5, reference numeral 3a denotes an optical system that causes the laser beam 2 to travel on the silicon substrate 4. As shown in FIG. In this embodiment, the optical system 3a directs the laser beam 2 to the silicon substrate 4.
A silicon nitride film having a desired pattern can be formed by scanning the surface of the silicon substrate 4 so as to draw a desired pattern and nitriding only the portion of the surface of the silicon substrate 4 scanned by the laser beam 2. In each of the above embodiments, a case has been described in which a silicon nitride film is formed on the surface of a silicon substrate, but the present invention also provides a method for forming a nitride film of a constituent material of the base on the surface of a base made of another semiconductor or other metal. It can be used to form.

以上詳述したように、本発明による窒化膜形成法におい
ては、窒素プラズマ中において、半導体または金属から
なる基体の表向部に、高エネルギー・高出力レーザー光
線を照射し、この照射によつて高温化した基体表面とプ
ラズマ中の励起された窒素とを反応させて、上記基体の
表面部に直接に窒化膜を形成するので、上記基体と上記
窒化膜1との界面に不純物が堆積したり、界面電界が異
常に大きくなるようなことがない。
As detailed above, in the nitride film forming method according to the present invention, a high-energy, high-output laser beam is irradiated on the surface of a substrate made of semiconductor or metal in nitrogen plasma, and the irradiation causes a high temperature. Since a nitride film is formed directly on the surface of the substrate by reacting the oxidized substrate surface with excited nitrogen in the plasma, impurities are not deposited on the interface between the substrate and the nitride film 1, The interfacial electric field does not become abnormally large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例のための装置の模式図、
第2図は生成されるシリコン窒化膜の厚さとレーザー光
線の強度との関係を示すグラフ、第3図は本発明の第2
の実施例のための装置の模式図、第4図は本発明の第3
の実施例に卦いてシリコン基板上に遮光マスクを載置し
た状況を示す断面図、第5図は本発明の第4の実施例の
ための装置の光学系統のみを示す模式図である。 図に}いて、1はレーザー発振器、2はレーザー光線、
3は光学レンズ系、4はシリコン基板、5はプラズマ発
生室、6はガス導入口、7は真空排気口、8は基板保持
台、9は高周波電磁界発生器、10はプラズマ発生用コ
イル、11は基板加熱用ヒーター、12は遮光マスクで
ある。
FIG. 1 is a schematic diagram of an apparatus for a first embodiment of the present invention;
FIG. 2 is a graph showing the relationship between the thickness of the silicon nitride film produced and the intensity of the laser beam, and FIG.
FIG. 4 is a schematic diagram of the apparatus for the embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a situation in which a light shielding mask is placed on a silicon substrate in the fourth embodiment of the present invention, and FIG. 5 is a schematic diagram showing only the optical system of the apparatus for the fourth embodiment of the present invention. In the figure, 1 is a laser oscillator, 2 is a laser beam,
3 is an optical lens system, 4 is a silicon substrate, 5 is a plasma generation chamber, 6 is a gas inlet, 7 is a vacuum exhaust port, 8 is a substrate holding stand, 9 is a high frequency electromagnetic field generator, 10 is a plasma generation coil, 11 is a heater for heating the substrate, and 12 is a light shielding mask.

Claims (1)

【特許請求の範囲】 1 窒素雰囲気に、高周波電磁界を印加して形成した窒
素プラズマ中にて、半導体または金属からなる基体の表
面に、高エネルギー・高出力レーザー光線を照射して、
上記基体表面と、プラズマ中の窒素とを反応させて、上
記基体の上記表面部分に、上記半導体または上記金属に
よる窒化膜を形成することを特徴とする窒化膜形成法。 2 基体を予備加熱して、レーザー光線を照射すること
を特徴とする特許請求の範囲第1項記載の窒化膜形成法
。 3 遮光性マスクを通して、レーザー光線を基体に照射
して所望のパターンの窒化膜を形成することを特徴とす
る特許請求の範囲第1項または第2項記載の窒化膜形成
法。 4 レーザー光線を所望のパターンを描くように、基体
の表面を走査させて所望のパターンの窒化膜を形成する
ことを特徴とする特許請求の範囲第1項または第2項記
載の窒化膜形成法。
[Claims] 1. Irradiating the surface of a semiconductor or metal substrate with a high-energy, high-output laser beam in nitrogen plasma formed by applying a high-frequency electromagnetic field to a nitrogen atmosphere,
A nitride film forming method comprising forming a nitride film of the semiconductor or the metal on the surface portion of the base by reacting the surface of the base with nitrogen in plasma. 2. The method for forming a nitride film according to claim 1, wherein the substrate is preheated and irradiated with a laser beam. 3. The method for forming a nitride film according to claim 1 or 2, wherein the nitride film is formed in a desired pattern by irradiating the substrate with a laser beam through a light-shielding mask. 4. The nitride film forming method according to claim 1 or 2, characterized in that the nitride film in the desired pattern is formed by scanning the surface of the substrate with a laser beam so as to draw a desired pattern.
JP11340179A 1979-09-03 1979-09-03 Nitride film formation method Expired JPS593540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11340179A JPS593540B2 (en) 1979-09-03 1979-09-03 Nitride film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11340179A JPS593540B2 (en) 1979-09-03 1979-09-03 Nitride film formation method

Publications (2)

Publication Number Publication Date
JPS5638464A JPS5638464A (en) 1981-04-13
JPS593540B2 true JPS593540B2 (en) 1984-01-24

Family

ID=14611354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11340179A Expired JPS593540B2 (en) 1979-09-03 1979-09-03 Nitride film formation method

Country Status (1)

Country Link
JP (1) JPS593540B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850737A (en) * 1981-09-21 1983-03-25 Mitsubishi Electric Corp Manufacture apparatus for semiconductor element
JPS58199857A (en) * 1982-05-04 1983-11-21 マイクル・ポ−ル・ニアリ− Chemical process
JPS6050166A (en) * 1983-08-26 1985-03-19 Res Dev Corp Of Japan Method and device for plasma vapor deposition
JPS60216560A (en) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd Formation of nitride film
JPS61119676A (en) * 1984-11-15 1986-06-06 Ulvac Corp Film forming device using sheet plasma and laser light
JPS61131431A (en) * 1984-11-29 1986-06-19 Mitsubishi Electric Corp Semiconductor manufacturing equipment
JPS61196525A (en) * 1985-02-26 1986-08-30 Toshiba Corp Semiconductor epitaxial growth apparatus
CA1306632C (en) * 1986-12-01 1992-08-25 Hironobu Kobayashi Spectroscope apparatus and reaction apparatus using the same
JPH0627346B2 (en) * 1989-07-14 1994-04-13 株式会社日立製作所 Film forming apparatus using microwave plasma and method thereof
FR2801905B1 (en) * 1999-12-03 2002-02-01 Air Liquide METHOD AND INSTALLATION FOR SELECTIVE SURFACE TREATMENT
AU2178901A (en) * 1999-12-01 2001-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and installation for selective surface treatment

Also Published As

Publication number Publication date
JPS5638464A (en) 1981-04-13

Similar Documents

Publication Publication Date Title
KR101292314B1 (en) Absorber layer for dynamic surface annealing processing
US4482393A (en) Method of activating implanted ions by incoherent light beam
JPS593540B2 (en) Nitride film formation method
US4474831A (en) Method for reflow of phosphosilicate glass
JPH0641741A (en) Substrate heating mechanism
JPH03266424A (en) Annealing process of semiconductor substrate
JPS5943816B2 (en) Method for manufacturing silicon semiconductor devices
JPH0677126A (en) Formation method of flattening material layer utilizing condensation state
JP2686498B2 (en) Semiconductor manufacturing equipment
JPS5852473A (en) Surface treatment of metallic material
JPH02100297A (en) Generation method for x-ray of laser excitation type
JP2602991B2 (en) Diamond surface modification method
KR101610260B1 (en) Electron beam anneling apparatus and annealing method using the same
JP3065760B2 (en) Optical CVD equipment
JPS60216561A (en) Heat-treating method
JPH02248041A (en) Laser beam irradiation device
JPH02200782A (en) Formation of lead titanate thin film
JPS6377124A (en) Heat treatment of compound semiconductor device
JPS6244847B2 (en)
JPH0563553B2 (en)
JPS61199638A (en) Method for formation of insulating film
JPS5897835A (en) Semiconductor substrate and manufacture thereof
JPH03290927A (en) Formation of conductive layer
JPS6092607A (en) Electron beam annealing device
JPS60239398A (en) Process for annealing compound semiconductor