JP2686498B2 - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JP2686498B2
JP2686498B2 JP62312888A JP31288887A JP2686498B2 JP 2686498 B2 JP2686498 B2 JP 2686498B2 JP 62312888 A JP62312888 A JP 62312888A JP 31288887 A JP31288887 A JP 31288887A JP 2686498 B2 JP2686498 B2 JP 2686498B2
Authority
JP
Japan
Prior art keywords
holder
reflector
semiconductor manufacturing
processed
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62312888A
Other languages
Japanese (ja)
Other versions
JPH01152718A (en
Inventor
正 西村
浩洋 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Mitsubishi Electric Corp
Original Assignee
Tokyo Electron Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Mitsubishi Electric Corp filed Critical Tokyo Electron Ltd
Priority to JP62312888A priority Critical patent/JP2686498B2/en
Publication of JPH01152718A publication Critical patent/JPH01152718A/en
Application granted granted Critical
Publication of JP2686498B2 publication Critical patent/JP2686498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、被処理物を加熱しながら処理する半導体製
造装置に関する。 (従来の技術) 一般に、被処理物表面を局部的に高温にして処理す
る、例えばビームアニール装置等の半導体製造装置で
は、高温処理部と他の部分との温度差による熱歪みを防
止したり、作業時間の短縮化を図るため、半導体ウエハ
等の被処理物の保持部を予備加熱することにより、被処
理物を加熱しながら処理するように構成されている。 以下、このような半導体製造装置として、ビームアニ
ール装置を例にして説明する。 アニール技術は、高エネルギー線ビームの光エネルギ
ーを被処理物例えば半導体ウエハ表面に吸収させ、熱エ
ネルギーの形に変換して被処理物の表面層の熱処理(ア
ニール)を行う技術で、半導体製造においては、半導体
ウエハ表面層の結晶性回復や導入不純物の活性化等に主
として用いられている技術である。 例えば3次元素子の開発において基本となるSOI(Sil
icon On Insulator)技術は、基体表面に形成された絶
縁膜上にさらにシリコン単結晶を形成し、このシリコン
単結晶上に素子を形成する技術であり、このSOI技術に
おいて絶縁膜上に単結晶を形成する方法の一つとして、
上記ビームアニール技術が注目されている。例えば、化
学気相成長法(CVD:Chemical Vepor Deposition)等に
より絶縁膜上に形成された非単結晶シリコン層に、レー
ザ等の高エネルギー線ビームを照射して、非単結晶シリ
コン層を単結晶化する技術に応用されている。 このようなビームアニールに使用するビームアニール
装置としては、チヤンバ内部に被処理物例えば半導体ウ
エハを予備加熱するための円板状のサセプタを配設し、
該サセプタに半導体ウエハを例えば真空装置により吸着
保持し、半導体ウエハ表面にレーザ光を走査照射してア
ニールを行うものがある。一般にこのようなビームアニ
ール装置では、ビーム照射部が高温例えば1200℃程度ま
で上昇するため、ビームが照射されていない部分との温
度差により熱歪みが発生してしまうので、これを防止す
る目的で半導体ウエハを予め加熱する予備加熱機構が具
備されている。 この予備加熱機構としては、上記サセプタを直接また
は間接的に加熱して半導体ウエハを加熱するように構成
されており、例えばIRランプ等の光熱源の光エネルギー
により、サセプタを例えば500℃程度に予備加熱するよ
うに構成されたものがある。 (発明が解決しようとする問題点) しかしながら、上述したビームアニール装置の例の如
く、被処理物を予備加熱する保持部を具備した従来の半
導体製造装置では、保持部からの熱放射量が保持部の場
所により一定ではないため、保持部に温度分布のバラツ
キが発生し、この温度差により処理ムラが生じるという
問題があり、また熱歪みの観点からも好ましくなかっ
た。 例えば円板状のサセプタを、その上方に配設された光
熱源により間接的に加熱するものでは、サセプタの側面
からの熱放射が大きく、サセプタ周縁部の温度が中央部
に比べて低くなってしまう。 本発明は上述した問題点を解決するためになされたも
ので、被処理物保持部の均熱度を向上させ、被処理物の
温度差による処理ムラの発生や、被処理物の熱歪みの発
生を防止できる半導体製造装置を提供することを目的と
する。 [発明の構成] (問題点を解決するための手段) 本発明の半導体製造は、処理室内に被処理物を保持す
る保持部と、 前記処理室の壁に設けられた透明部材を通して、前記
保持部を被処理体と反対側から加熱するランプと、 このランプにより前記保持部が加熱されたことによ
り、前記保持部より放射される放射熱の少なくとも一部
を前記保持部に反射するように、前記保持部の近傍の前
記加熱ランプ側に設けられた反射体とを備え、 前記保持体をより均一な温度に加熱することで、前記
保持部により前記被処理体を加熱して、処理を行うこと
を特徴とするものである。 また、請求項2の半導体製造装置は、前記保持部が、
前記被処理物を吸着保持することを特徴とするものであ
る。 また、請求項3の半導体製造装置は、前記反射体が、
前記保持部の外周面と間隙を保持して配置され、内周面
に鏡面仕上げが施された金属からなる筒状の反射体であ
ることを特徴とするものである。 また、請求項4の半導体製造装置は、前記反射体が、
前記保持部の外周面と間隙を保持して配置され、内周面
に高反射率の物質が蒸着された筒状の反射体であること
を特徴とするものである。 (作 用) 反射体は、保持部からの放射熱を保持部の低温領域へ
反射するので、保持部の熱放射による部分的な温度低下
を防止して均熱度を向上させることができる。 (実施例) 以下、本発明をレーザアニール装置に適用した一実施
例について第1図ないし第3図を参照して説明する。 処理室1は、例えばステンレスやアルミニウム等から
なる上蓋2と、例えばアルミニウムからなる下蓋3とに
より構成された円筒状チャンバ4に郭定されており上記
上蓋2および下蓋3は、図示を省略したチャンバ開閉機
構例えばエアーシリンダにより、例えば20mm程度相対的
に開閉自在に取付けられている。処理作業中は、この上
蓋2と下蓋3が閉状態となり、図示を省略したガス導入
部から例えば窒素ガスが導入されて処理室1内をほぼ大
気圧状態に保持する。 上蓋2の上壁には、透明部材例えば直径220mmの石英
ガラス5が嵌込まれており、チャンバ4上方に配設され
た光熱源、例えば反射板6を備えた数キロワットのIRラ
ンプ(Infrared Ray Ramp)7からの赤外線を、該石英
ガラス5からチャンバ4内に取入れて、処理室1内部の
中央部付近に配設されたサセプタ8を例えば、500℃ま
で予備加熱する。 また、下蓋3の下壁にも同様に、透明部材例えば直径
220mmの石英ガラス9が嵌込まれており、チャンバ4下
方向に配設された、図示しないレーザ照射機構から出力
されたレーザ光、例えば、CW−Arガスレーザ光Aが、該
石英ガラス9を透過して半導体ウエハ10表面を走査照射
してアニール処理を行うように構成されている。 ところで、半導体ウエハ10を予備加熱するためのサセ
プタ8は、例えば直径220mm、厚さ20mmの伝熱性に優れ
た部材、例えばカーボングラファイトから形成されてお
り、このサセプタ8の下面はバキュームチャック構造と
なっており、例えば真空ポンプ等の真空装置11により、
半導体ウエハ10裏面をサセプタ8下面に吸着保持するよ
うに構成されている。 サセプタ8の外周方向には、該サセプタ外周面と例え
ば約3mmの隙間を保持して、例えば外径236mm、高さ65m
m、肉厚5mmのアルミニウムからなる円筒状の反射体11が
配置されており、この反射体の内周面11aはサセプタ8
側面からの輻射熱を効率よく反射するように鏡面仕上げ
が施されている。 このようにサセプタ8の外周方向に反射体11を配置す
ることにより、第2図に示すように、サセプタ8側面か
ら放射された輻射熱Bを、反射体内周面11aで反射させ
て、再びサセプタ8側面に照射できるので、熱放射によ
るサセプタ側面の温度低下を防止することができ、サセ
プタ8の均熱度を向上させることができる。また、IRラ
ンプからサセプタ外へと放射された赤外線Cを、サセプ
タ方向へ反射させることもできるので、効率よくサセプ
タを加熱することができる。 本実施例例の装置を用いて、数キロワットのIRランプ
により、サセプタを500℃まで加熱したところ、サセプ
タ周縁部の温度低下は中央部に比べ5℃以内、即ち1%
以内におさえることができた。従って、サセプタの温度
分布の不均一から生じる半導体ウエハの処理ムラや熱歪
みを完全に防止することができる。 ところで、反射体11の形状および取付け位置は、上述
した実施例に限定されるものではなく、サセプタ8から
の熱放射量が大きい場所近傍に配設すればどの位置で
も、どのような形状でも効果がある。また、反射体の内
周面11aは輻射熱を効率よく反射する程工程があり、例
えば反射体内周面11aに白金等の高反射率の物質を蒸着
してもよい。 [発明の効果] 以上説明したように本発明の半導体製造装置によれ
ば、被処理物を加熱する保持部の均熱度が向上し、被処
理物の温度差による処理ムラや熱歪みを防止することが
できる。さらに、保持部を光熱源により間接的に加熱す
る場合には、光エネルギーを保持部に集光させることが
できるので、加熱効率が向上するという効果もある。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a semiconductor manufacturing apparatus for processing an object while heating it. (Prior Art) Generally, in a semiconductor manufacturing apparatus, such as a beam annealing apparatus, which locally heats a surface of an object to be processed, thermal distortion due to a temperature difference between a high temperature processing section and other parts is prevented. In order to shorten the working time, the object to be processed such as a semiconductor wafer is preheated so that the object to be processed is processed while being heated. Hereinafter, a beam annealing apparatus will be described as an example of such a semiconductor manufacturing apparatus. The annealing technique is a technique for absorbing the light energy of a high energy beam on the object to be processed, for example, the surface of a semiconductor wafer, converting it into a form of thermal energy and performing heat treatment (annealing) of the surface layer of the object to be processed. Is a technique mainly used for recovering the crystallinity of the surface layer of a semiconductor wafer and activating introduced impurities. For example, SOI (Sil
icon On Insulator) technology is a technology in which a silicon single crystal is further formed on an insulating film formed on the surface of a substrate and an element is formed on the silicon single crystal. In this SOI technology, a single crystal is formed on the insulating film. One of the ways to form
The above-mentioned beam annealing technique is receiving attention. For example, a non-single-crystal silicon layer formed on an insulating film by chemical vapor deposition (CVD) or the like is irradiated with a high-energy ray beam such as a laser to convert the non-single-crystal silicon layer into a single-crystal silicon layer. It is applied to the technology that is becoming As a beam annealing apparatus used for such beam annealing, a disk-shaped susceptor for preheating an object to be processed, such as a semiconductor wafer, is provided inside the chamber,
There is a method in which a semiconductor wafer is adsorbed and held on the susceptor by, for example, a vacuum device, and the surface of the semiconductor wafer is scanned and irradiated with laser light to perform annealing. Generally, in such a beam annealing apparatus, since the temperature of the beam irradiation part rises to a high temperature, for example, about 1200 ° C., thermal distortion occurs due to the temperature difference between the beam irradiation part and the part not irradiated with the beam. A preheating mechanism for preheating the semiconductor wafer is provided. The preheating mechanism is configured to heat the semiconductor wafer by directly or indirectly heating the susceptor, and preheats the susceptor to, for example, about 500 ° C. by light energy of a photothermal source such as an IR lamp. Some are configured to heat. (Problems to be Solved by the Invention) However, in the conventional semiconductor manufacturing apparatus including the holding unit for preheating the object to be processed as in the above-described beam annealing apparatus, the amount of heat radiation from the holding unit is held. Since it is not constant depending on the location of the part, there is a problem in that the temperature distribution of the holding part varies, and this temperature difference causes processing unevenness, and it is not preferable from the viewpoint of thermal distortion. For example, in the case of indirectly heating a disk-shaped susceptor with a photothermal source arranged above it, the heat radiation from the side surface of the susceptor is large, and the temperature of the peripheral edge of the susceptor becomes lower than that of the central portion. I will end up. The present invention has been made in order to solve the above-mentioned problems, and improves the soaking degree of the object-to-be-processed holding portion, the occurrence of processing unevenness due to the temperature difference of the object to be processed, and the occurrence of thermal strain of the object to be processed. It is an object of the present invention to provide a semiconductor manufacturing apparatus capable of preventing the above. [Structure of the Invention] (Means for Solving Problems) In the semiconductor manufacturing of the present invention, the holding part is held in a processing chamber and a transparent member provided on a wall of the processing chamber is used to hold the holding object. A lamp for heating the part from the side opposite to the object to be treated, and by heating the holding part by this lamp, at least part of the radiant heat emitted from the holding part is reflected to the holding part, And a reflector provided on the heating lamp side in the vicinity of the holder, and heating the holder to a more uniform temperature to heat the object to be processed by the holder to perform processing. It is characterized by that. Further, in the semiconductor manufacturing apparatus according to claim 2, the holding portion is
It is characterized in that the object to be treated is adsorbed and held. Further, in the semiconductor manufacturing apparatus according to claim 3, the reflector is
It is characterized in that it is a cylindrical reflector made of metal, which is arranged with a gap from the outer peripheral surface of the holding portion and has a mirror-finished inner peripheral surface. Further, in the semiconductor manufacturing apparatus of claim 4, the reflector is
It is characterized in that it is a cylindrical reflector which is arranged so as to hold a gap from the outer peripheral surface of the holding portion, and has a substance of high reflectance deposited on the inner peripheral surface thereof. (Operation) Since the reflector reflects the radiant heat from the holding part to the low temperature region of the holding part, it is possible to prevent a partial temperature decrease due to heat radiation of the holding part and improve the soaking degree. (Embodiment) An embodiment in which the present invention is applied to a laser annealing apparatus will be described below with reference to FIGS. 1 to 3. The processing chamber 1 is partitioned into a cylindrical chamber 4 composed of an upper lid 2 made of, for example, stainless steel or aluminum, and a lower lid 3 made of, for example, aluminum. The upper lid 2 and the lower lid 3 are not shown. The chamber opening / closing mechanism, such as an air cylinder, is attached so as to be relatively openable / closable, for example, about 20 mm. During the processing operation, the upper lid 2 and the lower lid 3 are closed, and, for example, nitrogen gas is introduced from a gas introduction portion (not shown) to maintain the inside of the processing chamber 1 at a substantially atmospheric pressure. A transparent member, for example, a quartz glass 5 having a diameter of 220 mm is fitted on the upper wall of the upper lid 2, and a photothermal source disposed above the chamber 4, for example, a several kilowatt IR lamp (Infrared Ray) equipped with a reflector plate 6. Infrared rays from the ramp 7 are taken into the chamber 4 from the quartz glass 5 to preheat the susceptor 8 arranged near the central portion inside the processing chamber 1 to, for example, 500 ° C. In addition, a transparent member such as a diameter is similarly used for the lower wall of the lower lid 3.
A 220 mm quartz glass 9 is fitted in, and a laser beam output from a laser irradiation mechanism (not shown) disposed below the chamber 4 such as a CW-Ar gas laser beam A is transmitted through the quartz glass 9. Then, the surface of the semiconductor wafer 10 is scanned and irradiated to perform the annealing treatment. By the way, the susceptor 8 for preheating the semiconductor wafer 10 is made of, for example, a member having a diameter of 220 mm and a thickness of 20 mm and having excellent heat conductivity, for example, carbon graphite, and the lower surface of the susceptor 8 has a vacuum chuck structure. By a vacuum device 11 such as a vacuum pump,
The rear surface of the semiconductor wafer 10 is configured to be suction-held on the lower surface of the susceptor 8. In the outer peripheral direction of the susceptor 8, a gap of, for example, about 3 mm is maintained with the outer peripheral surface of the susceptor, for example, an outer diameter of 236 mm and a height of 65 m.
A cylindrical reflector 11 made of aluminum and having a wall thickness of 5 mm and a thickness of 5 mm is arranged. The inner peripheral surface 11a of this reflector has a susceptor 8a.
It is mirror-finished to efficiently reflect the radiant heat from the side surface. By arranging the reflector 11 in the outer peripheral direction of the susceptor 8 in this way, as shown in FIG. 2, the radiant heat B radiated from the side surface of the susceptor 8 is reflected by the inner peripheral surface 11a of the reflector, and the susceptor 8 is again exposed. Since the side surface can be irradiated, it is possible to prevent the temperature of the side surface of the susceptor from lowering due to heat radiation, and it is possible to improve the soaking degree of the susceptor 8. Further, since the infrared ray C emitted from the IR lamp to the outside of the susceptor can be reflected in the susceptor direction, the susceptor can be efficiently heated. When the susceptor was heated to 500 ° C. with an IR lamp of several kilowatts using the apparatus of this example, the temperature drop at the peripheral portion of the susceptor was within 5 ° C. compared with the central portion, that is, 1%.
I was able to keep it within. Therefore, it is possible to completely prevent the processing unevenness and thermal distortion of the semiconductor wafer caused by the uneven temperature distribution of the susceptor. By the way, the shape and the mounting position of the reflector 11 are not limited to those in the above-described embodiment, and any position and any shape can be used as long as the reflector 11 is arranged in the vicinity of a place where the amount of heat radiation from the susceptor 8 is large. There is. Further, the inner peripheral surface 11a of the reflector has a step of efficiently reflecting the radiant heat, and for example, a highly reflective substance such as platinum may be deposited on the inner peripheral surface 11a of the reflector. [Effects of the Invention] As described above, according to the semiconductor manufacturing apparatus of the present invention, the soaking degree of the holding unit for heating the object to be processed is improved, and the uneven processing and the thermal distortion due to the temperature difference of the object to be processed are prevented. be able to. Furthermore, when the holding unit is indirectly heated by the photothermal source, light energy can be focused on the holding unit, so that there is an effect that heating efficiency is improved.

【図面の簡単な説明】 第1図は本発明をレーザアニール装置に適用した一実施
例のチヤンバ周辺の構成を示す図、第2図は第1図の反
射体を示す部分断面図である。 1……処理室、2……上蓋、3……下蓋、4……チャン
バ、8……サセプタ、10……半導体ウエハ、11……反射
体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration around a chamber of an embodiment in which the present invention is applied to a laser annealing apparatus, and FIG. 2 is a partial sectional view showing a reflector of FIG. 1 ... Processing chamber, 2 ... Top lid, 3 ... Bottom lid, 4 ... Chamber, 8 ... Susceptor, 10 ... Semiconductor wafer, 11 ... Reflector.

Claims (1)

(57)【特許請求の範囲】 1.処理室内に被処理物を保持する保持部と、 前記処理室の壁に設けられた透明部材を通して、前記保
持部を被処理体と反対側から加熱するランプと、 このランプにより前記保持部が加熱されたことにより、
前記保持部より放射される放射熱の少なくとも一部を前
記保持部に反射するように、前記保持部の近傍の前記加
熱ランプ側に設けられた反射体とを備え、 前記保持体をより均一な温度に加熱することで、前記保
持部により前記被処理体を加熱して、処理を行うことを
特徴とする半導体製造装置。 2.前記保持部が、前記被処理物を吸着保持することを
特徴とする特許請求の範囲第1項記載の半導体製造装
置。 3.前記反射体が、前記保持部の外周面と間隙を保持し
て配置され、内周面に鏡面仕上げが施された金属からな
る筒状の反射体であることを特徴とする特許請求の範囲
第1項記載の半導体製造装置。 4.前記反射体が、前記保持部の外周面と間隙を保持し
て配置され、内周面に高反射率の物質が蒸着された筒状
の反射体であることを特徴とする特許請求の範囲第1項
記載の半導体製造装置。
(57) [Claims] A holder for holding the object to be processed in the processing chamber, a lamp for heating the holder from the side opposite to the object to be processed through a transparent member provided on the wall of the processing chamber, and the lamp heats the holder. By being done,
A reflector provided on the heating lamp side in the vicinity of the holder so that at least a part of the radiant heat emitted from the holder is reflected by the holder, and the holder is more uniform. A semiconductor manufacturing apparatus, wherein by heating to a temperature, the object to be processed is heated by the holding unit to perform processing. 2. The semiconductor manufacturing apparatus according to claim 1, wherein the holder holds the object to be processed by suction. 3. The reflector is a cylindrical reflector made of metal, which is arranged with a gap from the outer peripheral surface of the holding portion and has a mirror-finished inner peripheral surface. The semiconductor manufacturing apparatus according to item 1. 4. The reflector is a cylindrical reflector which is disposed with a gap between the outer peripheral surface of the holding portion and the inner peripheral surface of which a substance having a high reflectance is vapor-deposited. The semiconductor manufacturing apparatus according to item 1.
JP62312888A 1987-12-10 1987-12-10 Semiconductor manufacturing equipment Expired - Fee Related JP2686498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312888A JP2686498B2 (en) 1987-12-10 1987-12-10 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312888A JP2686498B2 (en) 1987-12-10 1987-12-10 Semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH01152718A JPH01152718A (en) 1989-06-15
JP2686498B2 true JP2686498B2 (en) 1997-12-08

Family

ID=18034651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312888A Expired - Fee Related JP2686498B2 (en) 1987-12-10 1987-12-10 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2686498B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093858A (en) * 2003-09-19 2005-04-07 Dainippon Screen Mfg Co Ltd Heat treatment device
US9498845B2 (en) 2007-11-08 2016-11-22 Applied Materials, Inc. Pulse train annealing method and apparatus
JP2009231608A (en) * 2008-03-24 2009-10-08 Dainippon Screen Mfg Co Ltd Heat treatment equipment
JP6072046B2 (en) * 2011-10-05 2017-02-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Particle control in laser processing systems.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560420A (en) * 1984-06-13 1985-12-24 At&T Technologies, Inc. Method for reducing temperature variations across a semiconductor wafer during heating
JPS61196515A (en) * 1985-02-26 1986-08-30 Mitsubishi Electric Corp Band-fusion type semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JPH01152718A (en) 1989-06-15

Similar Documents

Publication Publication Date Title
KR950006955A (en) Heat treatment device and heat treatment method
US5991508A (en) Thermal processing apparatus with a shield between heater and substrate
JPS5939031A (en) Method of reflowing phosphosilicate glass
JP2686498B2 (en) Semiconductor manufacturing equipment
JPH08139047A (en) Heat treatment apparatus
JP2927877B2 (en) Uniform heating structure of semiconductor manufacturing equipment
JPS60189927A (en) Vapor phase reactor
JP5021347B2 (en) Heat treatment equipment
JPH06260422A (en) Method and device for heating glass substrate
JPS61129834A (en) Heat treatment apparatus
JP2700243B2 (en) Heating equipment
JP3382064B2 (en) Heat treatment equipment
JPH08148437A (en) Vacuum treatment device
JPH0848595A (en) Sheet type vapor growth device
JPH0729844A (en) Infrared heating method and equipment for semiconductor substrate
JPS6027115A (en) Heat treatment of semiconductor wafer by light irradiation furnace
JPH0136976B2 (en)
JPH0351091B2 (en)
JPH043006Y2 (en)
JPH03207861A (en) Heater
JPH0240480Y2 (en)
JP4505553B2 (en) Vacuum process equipment
JPS6244847B2 (en)
JPH05144557A (en) Heater
JPH09217169A (en) Method for heating substrate and vacuum deposition device using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees