JPH08148437A - Vacuum treatment device - Google Patents
Vacuum treatment deviceInfo
- Publication number
- JPH08148437A JPH08148437A JP28774294A JP28774294A JPH08148437A JP H08148437 A JPH08148437 A JP H08148437A JP 28774294 A JP28774294 A JP 28774294A JP 28774294 A JP28774294 A JP 28774294A JP H08148437 A JPH08148437 A JP H08148437A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- wafer
- buffer plate
- processed
- thermal buffer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は真空処理装置に関し、特
にコールドウォール型の加熱方式を用いた枚葉式の真空
処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum processing apparatus, and more particularly to a single-wafer type vacuum processing apparatus using a cold wall type heating system.
【0002】[0002]
【従来の技術】通常、加熱機構を具備したこの種の真空
処理装置は、減圧気相成長(LPCVD)や分子線エピ
タキシー(MBE)などの薄膜成長プロセスや減圧下で
アモルファスシリコン表面にHSG−Si(Hemi−
spherical grai−ned Si)と呼ば
れる凹凸を形成するプロセスなどに使用される。真空処
理装置において基板に処理を施す部屋を処理室と呼ぶ
が、加熱方式としては、この処理室全体が高温になるホ
ットウォール型と被処理基板のみが高温になるコールド
ウォール型とに大別される。また、一度に1枚の基板を
処理する方式を枚葉式、多数の基板を一度に処理する方
式をバッチ式と呼んでいる。2. Description of the Related Art Usually, a vacuum processing apparatus of this type equipped with a heating mechanism is used for thin film growth processes such as low pressure vapor phase epitaxy (LPCVD) and molecular beam epitaxy (MBE), and HSG-Si on an amorphous silicon surface under reduced pressure. (Hemi-
It is used in a process of forming irregularities called as a spacial gray-ned Si). The chamber in which the substrate is processed in the vacuum processing apparatus is called a processing chamber. The heating method is roughly divided into a hot wall type in which the entire processing chamber is at a high temperature and a cold wall type in which only the substrate to be processed is at a high temperature. It A method of processing one substrate at a time is called a single-wafer method, and a method of processing a large number of substrates at a time is called a batch method.
【0003】被処理基板である半導体基板(以下単にウ
ェハと呼ぶ)の膜特性を均一にするためには、プロセス
中の基板温度を均一に保つ必要があり、従来からこの加
熱機構の改善が続けられてきた。例えば、特開平3−3
8029号公報もしくは特開昭61−271818号公
報に開示されている加熱機構は、加熱器とウェハの間に
熱バッファを設けて基板温度の均一化を図ったものであ
る。前者は、コールドウォール型の枚葉装置の、また、
後者はホットウォール型のバッチ装置の例である。本発
明は、コールドウォール型の枚葉装置に関するものであ
るので、前者のコールドウォール型の従来例について述
べる。In order to make the film characteristics of a semiconductor substrate (hereinafter simply referred to as a wafer) to be processed uniform, it is necessary to keep the substrate temperature uniform during the process, and the heating mechanism has been continuously improved. Has been. For example, Japanese Patent Laid-Open No. 3-3
The heating mechanism disclosed in Japanese Unexamined Patent Publication No. 8029 or Japanese Unexamined Patent Publication No. 61-271818 aims to make the substrate temperature uniform by providing a thermal buffer between the heater and the wafer. The former is a cold-wall type single-wafer machine,
The latter is an example of a hot-wall type batch device. Since the present invention relates to a cold-wall type single-wafer apparatus, the former cold-wall type conventional example will be described.
【0004】図5は従来の真空処理装置の一例における
サセプタの部分を示す断面図である。この真空処理装置
の加熱機構は、図5に示すように、ウェハ25を載置す
る天井板を有するサセプタ17の内部にあって抵抗加熱
による加熱ヒータ18と、サセプタ17の裏面に熱バッ
ファ層16を形成し取付けられる熱バッファ板15とで
構成されている。FIG. 5 is a sectional view showing a portion of a susceptor in an example of a conventional vacuum processing apparatus. As shown in FIG. 5, the heating mechanism of the vacuum processing apparatus includes a heater 18 for resistance heating inside the susceptor 17 having a ceiling plate on which the wafer 25 is placed, and a thermal buffer layer 16 on the back surface of the susceptor 17. And a thermal buffer plate 15 which is formed and attached.
【0005】従来、ウェハの加熱は、ウェハ載置台であ
るサセプタからの熱伝導により加熱されウェハからの熱
量の逃げは基板中央部より周辺部の方が多く基板中央部
の温度が周辺部より高くなり温度均一にすることが困難
となる。そこで、この加熱機構はサセプタに以下の細工
を施して温度均一性を改善している。すなわち、サセプ
タ17の天井下面に中央部の厚さを薄くした熱バッファ
板15を密着させている。この厚さの薄い中央部は直接
サセプタ17に密着しないため、この空間が熱バッファ
層16となり、中央部での熱伝導が抑制される。この結
果、ウェハ25の中央部への熱供給が低減され基板温度
分布が改善される。また、この例では、ウェハ25をサ
セプタ17とともに基板中心軸の回りに回転シャフト1
9により回転されることによって円周方向の温度分布の
改善を図っている。Conventionally, a wafer is heated by heat conduction from a susceptor, which is a wafer mounting table, and the amount of heat released from the wafer is higher in the peripheral portion than in the central portion of the substrate, and the temperature in the central portion of the substrate is higher than that in the peripheral portion. It becomes difficult to make the temperature uniform. Therefore, in this heating mechanism, the susceptor is modified as follows to improve the temperature uniformity. That is, the thermal buffer plate 15 having a thin central portion is closely attached to the lower surface of the ceiling of the susceptor 17. Since the thin central portion does not directly adhere to the susceptor 17, this space serves as the thermal buffer layer 16, and heat conduction in the central portion is suppressed. As a result, heat supply to the central portion of the wafer 25 is reduced and the substrate temperature distribution is improved. In addition, in this example, the wafer 25 is rotated together with the susceptor 17 around the central axis of the substrate by the rotating shaft 1.
By being rotated by 9, the temperature distribution in the circumferential direction is improved.
【0006】[0006]
【発明が解決しようとする課題】上述した従来の真空処
理装置では、ウェハを載置するサセプタに直接熱バッフ
ァ板が取り付けられ、しかも設置位置が固定されている
ため、サセプタからの伝熱温度や輻射熱がウェハに複雑
に作用し、熱バッファ板からの輻射熱のみでウェハ面内
の温度を均一に制御することは困難である。In the above-mentioned conventional vacuum processing apparatus, since the thermal buffer plate is directly attached to the susceptor on which the wafer is placed and the installation position is fixed, the heat transfer temperature from the susceptor and The radiant heat acts on the wafer in a complicated manner, and it is difficult to uniformly control the temperature within the wafer surface only by the radiant heat from the thermal buffer plate.
【0007】また、サセプタに熱バッファ板が機械的な
力で拘束されているので、サセプタと熱バッファ板の材
質が異なると、加熱もしくは冷却時の熱膨張率の差によ
りサセプタやバッファ板の変形や割れが生ずる問題があ
り、熱バッファ板の材質の選択が制限される。Further, since the heat buffer plate is restrained by the susceptor by a mechanical force, if the materials of the susceptor and the heat buffer plate are different, the susceptor and the buffer plate are deformed due to the difference in coefficient of thermal expansion during heating or cooling. There is a problem that cracks and cracks occur, which limits the choice of material for the thermal buffer plate.
【0008】さらに、従来例では、基板円周方向の温度
均一性を改善するためにサセプタを基板中心を軸として
回転させているが、回転機構部での気密構造は超高真空
保持することが困難であり、高真空下での気相成長(U
HV−CVD)や分子線エピタキシー(MBE)などの
10-10 Torr台の到達真空度を必要とする真空処理
装置には適用できないという問題もある。Further, in the conventional example, the susceptor is rotated about the center of the substrate in order to improve the temperature uniformity in the circumferential direction of the substrate. However, the airtight structure in the rotating mechanism portion can be maintained in an ultrahigh vacuum. Difficult, vapor phase growth under high vacuum (U
There is also a problem that it cannot be applied to a vacuum processing apparatus such as HV-CVD) or molecular beam epitaxy (MBE) which requires an ultimate vacuum of the order of 10 -10 Torr.
【0009】従って、本発明の目的は、基板温度を制御
し易く基板面内の温度の均一化が図れるとともに高真空
下でも適用できかつ熱バッファ板の材質の選択の自由度
の広い真空処理装置を提供することである。Therefore, it is an object of the present invention to control the substrate temperature easily, to make the temperature within the substrate uniform, and to apply it even under a high vacuum and to have a wide freedom in selecting the material of the thermal buffer plate. Is to provide.
【0010】[0010]
【課題を解決するための手段】本発明の特徴は、減圧さ
れた内部空間に被処理基板の表面を露呈し載置する基板
載置台と、前記被処理基板の裏面側に配置される加熱ヒ
ータと、前記被処理基板の表面を処理する処理手段とを
備える真空処理装置において、前記被処理基板と前記加
熱ヒータの間の空間にあって該基板載置台から離間して
配置される熱バッファ板を備える真空処理装置である。A feature of the present invention is that a substrate mounting table that exposes and mounts the surface of a substrate to be processed in a depressurized internal space, and a heater disposed on the back side of the substrate to be processed. And a processing means for processing the surface of the substrate to be processed, wherein the thermal buffer plate is arranged in a space between the substrate to be processed and the heater to be separated from the substrate mounting table. It is a vacuum processing apparatus provided with.
【0011】また、前記被処理基板と前記熱バッファと
の間隔距離を調節する間隔距離調整手段を備えることが
望ましい。さらに、前記熱バッファ板の中心が前記被処
理基板の中心と一致させ配置されるとともに該被処理基
板と前記熱バッファ板との間隔が中心部を含む円内領域
より周辺部領域の方が狭いか、あるいは、前記被処理基
板と該熱バッファ板との間隔が中心から外方に向って徐
々に狭くなることが望ましい。Further, it is preferable that a distance adjusting means for adjusting a distance between the substrate to be processed and the thermal buffer is provided. Further, the center of the thermal buffer plate is arranged so as to coincide with the center of the substrate to be processed, and the distance between the substrate to be processed and the thermal buffer plate is narrower in the peripheral region than in the circular region including the central portion. Alternatively, it is desirable that the distance between the substrate to be processed and the thermal buffer plate gradually narrows outward from the center.
【0012】一方、前記加熱ヒータは、前記被処理基板
の中心部を主として加熱する第1の加熱ヒータと前記被
処理基板の周辺部を主として加熱する第2の加熱ヒータ
とで構成されていることが望ましい。On the other hand, the heater is composed of a first heater which mainly heats the central part of the substrate to be processed and a second heater which mainly heats the peripheral part of the substrate to be processed. Is desirable.
【0013】[0013]
【実施例】次に、本発明について図面を参照して説明す
る。Next, the present invention will be described with reference to the drawings.
【0014】図1(a)および(b)は本発明の第1の
実施例の真空処理装置と熱バッファ板支持部を示す断面
図および斜視図である。この真空処理装置は、図1に示
すように、減圧下で加熱されたウェハ25に成膜処理を
施す処理室1と、ウェハ25の表面を露呈し載置する石
英製の載置面を有し側壁が金属製であるサセプタ3と、
ウェハ25の裏面側にあってサセプタ3内に配置される
加熱ヒータ部5と、ウェハ25の表面を成膜処理するた
めの反応ガスを導入するガスノズル11と、ウェハ25
と加熱ヒータ部5との間の空間にあってサセプタ3から
離間して配置される熱バッファ板4とを備えている。1 (a) and 1 (b) are a sectional view and a perspective view showing a vacuum processing apparatus and a thermal buffer plate supporting portion of a first embodiment of the present invention. As shown in FIG. 1, this vacuum processing apparatus has a processing chamber 1 for performing a film forming process on a wafer 25 heated under reduced pressure, and a mounting surface made of quartz for exposing and mounting the surface of the wafer 25. And the susceptor 3 whose side wall is made of metal,
The heater portion 5 arranged on the back surface side of the wafer 25 in the susceptor 3, the gas nozzle 11 for introducing the reaction gas for film-forming the surface of the wafer 25, and the wafer 25.
The heat buffer plate 4 is provided in the space between the heater buffer 5 and the heater unit 5 and is spaced apart from the susceptor 3.
【0015】また、被処理基板であるウェハ25を加熱
するための加熱ヒータ部5を配置したヒータ室2と処理
室1のそれぞれを独立して真空排気する排気装置である
ターボ分子ポンプ10a,10bと、図示されていない
基板搬送室からウェハ25を真空中で処理室1へ搬送す
るための基板搬送機構と、処理室1および基板搬送室を
大気にさらすことなくウェハを装置に導入するためのロ
ードロック室とが備えられている。なお、図1では、処
理室とヒータ室および排気装置のみを示し基板搬送室、
ロードロック室および基板搬送機構は従来装置でも備え
おり、しかも周知の機構であるのでここでは説明を省略
する。Further, turbo molecular pumps 10a, 10b, which are evacuation devices for independently evacuating the heater chamber 2 in which the heater 5 for heating the wafer 25 as the substrate to be processed and the processing chamber 1 are independently evacuated. And a substrate transfer mechanism for transferring the wafer 25 from the substrate transfer chamber (not shown) to the processing chamber 1 in a vacuum, and for introducing the wafer into the apparatus without exposing the processing chamber 1 and the substrate transfer chamber to the atmosphere. It is equipped with a load lock chamber. In FIG. 1, only the processing chamber, the heater chamber, and the exhaust device are shown, and the substrate transfer chamber,
Since the load lock chamber and the substrate transfer mechanism are also provided in the conventional apparatus and are well-known mechanisms, the description thereof will be omitted here.
【0016】さらに、熱バッファ板4とウェハ25との
間隔を変える上下駆動機構7が設けられている。この上
下駆動機構7によって上下動する熱バッファ板4の支持
機構は、図1(b)に示すように、熱バッファ板4を三
点で載置する座面6aと落下防止のための突起部6bを
もつ支持棒6で構成している。そして、この突起部6b
と熱バッファ板4との間は適当なクリアランスCが設け
られており、熱バッファ板4の熱膨張による伸縮差を吸
収し熱バッファ板に機械的拘束力を与えないようにして
ある。Further, a vertical drive mechanism 7 for changing the distance between the thermal buffer plate 4 and the wafer 25 is provided. As shown in FIG. 1B, the support mechanism for vertically moving the thermal buffer plate 4 that moves up and down by the vertical drive mechanism 7 includes a seat surface 6a on which the thermal buffer plate 4 is mounted at three points and a protrusion portion for preventing the drop. It is composed of a support rod 6 having 6b. And this protrusion 6b
An appropriate clearance C is provided between the heat buffer plate 4 and the heat buffer plate 4 so as to absorb a difference in expansion and contraction due to thermal expansion of the heat buffer plate 4 and not give a mechanical restraining force to the heat buffer plate.
【0017】一方、上下駆動機構7は、3本の支持棒6
のそれぞれをベロー8を介してヒータ室2に導入し、こ
のベロー8と支持棒6の連結部材を送りねじ機構で上下
に移動させ熱バッファ板4とウェハ25の間隔を調節し
ている。また、この送りねじ機構は、送りねじ7bにナ
ット7aが噛み合っており、このナット7aを歯車7
c,7dを介してステップモータ9で回転させ送りねじ
7bを上下させ支持棒6を精密に移動させている。On the other hand, the vertical drive mechanism 7 includes three support rods 6.
Each of them is introduced into the heater chamber 2 via the bellows 8, and the connecting member of the bellows 8 and the support rod 6 is moved up and down by the feed screw mechanism to adjust the distance between the thermal buffer plate 4 and the wafer 25. Also, in this feed screw mechanism, a nut 7a is meshed with the feed screw 7b, and the nut 7a is attached to the gear 7
The stepping motor 9 is rotated via c and 7d to move the feed screw 7b up and down to move the support rod 6 precisely.
【0018】ウェハ25は処理面を上にしてサセプタ3
に搭載されヒータ加熱部5の上側に位置され、実質的に
ウェハ25が収納される処理室1とヒータ加熱部5が収
納されるヒータ室2とに分離されている。処理室1には
ガスノズル11が設置されており、ここから反応ガスを
供給する。ヒータ室2内の加熱ヒータ部5は、カーボン
を発熱体とする加熱ヒータ5aと加熱ヒータ5aの熱輻
射を反射するための熱反射板5bとで構成されている。The wafer 25 is processed side up and the susceptor 3 is placed.
Is mounted on the upper side of the heater heating unit 5, and is substantially separated into a processing chamber 1 in which the wafer 25 is accommodated and a heater chamber 2 in which the heater heating unit 5 is accommodated. A gas nozzle 11 is installed in the processing chamber 1, and a reaction gas is supplied from here. The heater portion 5 in the heater chamber 2 is composed of a heater 5a having carbon as a heating element and a heat reflection plate 5b for reflecting heat radiation of the heater 5a.
【0019】処理室1およびヒータ室2の壁は中空構造
となっており、中に冷却水を循環させることにより、コ
ールドウォールの様態を示している。また、処理室1お
よびヒータ室2は独立した排気装置により減圧すること
ができ、本装置ではいずれの部屋についても到達真空度
を10-10 Torrより低い圧力に到達させることがで
きる。The walls of the processing chamber 1 and the heater chamber 2 have a hollow structure, and a state of a cold wall is shown by circulating cooling water therein. Further, the processing chamber 1 and the heater chamber 2 can be decompressed by independent evacuation devices, and in this device, the ultimate vacuum can be made to reach a pressure lower than 10 -10 Torr in any of the chambers.
【0020】本発明の特徴である熱バッファ板4は加熱
ヒータ部5とウェハ25の間の空間に設置されている。
このため、従来例のようにサセプタ3からのウェハ25
への伝熱作用は殆んど無視できる。すなわち、熱バッフ
ァ板4の輻射熱のみ制御すれば容易にウェハ25の温度
を均一にすることができる。言い換えれば、熱バッファ
板4とウェハ25との間隔距離を変えて輻射熱強度分布
をウェハ25面内に応じて変えることによりウェハ25
の面内温度を均一にすることである。The thermal buffer plate 4, which is a feature of the present invention, is installed in the space between the heater 5 and the wafer 25.
Therefore, the wafer 25 from the susceptor 3 is different from the conventional example.
The heat transfer effect on the material is almost negligible. That is, the temperature of the wafer 25 can be easily made uniform by controlling only the radiant heat of the thermal buffer plate 4. In other words, the radiant heat intensity distribution is changed according to the in-plane of the wafer 25 by changing the distance between the thermal buffer plate 4 and the wafer 25.
Is to make the in-plane temperature uniform.
【0021】なお、熱バッファ板4はカーボン製の円盤
形状の板を用いているが、熱バッファ板4は単に支持棒
6で三点支持されているだけで、従来例のように周縁を
機械的に拘束されていないので、脆い材料や熱膨張率の
高い材料でも使用できる。従って、単結晶シリコン、多
結晶シリコン、石英、SiCなどを用いても良い。要
は、これらの材料の輻射熱の透過率はその温度によって
変化するので、使用する基板温度に合わせて最適な材質
を選ぶことである。Although the thermal buffer plate 4 is a carbon disk-shaped plate, the thermal buffer plate 4 is simply supported at three points by the support rods 6, and the peripheral edge is machined as in the conventional example. Since it is not restrained mechanically, it is possible to use a brittle material or a material having a high coefficient of thermal expansion. Therefore, single crystal silicon, polycrystalline silicon, quartz, SiC or the like may be used. The point is that the radiant heat transmittance of these materials changes depending on the temperature, so it is necessary to select the optimum material according to the substrate temperature to be used.
【0022】加熱されるウェハ25の温度は処理室内の
熱環境の非対称性や熱バッファ板の加工誤差に影響され
るので、上述したようにウェハ25と熱バッファ板4と
の間隔を一定に調節するとともに3本の支持棒6を独立
に上下させウェハ25の裏面と熱バッファ板4との平行
度をも調節することである。Since the temperature of the heated wafer 25 is affected by the asymmetry of the thermal environment in the processing chamber and the processing error of the thermal buffer plate, the distance between the wafer 25 and the thermal buffer plate 4 is adjusted to be constant as described above. In addition, the three support rods 6 are independently moved up and down to adjust the parallelism between the back surface of the wafer 25 and the thermal buffer plate 4.
【0023】このウェハをある基板温度に加熱するに
は、まず、上下駆動機構7で支持棒6を上昇させ予じめ
加熱された熱バッファ板4をウェハ25に近付けウェハ
25の温度を基板温度まで上昇させる。このことにより
従来のようにサセプタからの熱伝導によるウェハ25の
周辺部の温度上昇が無く熱バッファ板4から放射される
一様の輻射熱および透過熱線によりウェハ25は加熱さ
れ温度が均一に上昇し基板温度になる。また、基板温度
が一定温度に達したら上下駆動機構7で熱バッファ板4
をウェハ25から所定の間隔まで引離し、遠ざけること
により照射されるウェハ25への放射熱の分布をより一
様にし基板温度を一定に維持させる。In order to heat this wafer to a certain substrate temperature, first, the support rod 6 is raised by the vertical driving mechanism 7 to bring the preheated thermal buffer plate 4 close to the wafer 25, and the temperature of the wafer 25 is set to the substrate temperature. Up to. As a result, the temperature of the peripheral portion of the wafer 25 does not rise due to the heat conduction from the susceptor as in the conventional case, and the uniform radiant heat and the transmitted heat rays radiated from the thermal buffer plate 4 heat the wafer 25 to raise the temperature uniformly. Substrate temperature is reached. When the substrate temperature reaches a certain temperature, the vertical drive mechanism 7 drives the thermal buffer plate 4
Is separated from the wafer 25 by a predetermined distance and moved away from the wafer 25 to make the distribution of the radiant heat on the wafer 25 irradiated more uniform and keep the substrate temperature constant.
【0024】図2(a)および(b)は本発明の第2の
実施例の真空処理装置におけるサセプタ部を示す断面図
である。この真空処理装置のサセプタ3内に配置される
熱バッファ板4aは、図2(a)に示すように、熱バッ
ファ板4aの中心がウェハ25の中心と一致させ配置さ
れるとともにウェハ25と熱バッファ板4aとの間隔が
中心部を含む円内領域14aより周辺部領域14bの方
が狭くなっている。FIGS. 2A and 2B are sectional views showing the susceptor portion in the vacuum processing apparatus of the second embodiment of the present invention. As shown in FIG. 2A, the thermal buffer plate 4a arranged in the susceptor 3 of the vacuum processing apparatus is arranged such that the center of the thermal buffer plate 4a coincides with the center of the wafer 25 and the heat of the wafer 25 The space between the buffer plate 4a and the peripheral region 14b is narrower than that of the circular region 14a including the central portion.
【0025】この熱バッファ板4aを用いた場合のウェ
ハ25の加熱は、まず、熱バッファ板4aが加熱ヒータ
5aおよび熱反射板5bからの熱輻射を吸収して発熱
し、次に.発熱した熱バッファ板4aからの熱輻射によ
りウェハ25が加熱される。一般に、平板状の加熱板か
らの熱放出は中心部より周辺部のほうが多い傾向がある
ので、ウェハ25の面に同量の熱輻射を供給した場合は
ウェハ25の中央ほど温度が高くなる。そこで本発明の
この実施例では、中央の円内領域14aほど熱バッファ
板4aとウェハ25との距離が長いので、基板中央に供
給される熱輻射強度が減少し、結果としてウェハ25の
基板面内の温度均一性が平板状の熱バッファ板による温
度均一性に比べより向上させることができるという利点
がある。When the wafer 25 is heated by using the thermal buffer plate 4a, first, the thermal buffer plate 4a absorbs heat radiation from the heating heater 5a and the heat reflecting plate 5b to generate heat, and then. The wafer 25 is heated by the heat radiation from the heat buffer plate 4a which has generated heat. Generally, the heat emission from the flat heating plate tends to be larger in the peripheral portion than in the central portion. Therefore, when the same amount of heat radiation is supplied to the surface of the wafer 25, the temperature becomes higher toward the center of the wafer 25. Therefore, in this embodiment of the present invention, since the distance between the thermal buffer plate 4a and the wafer 25 is longer in the central circular area 14a, the thermal radiation intensity supplied to the central portion of the substrate is reduced, and as a result, the substrate surface of the wafer 25 There is an advantage that the internal temperature uniformity can be further improved as compared with the temperature uniformity by the flat thermal buffer plate.
【0026】また、図2(b)に示すように、ウェハ2
5と熱バッファ板4bとの間隔が中心から外方に向って
徐々に狭くなるようにし熱放出面を凹面状に形成したこ
とである。この熱バッファ板4bはウェハ25の中央部
から周辺部に行くに従って放熱強度が徐々に大きくなり
より精密な温度制御ができる。この熱バッファ板4bは
前述の熱バッファ板4aに比べ大口径のウェハの処理に
適している。Further, as shown in FIG. 2B, the wafer 2
That is, the space between the heat-dissipating plate 5 and the heat buffer plate 4b is gradually narrowed outward from the center to form the heat-dissipating surface in a concave shape. The thermal buffer plate 4b gradually increases the heat radiation strength from the central portion of the wafer 25 to the peripheral portion thereof, thereby enabling more precise temperature control. The thermal buffer plate 4b is suitable for processing a wafer having a larger diameter than the thermal buffer plate 4a described above.
【0027】図3(a)および(b)は本発明の第3の
実施例の真空処理装置におけるサセプタ部を示す断面図
である。この真空処理装置の熱バッファ板は、前述の実
施例と同様の熱バッファ板4aを用い、この熱バッファ
板4aの周辺部領域14bに対応し配置される第1の加
熱ヒータ12と円内領域14aに対応し配置される第2
の加熱ヒータ13とを設けたことである。すなわち、熱
バッファ板4aの中央部と周辺部とを独立して加熱制御
することである。FIGS. 3A and 3B are sectional views showing the susceptor portion in the vacuum processing apparatus of the third embodiment of the present invention. As the heat buffer plate of this vacuum processing apparatus, the same heat buffer plate 4a as that used in the above-described embodiment is used, and the first heater 12 and the circled area are arranged corresponding to the peripheral region 14b of the heat buffer plate 4a. 2nd arranged corresponding to 14a
The heater 13 of FIG. That is, the heating of the central portion and the peripheral portion of the thermal buffer plate 4a is controlled independently.
【0028】この加熱機構は、熱バッファ板4aの円内
領域14aと周辺部領域とを第1の加熱ヒータ12と第
2の加熱ヒータ13とを独立に制御し任意の発熱量を得
る。そして、この発熱量によって放射される輻射熱によ
ってウェハ25の周辺部と中央部の温度をより均一にす
る。この実施例の加熱機構は、加熱ヒータのそれぞれを
独立に制御しない前述の加熱機構に比べさらに制御自由
度が広く高い基板温度でも容易に均一にできるという利
点がある。In this heating mechanism, the first heating heater 12 and the second heating heater 13 are independently controlled in the circular area 14a and the peripheral area of the thermal buffer plate 4a to obtain an arbitrary amount of heat generation. Then, the radiant heat radiated by this heat generation amount makes the temperature of the peripheral portion and the central portion of the wafer 25 more uniform. The heating mechanism of this embodiment has an advantage that it has a wider degree of control freedom and can easily make uniform even at a high substrate temperature as compared with the above-mentioned heating mechanism which does not independently control each heater.
【0029】図3(b)に示すように、図2(b)で示
した熱バッファ板4bの周辺部と中央部とを独立して加
熱する第1の加熱ヒータ12と第2の加熱ヒータ13と
を設けても同様の効果が得られる。As shown in FIG. 3B, the first heater 12 and the second heater which independently heat the peripheral portion and the central portion of the thermal buffer plate 4b shown in FIG. 2B. Even if 13 and 13 are provided, the same effect can be obtained.
【0030】図4(a)および(b)はシリコンエピタ
キシャル膜の膜厚分布を示す図である。次に、この図3
(b)の加熱機構を適用した真空処理装置を用いてシリ
コンのエピタキシャル膜を成長した例について述べる。
RCA洗浄を施したN型、抵抗率0.01Ω・cm、面
方位(100)のシリコン基板を処理室1に搬送し、1
×10-10 以下の真空下で基板温度を900℃に加熱し
て基板表面の自然酸化膜を除去した。次に、基板温度を
700℃とし、ガスノズルからSi2 H6 ガスを分圧が
1×10-4Torrになるように供給してシリコンエピ
タキシャル膜を60分間成長した。FIGS. 4A and 4B are views showing the film thickness distribution of the silicon epitaxial film. Next, this Figure 3
An example in which a silicon epitaxial film is grown by using the vacuum processing apparatus to which the heating mechanism of (b) is applied will be described.
An N-type silicon substrate having a resistivity of 0.01 Ω · cm and a plane orientation (100) subjected to RCA cleaning is transferred to the processing chamber 1, and
The substrate temperature was heated to 900 ° C. under a vacuum of × 10 -10 or less to remove the natural oxide film on the substrate surface. Next, the substrate temperature was set to 700 ° C., Si 2 H 6 gas was supplied from the gas nozzle so that the partial pressure was 1 × 10 −4 Torr, and a silicon epitaxial film was grown for 60 minutes.
【0031】また、熱バッファ板4bを取り除いて同一
のプロセスを行い同様にシリコンエピタキシャル膜を成
長した。成長した各々のシリコンエピタキシャル膜の基
板面内分布を赤外線干渉法により測定したところ、熱バ
ッファ板4bのない装置での膜厚分布は、基板周辺部に
向かって膜厚が薄くなっており、均一性は±10%であ
ったのに対し、熱バッファ板4bを用いた場合は、特に
基板周辺部で分布が改善され均一性は±4%であった。
これは、熱バッファ板を用いることにより、基板面内の
温度均一性が改善された結果、膜厚分布が改善されたこ
とを示している。熱バッファ板を用いた場合の膜厚分布
を図4(a)に示した。Further, the thermal buffer plate 4b was removed and the same process was performed to similarly grow a silicon epitaxial film. When the in-plane distribution of each of the grown silicon epitaxial films was measured by the infrared interference method, the film thickness distribution in the device without the thermal buffer plate 4b was thin toward the peripheral portion of the substrate and was uniform. The uniformity was ± 10%, whereas when the thermal buffer plate 4b was used, the distribution was improved especially in the peripheral portion of the substrate and the uniformity was ± 4%.
This indicates that the use of the thermal buffer plate improved the temperature uniformity in the substrate surface, resulting in an improved film thickness distribution. The film thickness distribution when the thermal buffer plate is used is shown in FIG.
【0032】次に、図1の上下駆動機構7により平板状
の熱バッファ板4bを移動させウェハ25との間隔を調
整してシリコンのエピタキシャル膜を成長した例につい
て述べる。そして、エピタキシャル膜の成長プロセスは
前述と同一とした。図4(a)は熱バッファ板4bとウ
ェハ25との距離を調節する前の膜厚分布であり、この
図でわかるように、膜厚分布は基板右下が最も厚く、左
上に向かって薄くなっている。すなわち、基板温度分布
は基板右下が最も高く、左上に向かって温度が低下して
いることを示している。Next, an example in which the flat thermal buffer plate 4b is moved by the vertical drive mechanism 7 of FIG. 1 to adjust the distance from the wafer 25 to grow an epitaxial film of silicon will be described. The growth process of the epitaxial film was the same as described above. FIG. 4A shows the film thickness distribution before adjusting the distance between the thermal buffer plate 4b and the wafer 25. As can be seen from this figure, the film thickness distribution is thickest in the lower right part of the substrate, and becomes thinner toward the upper left part. Has become. That is, the substrate temperature distribution is highest in the lower right part of the substrate and lowers toward the upper left part.
【0033】この結果から、熱バッファ板4bの3本の
支持棒6を用いてウェハ25である基板右下と熱バッフ
ァ板4bの距離を離し、基板左上と熱バッファ板4bと
の距離が近づくようにした。熱バッファ板4bとウェハ
25との位置関係をこのように調節した後に、調節前と
同一プロセスでエピタキシャル膜を成長し、基板面内の
膜厚分布を測定した。図4(b)に示すように、調節後
の膜厚分布は、調節前と比較して、等膜厚線間隔が広く
なり、かつ右下から左上に向かっての膜厚傾斜がなくな
っていることがわかる。調節後の膜厚均一性は±1.5
%であった。このことにより前述の熱バッファ板の上下
駆動機構7が効果的に働いていることが確認できた。From this result, the distance between the lower right part of the substrate, which is the wafer 25, and the thermal buffer plate 4b is increased by using the three support rods 6 of the thermal buffer plate 4b, and the distance between the upper left part of the substrate and the thermal buffer plate 4b is reduced. I did it. After adjusting the positional relationship between the thermal buffer plate 4b and the wafer 25 in this way, an epitaxial film was grown in the same process as before adjustment, and the film thickness distribution in the substrate surface was measured. As shown in FIG. 4B, in the film thickness distribution after adjustment, the uniform film thickness line spacing is wider than before adjustment, and the film thickness gradient from the lower right to the upper left is eliminated. I understand. Thickness uniformity after adjustment is ± 1.5
%Met. From this, it was confirmed that the above-mentioned vertical drive mechanism 7 for the thermal buffer plate is effectively operating.
【0034】また、前述のように熱バッファ板4bの位
置の調節を行った真空処理装置を用いHSG−Siを形
成した例について述べる。HSG−Siは表面に半球状
の微細なグレインからなる多結晶シリコン(Hemi−
Spherical−Grained−Si)膜であ
り、高集積DRAMにおいて小さなメモリ−セルにおい
ても充分な電荷蓄積容量が得られる構造としてスタック
ト型メモリセルの電極として使用されるものである。H
SG−Siを利用した例としては、例えばExt−en
ded Abstract of the 22rd
Conferen−ce on Solid Stat
e Device and Materi−als,1
990,pp.873−876に詳細に記述されてい
る。An example of forming HSG-Si by using the vacuum processing apparatus in which the position of the thermal buffer plate 4b is adjusted as described above will be described. HSG-Si is polycrystalline silicon (Hemi-
It is a Spiral-Grained-Si) film and is used as an electrode of a stacked memory cell as a structure capable of obtaining a sufficient charge storage capacity even in a small memory cell in a highly integrated DRAM. H
An example of using SG-Si is, for example, Ext-en.
ded Abstract of the 22rd
Conferen-ce on Solid Stat
e Device and Material-als, 1
990, p. 873-876.
【0035】まず、表面に100nmのシリコン酸化膜
を形成した基板上に、通常のLSI製造ラインで使用さ
れるLPCVD装置を用い、リン濃度1×1020/cm
3 のアモルファスシリコンを堆積した。次に、この基板
を希HFで処理した。その後、基板温度を600℃と
し、Si2 H6 ガスを分圧が1×10-4Torrとなる
ようにガスノズルより2分間供給した後、ガス供給を中
止し1分間同一温度でアニールを施した。この基板表面
を走査型電子顕微鏡で観察したところ、基板面内均一に
HSG−Siが形成されていることが確認され、本装置
の温度均一性が良好であることが示された。First, a substrate having a 100 nm silicon oxide film formed on the surface thereof was subjected to a phosphorus concentration of 1 × 10 20 / cm 2 using an LPCVD apparatus used in a usual LSI manufacturing line.
3 amorphous silicon was deposited. Next, this substrate was treated with dilute HF. After that, the substrate temperature was set to 600 ° C., Si 2 H 6 gas was supplied from the gas nozzle for 2 minutes so that the partial pressure was 1 × 10 −4 Torr, the gas supply was stopped, and annealing was performed at the same temperature for 1 minute. . When the surface of this substrate was observed with a scanning electron microscope, it was confirmed that HSG-Si was formed uniformly in the surface of the substrate, and it was shown that the temperature uniformity of this device was good.
【0036】[0036]
【発明の効果】以上説明したように本発明は、サセプタ
に載置されるウェハの下方の空間部にサセプタと離間し
て熱バッファ板を配置し、この熱バッファ板とウェハの
各部との間の距離を調整する熱バッファ移動機構やウェ
ハの各部に対応して放射熱放出面の突出寸法を変えた種
々の形状の熱バッファ板あるいは熱バッファ板の各部を
任意の温度に上昇するための複数の加熱ヒータを設け、
加熱されるウェハによってこれら三つの熱放射強度可変
手段を適切に組合わせウェハの各部に輻射熱を与えるこ
とによって、容易にウェハの面内温度を均一にすること
ができるという効果がある。As described above, according to the present invention, the thermal buffer plate is arranged in the space below the wafer placed on the susceptor, spaced apart from the susceptor, and between the thermal buffer plate and each part of the wafer. The heat buffer moving mechanism for adjusting the distance between the heat buffer plate and various parts of the heat buffer plate having various shapes with different projected dimensions of the radiant heat emitting surface corresponding to each part of the wafer The heater of
By appropriately combining these three thermal radiation intensity varying means with the wafer to be heated and applying the radiant heat to each part of the wafer, it is possible to easily make the in-plane temperature of the wafer uniform.
【0037】また、熱バッファ板は三点接触で機械的に
拘束受けずに載置されるので、従来起きていた熱バッフ
ァ板の破損やサセプタの割れなどは皆無となる。さら
に、従来のように高真空を維持することが困難な回転シ
ールをもたないことから10-10 Torr台の到達真空
度を必要とする真空処理装置にも利用が可能であるとい
う効果もある。Further, since the thermal buffer plate is placed by three-point contact without being mechanically restrained, the thermal buffer plate is not damaged or the susceptor is cracked. Furthermore, since it does not have a rotary seal which is difficult to maintain a high vacuum as in the conventional case, it can be used in a vacuum processing apparatus that requires an ultimate vacuum of the order of 10 -10 Torr. .
【図1】本発明の第1の実施例の真空処理装置と熱バッ
ファ板支持部を示す断面図および斜視図である。FIG. 1 is a cross-sectional view and a perspective view showing a vacuum processing apparatus and a thermal buffer plate supporting portion according to a first embodiment of the present invention.
【図2】本発明の第2の実施例の真空処理装置における
サセプタ部を示す断面図である。FIG. 2 is a sectional view showing a susceptor portion in a vacuum processing apparatus according to a second embodiment of the present invention.
【図3】本発明の第3の実施例の真空処理装置における
サセプタ部を示す断面図である。FIG. 3 is a sectional view showing a susceptor portion in a vacuum processing apparatus according to a third embodiment of the present invention.
【図4】シリコンエピタキシャル膜の膜厚分布を示す図
である。FIG. 4 is a diagram showing a film thickness distribution of a silicon epitaxial film.
【図5】従来の真空処理装置の一例におけるサセプタの
部分を示す断面図である。FIG. 5 is a cross-sectional view showing a portion of a susceptor in an example of a conventional vacuum processing apparatus.
1 処理室 2 ヒータ室 3,17 サセプタ 4,4a,4b,15 熱バッファ板 5 加熱ヒータ部 5a,18 加熱ヒータ 6 支持棒 6a 座面 6b 突起部 7 上下駆動機構 7a ナット 7b 送りねじ 7c,7d 歯車 8 ベロー 9 ステップモータ 10a,10b ターボ分子ポンプ 11 ガスノズル 12 第1の加熱ヒータ 13 第2の加熱ヒータ 14a 円内領域 14b 周辺部領域 16 熱バッファ層 19 回転シャフト 25 ウェハ 1 Processing chamber 2 Heater chamber 3,17 Susceptor 4,4a, 4b, 15 Thermal buffer plate 5 Heating heater part 5a, 18 Heating heater 6 Support rod 6a Seat surface 6b Projection part 7 Vertical drive mechanism 7a Nut 7b Feed screw 7c, 7d Gear 8 Bellow 9 Step motor 10a, 10b Turbo molecular pump 11 Gas nozzle 12 First heater 13 Second heater 14a Circle area 14b Peripheral area 16 Thermal buffer layer 19 Rotating shaft 25 Wafer
Claims (6)
を露呈し載置する基板載置台と、前記被処理基板の裏面
側に配置される加熱ヒータと、前記被処理基板の表面を
処理する処理手段とを備える真空処理装置において、前
記被処理基板と前記加熱ヒータの間の空間にあって該基
板載置台から離間して配置される熱バッファ板を備えて
いることを特徴とする真空処理装置。1. A substrate mounting table that exposes and mounts a surface of a substrate to be processed in a depressurized internal space, a heater disposed on the back side of the substrate to be processed, and a surface of the substrate to be processed. A vacuum processing apparatus including a processing means for performing a vacuum treatment, comprising: a thermal buffer plate disposed in a space between the substrate to be processed and the heater and spaced apart from the substrate mounting table. Processing equipment.
隔距離を調節する間隔距離調整手段を備えることを特徴
とする請求項1記載の真空処理装置。2. The vacuum processing apparatus according to claim 1, further comprising a distance adjusting means for adjusting a distance between the substrate to be processed and the thermal buffer.
を三点を載置し支持する棒部材とこの棒部材をそれぞれ
独立して移動させる移動機構とを備えることを特徴とす
る請求項1記載の真空処理装置。3. The spacing distance adjusting means comprises a rod member for mounting and supporting the processing target substrate at three points, and a moving mechanism for independently moving the rod member. The vacuum processing apparatus described.
板の中心と一致させ配置されるとともに該被処理基板と
前記熱バッファとの間隔が中心部を含む円内領域より周
辺部領域の方が狭いことを特徴とする請求項1または請
求項2記載の真空処理装置。4. The center of the thermal buffer plate is arranged so as to coincide with the center of the substrate to be processed, and the distance between the substrate to be processed and the thermal buffer is closer to a peripheral region than a circular region including a central portion. 3. The vacuum processing apparatus according to claim 1, wherein the vacuum processing device is narrow.
板の中心と一致させ設置されるとともに前記被処理基板
と該熱バッファ板との間隔が中心から外方に向って徐々
に狭くなることを特徴とする請求項1または請求項2記
載の真空処理装置。5. The center of the thermal buffer plate is installed so as to coincide with the center of the substrate to be processed, and the distance between the substrate to be processed and the thermal buffer plate is gradually narrowed outward from the center. The vacuum processing apparatus according to claim 1 or 2, characterized in that.
心部を主として加熱する第1の加熱ヒータと前記被処理
基板の周辺部を主として加熱する第2の加熱ヒータとで
構成されていることを特徴とする請求項4または請求項
5記載の真空処理装置。6. The heater comprises a first heater that mainly heats a central portion of the substrate to be processed and a second heater that mainly heats a peripheral portion of the substrate to be processed. The vacuum processing apparatus according to claim 4 or 5, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6287742A JP2682476B2 (en) | 1994-11-22 | 1994-11-22 | Vacuum processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6287742A JP2682476B2 (en) | 1994-11-22 | 1994-11-22 | Vacuum processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08148437A true JPH08148437A (en) | 1996-06-07 |
JP2682476B2 JP2682476B2 (en) | 1997-11-26 |
Family
ID=17721175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6287742A Expired - Fee Related JP2682476B2 (en) | 1994-11-22 | 1994-11-22 | Vacuum processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2682476B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003037075A (en) * | 2001-07-26 | 2003-02-07 | Tokyo Electron Ltd | Control method of transfer device and method and device for heat treatment |
JP2007019350A (en) * | 2005-07-08 | 2007-01-25 | Nuflare Technology Inc | Epitaxial growth apparatus |
JP2008026315A (en) * | 2006-07-07 | 2008-02-07 | Mettler-Toledo Ag | Weight measurement type moisture content measuring apparatus |
JP2008124127A (en) * | 2006-11-09 | 2008-05-29 | Nuflare Technology Inc | Vapor-phase epitaxy apparatus, and support base |
JP2009076689A (en) * | 2007-09-20 | 2009-04-09 | Tokyo Electron Ltd | Substrate treatment device, and substrate mounting base used for it |
JP2014075095A (en) * | 2012-10-05 | 2014-04-24 | Sumitomo Electric Ind Ltd | Non-contact type wafer heating heater and wafer temperature control method using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0338029A (en) * | 1989-07-04 | 1991-02-19 | Nissin Electric Co Ltd | Vapor growth equipment |
JPH0570287A (en) * | 1991-09-10 | 1993-03-23 | Toshiba Mach Co Ltd | Heating equipment for wafer for vapor phase growth |
JPH0590165A (en) * | 1991-09-30 | 1993-04-09 | Toshiba Corp | Vapor growth apparatus |
-
1994
- 1994-11-22 JP JP6287742A patent/JP2682476B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0338029A (en) * | 1989-07-04 | 1991-02-19 | Nissin Electric Co Ltd | Vapor growth equipment |
JPH0570287A (en) * | 1991-09-10 | 1993-03-23 | Toshiba Mach Co Ltd | Heating equipment for wafer for vapor phase growth |
JPH0590165A (en) * | 1991-09-30 | 1993-04-09 | Toshiba Corp | Vapor growth apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003037075A (en) * | 2001-07-26 | 2003-02-07 | Tokyo Electron Ltd | Control method of transfer device and method and device for heat treatment |
JP2007019350A (en) * | 2005-07-08 | 2007-01-25 | Nuflare Technology Inc | Epitaxial growth apparatus |
JP2008026315A (en) * | 2006-07-07 | 2008-02-07 | Mettler-Toledo Ag | Weight measurement type moisture content measuring apparatus |
JP2008124127A (en) * | 2006-11-09 | 2008-05-29 | Nuflare Technology Inc | Vapor-phase epitaxy apparatus, and support base |
JP2009076689A (en) * | 2007-09-20 | 2009-04-09 | Tokyo Electron Ltd | Substrate treatment device, and substrate mounting base used for it |
JP2014075095A (en) * | 2012-10-05 | 2014-04-24 | Sumitomo Electric Ind Ltd | Non-contact type wafer heating heater and wafer temperature control method using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2682476B2 (en) | 1997-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10103040B1 (en) | Apparatus and method for manufacturing a semiconductor device | |
JP3234617B2 (en) | Substrate support for heat treatment equipment | |
US5418885A (en) | Three-zone rapid thermal processing system utilizing wafer edge heating means | |
US5813851A (en) | Heat treatment method | |
US7699604B2 (en) | Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device | |
US5674786A (en) | Method of heating and cooling large area glass substrates | |
US5431561A (en) | Method and apparatus for heat treating | |
JP3090339B2 (en) | Vapor growth apparatus and method | |
JP6821788B2 (en) | Substrate processing equipment, semiconductor equipment manufacturing methods and programs | |
JP5204721B2 (en) | Film forming apparatus and film forming method | |
JP2998903B2 (en) | Heat treatment equipment | |
JP2004134731A (en) | Temperature control of sheet-fed semiconductor-substrate processing reactor | |
US5500388A (en) | Heat treatment process for wafers | |
US8530801B2 (en) | Method and apparatus for manufacturing semiconductor wafer | |
JP3004846B2 (en) | Susceptor for vapor phase growth equipment | |
JP2682476B2 (en) | Vacuum processing equipment | |
JP3068914B2 (en) | Vapor phase growth equipment | |
US6592661B1 (en) | Method for processing wafers in a semiconductor fabrication system | |
JP4143376B2 (en) | Heater and heater assembly for semiconductor device manufacturing apparatus | |
JPWO2002097872A1 (en) | Semiconductor wafer manufacturing method and susceptor used therefor | |
JP2701767B2 (en) | Vapor phase growth equipment | |
JPH0963966A (en) | Vapor growth device | |
JP3665672B2 (en) | Film forming apparatus and film forming method | |
JPH08316154A (en) | Simulated hot wall reaction chamber | |
JP3074312B2 (en) | Vapor growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970708 |
|
LAPS | Cancellation because of no payment of annual fees |