JPS5935406B2 - Method for promoting dephosphorization in bottom-blown converter refining - Google Patents

Method for promoting dephosphorization in bottom-blown converter refining

Info

Publication number
JPS5935406B2
JPS5935406B2 JP15580178A JP15580178A JPS5935406B2 JP S5935406 B2 JPS5935406 B2 JP S5935406B2 JP 15580178 A JP15580178 A JP 15580178A JP 15580178 A JP15580178 A JP 15580178A JP S5935406 B2 JPS5935406 B2 JP S5935406B2
Authority
JP
Japan
Prior art keywords
slag
dephosphorization
converter
blown
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15580178A
Other languages
Japanese (ja)
Other versions
JPS5582712A (en
Inventor
努 野崎
恭二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15580178A priority Critical patent/JPS5935406B2/en
Publication of JPS5582712A publication Critical patent/JPS5582712A/en
Publication of JPS5935406B2 publication Critical patent/JPS5935406B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 この発明は、底吹き転炉精錬においての脱燐反応を促進
させる方法に関するものであり、一度溶融したスラグの
粉末は溶は易く滓化が早いという利点を利用し、転炉ス
ラグに酸化鉄を添加して得た再生転炉スラグの微粉を鋼
浴中に吹込むことにより脱燐を促進させる方法について
提案する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for promoting dephosphorization reaction in bottom-blowing converter refining, and utilizes the advantage that once molten slag powder melts easily and turns into slag quickly, We propose a method to accelerate dephosphorization by injecting fine powder of recycled converter slag obtained by adding iron oxide to converter slag into a steel bath.

一般に、底吹き転炉の場合、炉底から精錬ガスを保護ガ
スとともに噴射するため混合特性が非常に優れ、羽目近
傍で生成した酸化鉄は浮上の過程で炭素によって速やか
に還元されるので、鉄歩止才にりが良く、脱炭反応の進
行が速いという長所がある。
In general, in the case of a bottom-blown converter, the refining gas is injected from the bottom of the furnace together with the protective gas, so the mixing characteristics are very good. It has the advantage of good yield rate and rapid progress of decarburization reaction.

その反面、生成した酸化りんの場合、浮上過程で炭素に
よって還元されるので、その鋼中炭素含有量が0.1%
程度の低炭素域にならなければ脱燐が進行しないという
欠点があり、またFeの酸化が遅れ、滓化が遅くなるた
めPのスラグ中への移行が遅くなるという欠点も見られ
た。
On the other hand, in the case of the generated phosphorus oxide, it is reduced by carbon during the floating process, so the carbon content in the steel is 0.1%.
There is a drawback that dephosphorization does not proceed unless the carbon range reaches a certain level, and there is also a drawback that the oxidation of Fe is delayed and the formation of slag is delayed, so that the migration of P into the slag is delayed.

このため、従来の底吹き転炉の精錬の場合、脱燐過程が
製鋼反応の大きな割合を占めるため、脱燐のための再吹
精を行なわなければならないことが多くなる欠点があっ
た。
For this reason, in the case of conventional refining using a bottom-blown converter, the dephosphorization process occupies a large proportion of the steelmaking reaction, which has the disadvantage that re-blowing is often required for dephosphorization.

なお、かかる脱燐の促進に対しては、塩基度を上げるこ
とはもちろんのこと、できるだけ速く流動性の良いスラ
グを生成させることが効果的であることが知られている
It is known that to promote such dephosphorization, it is effective not only to increase the basicity but also to generate slag with good fluidity as quickly as possible.

そこで、この発明は、かかる滓化を速くすることにより
、脱燐反応を促進する方法であって、組成均一で再溶解
し易く滓化の速い転炉スラグを造滓材として利用して、
再び鋼浴中に供給することにより滓化を速くさせ、ひい
ては脱燐反応を促進する方法である。
Therefore, the present invention is a method for promoting the dephosphorization reaction by speeding up the slag formation, using converter slag, which has a uniform composition, is easily remelted, and quickly turns into slag, as a slag forming material.
This method speeds up slag formation by feeding the steel into the steel bath again, which in turn promotes the dephosphorization reaction.

要するに、この発明方法は、一度溶融したものであるが
ために再溶解の容易な転炉スラグに、さらに酸化鉄を加
えてこれを100メツシユ以下に微粉砕し、こうして得
られた再生転炉スラグを、底吹き転炉の炉底羽口から、
精錬用酸素ガスをキャリヤーガスとして鋼浴中に噴射す
るという方法である。
In short, the method of this invention involves adding iron oxide to converter slag, which is easy to remelt since it has been melted once, and pulverizing it to less than 100 meshes, thereby producing recycled converter slag. from the bottom tuyere of the bottom blowing converter,
This method involves injecting refining oxygen gas into a steel bath as a carrier gas.

なお、該再生転炉スラグの成分は、実際の製造工程に使
用された元の再生転炉スラグによって大きく左右される
が、概ね次の成分範囲である(重量%) その噴射の時期は、吹精初期の高炭素域(炭素含有量:
4.5%程度)のときから酸素ガスとともに吹込む。
The composition of the recycled converter slag largely depends on the original recycled converter slag used in the actual manufacturing process, but it is generally within the following composition range (wt%). Early high carbon region (carbon content:
4.5%), it is blown in together with oxygen gas.

そして、炭素含有量が1%になるまでに、約半量の前記
スラグを吹込む。
Then, about half the amount of the slag is blown in until the carbon content reaches 1%.

その後、酸素のみ吹込み、およそ炭素含有量が0.3%
程度になってから、再び残る半量の前記の前記再生転炉
スラグと同じように酸素ガスをキャリヤーガスとして炉
底羽口から噴射するのがよい。
After that, only oxygen is blown in, and the carbon content is approximately 0.3%.
After reaching a certain level, it is preferable to inject the remaining half of the recycled converter slag from the bottom tuyeres using oxygen gas as a carrier gas, in the same way as the above-mentioned regenerated converter slag.

また、再生転炉スラグは、通常、他の副原料すなわち酸
化鉄や石灰さともに使用するが、その場合酸化鉄15〜
30%、石灰25〜50%に対して再生転炉20〜60
%程度を使用する。
In addition, recycled converter slag is usually used together with other auxiliary raw materials, such as iron oxide and lime.
30%, regenerated converter 20-60% for lime 25-50%
Use around %.

再生転炉スラグが60%を越えるとスラグ中酸化りん含
有量が大きくなって却って脱りんに不利となる。
When the recycled converter slag exceeds 60%, the phosphorus oxide content in the slag increases, which is rather disadvantageous for dephosphorization.

一方、上述のように、転炉スラグならびに酸化鉄の混合
微粉を用いることにより、鋼浴中ならびにスラグ中の酸
化鉄の生成量が増加し、かつスラグの滓化性が長幼にな
ることも相俟って、脱燐が良くなると考れられる。
On the other hand, as mentioned above, by using converter slag and mixed fine powder of iron oxide, the amount of iron oxide produced in the steel bath and slag increases, and the slag's tendency to slag increases. It is thought that dephosphorization improves as the temperature decreases.

その上、この発明法の場合、炉底羽口から前記再生転炉
スラグ微粉を吹込むのでより一層の効果が期待できる。
Furthermore, in the case of the method of the present invention, even greater effects can be expected since the recycled converter slag powder is injected from the bottom tuyere.

このことは、羽口直上で生成した酸化りんは、浮上過程
で炭素の還元により再び溶鋼にりんの形で戻るが、底部
からこの発明にがかるスラグ微粉を吹込むことにより、
該スラグ粒子が浮上する過程で酸化りんと衝突合体する
ために脱燐によい影響を与えるものと考えられる。
This means that the phosphorus oxide generated directly above the tuyere returns to the molten steel in the form of phosphorus due to the reduction of carbon during the flotation process, but by injecting the fine slag powder according to the present invention from the bottom,
It is thought that the slag particles collide and coalesce with phosphorous oxide during the floating process, which has a positive effect on dephosphorization.

なお、転炉スラグを連続的に再生していくと、酸化りん
の富化現象が起るが、実施例によれば富化が10%近く
になった場合でも、脱燐能は順調な結果が得られた。
Furthermore, when converter slag is continuously regenerated, enrichment of phosphorus oxide occurs, but according to examples, even when the enrichment is close to 10%, the dephosphorization performance is good. was gotten.

なお、上記効果を発揮する酸化鉄のソースとしては、具
体的には鉄鉱石、Mn鉱石、ミルスケールなどが考えら
れる。
In addition, as a source of iron oxide that exhibits the above-mentioned effect, specifically, iron ore, Mn ore, mill scale, etc. can be considered.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

第1表に酸素底吹き転炉において、通常の低炭素鋼を吹
錬した後に生じた転炉スラグの組成を示す。
Table 1 shows the composition of converter slag produced after blowing ordinary low carbon steel in an oxygen bottom-blown converter.

この転炉スラグに石灰と酸化鉄を添加して混合し、これ
を粉砕(100メツシユより細かい微粉状に調整)して
第2表に示す組成の再生転炉スラグの微粉を得た。
Lime and iron oxide were added to and mixed with this converter slag, and this was pulverized (adjusted to a powder finer than 100 mesh) to obtain fine powder of recycled converter slag having the composition shown in Table 2.

このようにして得られたスラグを、酸素底吹き転炉(炉
内容積4.8m″)の炉底羽口から酸素ガスとともに鋼
浴中に吹込んだ。
The slag thus obtained was blown into a steel bath together with oxygen gas from the bottom tuyere of an oxygen bottom-blown converter (inner volume: 4.8 m'').

その操業結果を第3表に示す。The operation results are shown in Table 3.

この表から明らかなように、この発明によれば、底吹き
転炉最大の欠点とされていた脱燐が極めて良好であった
As is clear from this table, according to the present invention, dephosphorization, which was considered to be the biggest drawback of bottom-blown converters, was extremely effective.

これは従来法の場合、吹錬の前半はけい素の酸化はあっ
ても滓化するほどの量ではなく、かつ流動性の良いスラ
グ形成は吹錬の後半になってからしか起らないのに対し
、本発明方法にあっては、スラグ形成が吹錬の前半から
行なわれるからである。
This is because in the case of the conventional method, silicon is oxidized in the first half of the blowing process, but not enough to turn into slag, and slag with good fluidity is formed only in the second half of the blowing process. In contrast, in the method of the present invention, slag formation is performed from the first half of blowing.

しかも、この発明方法は、従来廃棄していた転炉滓を有
効に利用できるので、廃棄処理の手間が省けるとともに
、製鋼原価低減に大きく寄与するなどの優れた効果を有
する。
In addition, the method of the present invention makes it possible to effectively utilize converter slag, which was conventionally discarded, and therefore has excellent effects such as saving the time and effort of disposal and greatly contributing to a reduction in steel manufacturing costs.

Claims (1)

【特許請求の範囲】[Claims] 1 炉底に具える羽口から、精錬用酸素ガスとともに、
酸化鉄を添加混合した再生転炉スラグの微粉を鋼浴中に
底辺なことを特徴とする底吹き転炉精錬における脱燐促
進方法。
1. From the tuyere provided at the bottom of the furnace, along with oxygen gas for refining,
A method for promoting dephosphorization in bottom-blowing converter refining, characterized in that fine powder of recycled converter slag mixed with iron oxide is placed at the bottom in a steel bath.
JP15580178A 1978-12-19 1978-12-19 Method for promoting dephosphorization in bottom-blown converter refining Expired JPS5935406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15580178A JPS5935406B2 (en) 1978-12-19 1978-12-19 Method for promoting dephosphorization in bottom-blown converter refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15580178A JPS5935406B2 (en) 1978-12-19 1978-12-19 Method for promoting dephosphorization in bottom-blown converter refining

Publications (2)

Publication Number Publication Date
JPS5582712A JPS5582712A (en) 1980-06-21
JPS5935406B2 true JPS5935406B2 (en) 1984-08-28

Family

ID=15613735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15580178A Expired JPS5935406B2 (en) 1978-12-19 1978-12-19 Method for promoting dephosphorization in bottom-blown converter refining

Country Status (1)

Country Link
JP (1) JPS5935406B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763614A (en) * 1980-10-03 1982-04-17 Kawasaki Steel Corp Refining method in top and bottom blowing converter

Also Published As

Publication number Publication date
JPS5582712A (en) 1980-06-21

Similar Documents

Publication Publication Date Title
JPH11158526A (en) Production of high p slag
US2781256A (en) Process for the rapid removal of sulphur and silicon from pig iron
JPH0437132B2 (en)
US3897244A (en) Method for refining iron-base metal
JPS5935406B2 (en) Method for promoting dephosphorization in bottom-blown converter refining
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
US3881917A (en) Method of refining steel
JP4461495B2 (en) Dephosphorization method of hot metal
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JP2019151535A (en) Method of producing phosphate slag fertilizer
JPS5847450B2 (en) Method for promoting dephosphorization in oxygen top-blown steelmaking process
US3083092A (en) High-carbon ferromanganese process
JPH0377246B2 (en)
US2802731A (en) Process of producing bessemer steel
JP2882236B2 (en) Stainless steel manufacturing method
JPS5938319A (en) Method for refining high chromium steel
JPS6213406B2 (en)
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPS6250543B2 (en)
JP2023049462A (en) Dephosphorization of hot metal
KR20240045560A (en) Converter process using waste acid sludge
JPS63223112A (en) Smelting and reduction method for iron ore
JPH08260015A (en) Pretreatment of molten iron
JPH0214404B2 (en)