JPS5935212A - Temperature controller for furnace with plural heating areas - Google Patents

Temperature controller for furnace with plural heating areas

Info

Publication number
JPS5935212A
JPS5935212A JP57145349A JP14534982A JPS5935212A JP S5935212 A JPS5935212 A JP S5935212A JP 57145349 A JP57145349 A JP 57145349A JP 14534982 A JP14534982 A JP 14534982A JP S5935212 A JPS5935212 A JP S5935212A
Authority
JP
Japan
Prior art keywords
heating
temperature
control device
furnace
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57145349A
Other languages
Japanese (ja)
Other versions
JPH0459371B2 (en
Inventor
Hiromitsu Inoue
博光 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP57145349A priority Critical patent/JPS5935212A/en
Publication of JPS5935212A publication Critical patent/JPS5935212A/en
Publication of JPH0459371B2 publication Critical patent/JPH0459371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • G05D23/1934Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To heat a body to be heated uniformly without providing any center wall among heating areas by controlling the heating temperature of a heating device while considering temperature interference among the heating areas previously. CONSTITUTION:Temperature signals from temperature sensors 16, 18, and 20 provided in the heating areas A-C respectively are supplied to temperature regulators 60, 68, and 70 provided in the heating areas. Then, the temperature regulators output control signals mT1-mT3 which eliminate deviations from a preset command value. Those control signals are supplied to computing elements 78, 80, and 82 as cross arithmetic means provided in the heating areas respectively. Then, the respective computing elements output operation signals m1- m3 indicating manupilated variables corresponding to the heating areas on the respective control signals and the degree of temperature interference among the respective heating areas, controlling burners 22, 24, and 26 provided in the respective heating areas. Thus, the body to be heated is heated uniformly without providing any partition wall among the heating areas.

Description

【発明の詳細な説明】 本発明は、互に隣接して温度干渉する複数の加熱域を有
する炉に於いて、それ等加熱域間に隔壁を設けることな
くその加熱域内の被加熱物を均一な調度に制御する温度
制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for uniformly heating objects within the heating zones without providing partition walls between the heating zones in a furnace having a plurality of heating zones that are adjacent to each other and have temperature interference. The present invention relates to a temperature control device that controls the temperature to the desired temperature.

加熱炉内の被加熱物全均一な温度に加熱するために、そ
の加熱炉内を複数の■接した加熱域に分割し、夫々の加
熱域に於いて夫々の目標温度に独立に温度制御すること
が行われている。しかしながら、斯る場合に於いて高い
温度制御精度を得るためには、加熱域間の相互干渉を小
さくする必要があるため加熱域間に隔壁を設けねばなら
ず、加熱炉の構造が複雑となるとともに加熱炉が高価と
なる欠点があった。
In order to heat all the objects in the heating furnace to a uniform temperature, the inside of the heating furnace is divided into multiple heating zones that are in contact with each other, and the temperature in each heating zone is independently controlled to the target temperature. things are being done. However, in order to obtain high temperature control accuracy in such cases, it is necessary to reduce mutual interference between the heating zones, so partition walls must be provided between the heating zones, which complicates the structure of the heating furnace. Another disadvantage was that the heating furnace was expensive.

本発明は、以上の事情を背景として為されたものでメク
、その目的とするところは、互に隣接して温度干渉する
複数の加熱域を有する炉に於いて、加熱域間に隔壁を設
けることなく被加熱物を均一な温度に加熱する温度制御
装Mk提供することにある。
The present invention has been made against the background of the above-mentioned circumstances, and its object is to provide a partition wall between the heating zones in a furnace having a plurality of adjacent heating zones that interfere with each other in temperature. It is an object of the present invention to provide a temperature control device Mk that heats an object to be heated to a uniform temperature without any heating.

斯る目的全達成するため、本発明の温度制御装置は、 (1)前記複数の加熱域に夫々設けられ、その加熱域の
温度を表わす温度信号全出力する複数の温度センサと、 (2)  前記複数の加熱域に夫々設けられ、その加熱
域相互間する複数の加熱装置と、 (8)予め定められた目標温度と前記温度信号が表わす
各加熱域の温度とを比較してそれ等の偏差を算出し、そ
の偏差が零となるようにその加熱域の各々に対応した制
御信号を夫々出力する調節手段と、その各々の制御信号
を前記加熱域相互間の温度干渉度とに基づいてその加熱
域に対応した操作量を表わす操作信号を夫々算出するり
pス演算手段とを備え、前記加熱装置にその操作信号に
従って前記加熱域を夫々加熱させる演算制御装置とを、
含むことを特徴とする。
In order to achieve all of these objectives, the temperature control device of the present invention includes: (1) a plurality of temperature sensors that are provided in each of the plurality of heating regions and output all temperature signals representing the temperature of the heating region; (2) (8) A plurality of heating devices provided in each of the plurality of heating zones and arranged between the heating zones; (8) comparing a predetermined target temperature with the temperature of each heating zone represented by the temperature signal; adjusting means for calculating the deviation and outputting a control signal corresponding to each of the heating areas so that the deviation becomes zero; and adjusting each control signal based on the degree of temperature interference between the heating areas. an arithmetic and control device that causes the heating device to heat each of the heating regions according to the operating signals;
It is characterized by containing.

この様にすれば、各加熱域を加熱するための加熱装置が
、当該加熱域に対応する制御信号のみならず、他の加熱
域に対応する制御信号と加熱域相互間の温度干渉度とに
基づいて算出された操作信号によって操作されるので、
加熱域間に隔壁を備えず比較的温度干渉が大きい炉にあ
っても被加熱物を極めて均一に加熱し得るのでおる。即
ち、従来は加熱域間の温度干渉をできるだけ低くして各
加熱域を独立に温度制御していたのに対し、本発明の温
度制御装置によれば、加熱域相互間の温度干渉度に基づ
いて、当該加熱域に対応する制御信号と当該加熱域に影
畷する他の加熱域に対応する制御信号とに基づいて当該
加熱域のための操作量5− 号が算出されて、その加熱域相互間の温度干渉金子め考
慮した操作信号によって当該加熱域が加熱装置によって
加熱されるので、極めて高い温度制御精度が得られるの
である。
In this way, the heating device for heating each heating zone can respond not only to the control signal corresponding to the heating zone, but also to the control signals corresponding to other heating zones and the degree of temperature interference between the heating zones. It is operated by the operation signal calculated based on the
Even in a furnace that does not have partition walls between heating zones and has relatively large temperature interference, the object to be heated can be heated extremely uniformly. In other words, while conventionally the temperature of each heating zone was controlled independently by minimizing the temperature interference between the heating zones, the temperature control device of the present invention controls the temperature based on the degree of temperature interference between the heating zones. Then, based on the control signal corresponding to the heating area and the control signal corresponding to the other heating area that affects the heating area, the manipulated variable 5- for the heating area is calculated, and the operation amount for the heating area is calculated. Since the heating area is heated by the heating device in response to an operation signal that takes into account mutual temperature interference, extremely high temperature control accuracy can be obtained.

また、本発明の他の態様によれは、前記演算制御装置が
、前記調節手段によって出力された制御信号のうち前記
加熱域の予め定められた加熱域を除く他の加熱域に対応
する制御信号を、所定の時間保持するとともにその時間
をおいて周期的に更新する更新手段を、更に備えたこと
を特徴とする。
According to another aspect of the present invention, the arithmetic and control device outputs a control signal corresponding to a heating area other than a predetermined heating area of the heating area among the control signals outputted by the adjusting means. The present invention is characterized in that it further comprises an updating means for holding the information for a predetermined period of time and periodically updating the information at intervals of the predetermined period.

この様にすれば、予め定められた加熱域が前記調節手段
及びクロス演算手段によって連続的に変化させられる操
作信号によって連続的に温度制御されるとともに、他の
加熱域が更新手段によって周期的に更新される制御信号
に基づいて算出された操作信号に従って温度制御される
ので、温度制御系が一層安定となシ更に高い温度制御特
性が得られるのである。
In this way, the temperature of the predetermined heating area is continuously controlled by the operation signal that is continuously changed by the adjusting means and the cross calculation means, and the temperature of the other heating area is periodically controlled by the updating means. Since the temperature is controlled according to the operation signal calculated based on the updated control signal, the temperature control system becomes more stable and higher temperature control characteristics can be obtained.

以下、本発明の一実施例を示す図面に基づいて詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below based on the drawings.

6− 第1図に於いて、類10内に配設された被加熱物12は
、ローラ14によって搬送されるようになっておシ、そ
の被加熱物12の送シ方向に対して直角な方向、即ち炉
10の幅方向に温度センサとしての熱電対16,18,
20.及び加熱装置としてのバーナ22,24,26が
取シ付けられている。このため、類10内は、バーナ2
2によって主として加熱され熱電対16によって温度が
検知される第1加熱域Aと、バーナ24によって主とし
て加熱され熱電対18によって温度が検知される第2加
熱域Bと、バーナ26によって主として加熱され熱電対
20によって温度が検知される第3加熱域Cとが、炉1
00幅方向に隔壁を設けることなく形成されている。従
って、それ等加熱域A、B、Oは相互に所定の温度干渉
を及ぼす。
6- In FIG. 1, the object to be heated 12 arranged in the group 10 is conveyed by rollers 14, and the object to be heated 12 is transported perpendicularly to the feeding direction of the object to be heated 12. Thermocouples 16, 18 as temperature sensors are installed in the direction, that is, in the width direction of the furnace 10.
20. And burners 22, 24, 26 as heating devices are attached. Therefore, in class 10, burner 2
A first heating area A is mainly heated by the burner 24 and the temperature is detected by the thermocouple 16; a second heating area B is mainly heated by the burner 24 and the temperature is detected by the thermocouple 18; A third heating zone C whose temperature is detected by the pair 20 is the furnace 1
00 It is formed without providing partition walls in the width direction. Therefore, these heating areas A, B, and O exert a certain temperature interference with each other.

斯る炉10には、第2図に示される制御装置が備えられ
ている。即ち、バーナ22,24,26には、ガス配管
28が調節弁80,82.84を介して夫々接続されて
お夛、また、空気配管36が空気調節弁88,40.4
2i介して夫々接続されている。
Such a furnace 10 is equipped with a control device shown in FIG. That is, the gas pipe 28 is connected to the burners 22, 24, 26 via the control valves 80, 82.84, respectively, and the air pipe 36 is connected to the air control valves 88, 40.4.
They are connected to each other via 2i.

ガス配管28及び空気配管860基管には、流量センサ
でおるオリフィス44及び46が配設されてお9、オリ
フィス44からは燃料ガスの総流量を表わすガス流量信
号GFがガス流量指示計48に供給されるとともに、乗
算器50を介して流量調節計52に供給される。乗算器
50には、設定器54または炉10の煙道等に設けられ
た02メータ56からの補正信号8Aが供給されており
、乗算器50は補正信号8Aをガス流量信号OFに乗算
して流量調節計52に供給する。また、オリフィス46
からは空気流量信号AFが流量調節計52に供給されて
おシ、流量調節計52は予め設定された所定の空燃比が
得られるようにガス流量に対する空気流量を決定し、そ
の空気流量ヲ表わす流量指令信号OFF補正器58t−
介して乗算器60.62.64に供給する。
Orifices 44 and 46, which are flow rate sensors, are arranged in the base pipes of the gas piping 28 and the air piping 860. From the orifice 44, a gas flow signal GF representing the total flow rate of fuel gas is sent to the gas flow rate indicator 48. At the same time, it is also supplied to a flow rate regulator 52 via a multiplier 50. The multiplier 50 is supplied with a correction signal 8A from a setting device 54 or an 02 meter 56 installed in the flue of the furnace 10, and the multiplier 50 multiplies the correction signal 8A by the gas flow signal OF. Flow rate controller 52 is supplied. Also, orifice 46
The air flow rate signal AF is supplied to the flow rate controller 52, and the flow rate controller 52 determines the air flow rate relative to the gas flow rate so that a predetermined air-fuel ratio is obtained, and represents the air flow rate. Flow rate command signal OFF corrector 58t-
60.62.64.

一方、熱電対16,18.20からは、第1加熱域A、
第2加熱域B、第3加熱域Cの温度を表わす温度信号T
1.T2.TBが、調節手段としての温度調節計66.
68.70に電圧/電流変換器72,74.76を介し
てそれぞれ供給されている。温度調節1i66.68,
70にはそれぞれの目標温度が予め設定されており、そ
の目標温度と各加熱域A、B、Oの実際の温度との偏差
が算出されるとともに、その偏差に基づいて、その偏差
が零となるように制御信号mTl、m’l’2゜mT3
が温度調節計66.68.70から出力される。ここで
各温度調節計66.68.70に設定される目標温度は
、一般に、共通の温度あるいは、各加熱域A、B、Cの
特性を考慮した共通温度に近い異なる温度とされる。
On the other hand, from the thermocouples 16, 18, 20, the first heating area A,
Temperature signal T representing the temperature of the second heating area B and the third heating area C
1. T2. TB is a temperature controller 66. as a regulating means.
68.70 through voltage/current converters 72, 74.76, respectively. Temperature control 1i66.68,
Each target temperature is set in advance in 70, and the deviation between the target temperature and the actual temperature of each heating area A, B, and O is calculated, and based on the deviation, the deviation is determined to be zero. Control signals mTl, m'l'2゜mT3 so that
is output from the temperature controller 66,68,70. The target temperatures set for each of the temperature controllers 66, 68, and 70 are generally a common temperature or different temperatures close to the common temperature that take into account the characteristics of the heating zones A, B, and C.

それ等制御信号mTl、mT2.mT8は、各加熱域A
、B、Oに対応して設けられたクロス演算手段としての
演算器78,80.82に夫々供給される。温度調節1
i68及び70の入力側及び出力側には、サンプリンダ
装置の接点84が夫々直列に介挿されてお夛、所定の時
間間隔(数十秒程度)に約1秒間周期的に閉じられるこ
とによって、温度調節計68及び70から制御信号m 
T 2゜9− mT3がホールド回路85.85へ周期的に出力される
ようになっている。ホールド回路85,85には、その
制御信号mT 2.rnT3が所定の時間間隔だけ保持
されるようになっており、新たな制御信号mT2.mT
3が供給でれると、ホールド回路85.85に保持され
た制御信号が新たな制御信号mTJmT3に更新される
ようになっている。即ち、サンプ、リング装置の接点8
4及びホールド回路85.85が更新手段を形成してい
るのである。
Those control signals mTl, mT2 . mT8 is each heating area A
, B, and O, respectively. Temperature control 1
Contacts 84 of the sampler device are inserted in series on the input and output sides of i68 and 70, respectively, and are periodically closed for about 1 second at predetermined time intervals (on the order of tens of seconds). Control signals m from temperature controllers 68 and 70
T2゜9-mT3 is periodically output to the hold circuit 85.85. The hold circuits 85, 85 have a control signal mT2. rnT3 is held for a predetermined time interval, and a new control signal mT2. mT
3 is supplied, the control signal held in the hold circuits 85.85 is updated to a new control signal mTJmT3. That is, the contact point 8 of the sump and ring device
4 and hold circuits 85 and 85 form updating means.

演算器78,80.82は、各々の制御信号mTl、m
T2.mT8と加熱域A、B、C相互間の温度干渉度と
に基づいて、各加熱域に対応した操作量上表わす操作信
号ml、m2.m3を夫々リミッタ86,88,9(l
介して特性変換器92.94.96及び前述の乗算器6
0,62.64に夫々出力する。尚、リミッタ86.8
8.90は、バーナ22,24,26の不安定な燃焼を
避けるために、一定以下の流量の燃料をカットするため
のものである。
Arithmetic units 78, 80.82 each control signal mTl, m
T2. Based on mT8 and the degree of temperature interference between heating zones A, B, and C, operation signals ml, m2 . m3 with limiters 86, 88, 9 (l
via the characteristic converter 92,94,96 and the aforementioned multiplier 6
0, 62.64, respectively. In addition, limiter 86.8
8.90 is for cutting fuel at a flow rate below a certain level in order to avoid unstable combustion in the burners 22, 24, and 26.

10− ここで、炉10の各加熱域A、B、Cの温度をTI、T
2.T8とし、それ等各加熱域A、B。
10- Here, the temperatures of each heating zone A, B, and C of the furnace 10 are TI, T
2. T8, and each heating area A, B.

Cの温度を制御するために、それ等加熱域に属する操作
機器である調節弁に供給する操作信号をml、m2.m
8とすると、次式に示される如くの干渉線形加熱モデル
式(1)(2)(8)が得られる。
In order to control the temperature of ml, m2, . m
8, the interference linear heating model equations (1), (2), and (8) as shown in the following equations are obtained.

但し、上式のas a′、bt b’t Ct ”は加
熱域A、B、O相互間の干渉度を示す零よシ大きく1よ
シも小さい数値であって、加熱モデル毎に実験的に決定
されるものである。
However, as a', bt b't Ct'' in the above equation is a numerical value that is larger than zero and smaller than 1, indicating the degree of interference between the heating areas A, B, and O, and is determined experimentally for each heating model. This is determined by the following.

そして、上記加熱モデル式(1)、 (2)、 (8)
に基づいて、制御信号mT l、mT2.mT 8と操
作信号ヒ ml、m2.m31i:の関係を示す非干渉化制御演算
式が次のように導かれる。
Then, the above heating model equations (1), (2), (8)
Based on the control signals mT l, mT2 . mT 8 and operation signals Himl, m2. The non-interference control equation representing the relationship m31i: is derived as follows.

でおる。I'll go.

前記演算器78,80.82は、夫々上記非干渉化制御
演算式(4)(5)(6)に従って操作信号ml、m2
゜m3を算出するように構成されているのである。
The computing units 78, 80.82 calculate the operation signals ml, m2 according to the non-interference control equations (4), (5), and (6), respectively.
It is configured to calculate ゜m3.

前記特性変換器92,94.96は、ガス調節弁80,
82,84の弁開度と流量との関係に基づいて、操作信
号m l、m2.mJ3とガス流量とが線形の関係とな
るように操作信号ml、m2゜m3f夫々変換するもの
である。特性変換器92゜94.96から出力された信
号は、電流/空圧変換器98,100,102′fr:
介してガス調節弁80.82.34に夫々供給される。
The characteristic converters 92, 94, 96 are gas control valves 80,
Based on the relationship between the valve opening degrees of 82 and 84 and the flow rate, the operation signals ml, m2. The operation signals ml and m2°m3f are respectively converted so that mJ3 and the gas flow rate have a linear relationship. The signal output from the characteristic converter 92°94.96 is converted to the current/pneumatic converter 98, 100, 102'fr:
via which gas regulating valves 80, 82, and 34 are respectively supplied.

前記乗算器60.62.64は、流量調節計52から出
力された流量指令信号OFを夫々操作信号ml、m2.
m3に乗算し、その結果を特性変換器104,106,
108及び電流/空圧変換器110,112,114を
夫々介して、空気調節弁88,40.42に供給する。
The multipliers 60, 62, 64 convert the flow rate command signal OF outputted from the flow rate controller 52 into operation signals ml, m2, .
m3 and the result is transmitted to characteristic converters 104, 106,
108 and current/pneumatic converters 110, 112, 114, respectively, to air regulating valves 88, 40, 42.

即ち、各加熱域A、B、Oに於いて、ガス調節弁80,
82゜34によって流された燃料に対して一定比率の空
気が空気調節弁88,40.42によって流されるよう
になっておシ、流量指令信号OFは燃料ガス流量に対し
て流すべき空気流量の比率(空燃比)を表わすものであ
る。尚、特性変換器104,106.108は前述の特
性変換器92,94.96と同様に構成され、乗算器6
0,62.64からの出力信号と空気流量とが線形の関
係となるようにされている。
That is, in each heating area A, B, O, the gas control valve 80,
Air at a fixed ratio to the fuel flowed by the air control valve 88, 40.42 is caused to flow by the air control valve 88, 40. It represents the ratio (air-fuel ratio). Note that the characteristic converters 104, 106, 108 are configured similarly to the characteristic converters 92, 94, 96 described above, and the multiplier 6
The output signal from 0.62.64 and the air flow rate are arranged to have a linear relationship.

以上の様に構成された制御装置に於いては、各加熱域A
、B、Oの温度制御のために用いられる操作信号m1.
m2.m3が、当該加熱域の制御信号のみならず他の加
熱域の制御信号と加熱域A。
In the control device configured as described above, each heating area A
, B, O, the operation signal m1.
m2. m3 is not only the control signal for the heating area but also the control signal for other heating areas and the heating area A.

B、O相互間の温度干渉度とから決定されるので、例え
ば、加熱域Aのための操作信号m1は当該加熱域Aを温
度制御するための制御信号mTlのみ18− ならず、他の加熱域B、Oのための制御信号mT2、m
T3と加熱域相互間の温度干渉度から導かれる係数(第
(4)(5)(6)のA1乃至A3.Bl乃至B8、C
1乃至cB)に基づいて決定されるので、加熱域A、B
、(3相互間に隔壁を設けることなく極めて好適な温度
制御特性が得られるのである。
Since it is determined from the degree of temperature interference between B and O, for example, the operation signal m1 for heating area A is not only the control signal mTl for controlling the temperature of heating area A, but also the control signal mTl for controlling the temperature of heating area A. Control signals mT2, m for areas B, O
Coefficients derived from the degree of temperature interference between T3 and the heating regions (A1 to A3 in (4), (5), and (6); Bl to B8, C
1 to cB), so heating areas A, B
(Extremely suitable temperature control characteristics can be obtained without providing a partition wall between the three.)

即ち、隔壁を設けて加熱域A、B、O間の相互干渉度を
低くするのではなく、予め相互干渉度の存在を考慮し、
他の加熱域のための制御信号を利用して当該加熱域を温
度制御するのである。
That is, instead of providing partition walls to lower the degree of mutual interference between heating areas A, B, and O, the existence of mutual interference is taken into account in advance,
Control signals for other heating zones are used to control the temperature of the heating zone.

しかも、加熱域Aに対応する制御信号mTlが連続的に
変化させられるとともに、加熱域B、 (3に対応する
制御信号mT2.mT3が所定期間保持され且つ周期的
に更新されるようになっているので、簡単な構成によっ
て温度制御系が安定し一層好ましい高精度の温度制御特
性が得られるのである。
Moreover, the control signal mTl corresponding to the heating area A is continuously changed, and the control signals mT2.mT3 corresponding to the heating area B (3) are held for a predetermined period and periodically updated. Therefore, the temperature control system can be stabilized with a simple configuration, and more desirable and highly accurate temperature control characteristics can be obtained.

本発明者の実験によれば、第1表に示される結果が得ら
れた。即ち、第8図に示されるように、時間0秒に於い
て共通の目標温度を50%とし、14− 特開昭59−35212 (5) 時間1000秒に於いて加熱域のうちのひとつの温度調
節計66の目標温度を70%にセットして、外乱を付与
した場合の破線、実線、一点鎖線に示される各加熱域A
、B、Oの温度変化を、所定の干渉度ヲ0.8または0
.5と設定し、各加熱域A。
According to the inventor's experiments, the results shown in Table 1 were obtained. That is, as shown in FIG. 8, the common target temperature at time 0 seconds is set to 50%, and at time 1000 seconds the common target temperature is set to 50%. Each heating region A shown by the broken line, solid line, and dashed-dotted line when the target temperature of the temperature controller 66 is set to 70% and disturbance is applied.
, B, O with a predetermined degree of interference of 0.8 or 0.
.. 5 and each heating area A.

B、Oi独立に温度制御した場合(以下、シングルとい
う)と、第2図に示される制御系において前述の非干渉
化制御演算式(4)、 (5)、 (6)’e用いて操
作量を決定し温度制御を行った場合(以下クロスという
)とについて、シミュレーションによって観測し、所定
の時刻(1000秒後および2000秒後)に於ける制
御性′(I一温度振幅で判断すると、干渉度が0.8で
ある場合には、接点84を開閉させず制御iimT2.
mT3を連続的に変化させたときでも、第1表の最上段
の2例に示されるように、クロスの場合の方が、シング
ルの場合よシも安定であった。またサンプリング装置を
作動させたときでも、第4図に示されるように、更新周
期が15秒乃至30秒に変化すると、シングルの場合は
大幅に不安定となるのに対し、クロスの場合融く安定で
ある。
B, Oi When the temperature is controlled independently (hereinafter referred to as single) and in the control system shown in Fig. 2, operation is performed using the above-mentioned non-interference control calculation formulas (4), (5), (6)'e. In the case where temperature control is performed by determining the amount (hereinafter referred to as cross), the controllability' (judging by I-temperature amplitude) at predetermined times (1000 seconds and 2000 seconds later) is observed by simulation. When the degree of interference is 0.8, the contact 84 is not opened or closed and the control iimT2.
Even when mT3 was continuously changed, as shown in the two examples at the top of Table 1, the cross case was more stable than the single case. Furthermore, even when the sampling device is operated, as shown in Figure 4, when the update cycle changes from 15 seconds to 30 seconds, the single case becomes significantly unstable, while the cross case becomes unstable. It is stable.

また、干渉度to、5に設定した場合には、第5図に示
されるように、シングルの場合に比較してクロスの場合
の方が更新周期が変化しても大幅に安定である。尚、実
際の炉に於ける干渉度は、一般に、最大でも0.5を超
えることがない。また、第8図に於ける縦軸は%表示で
あるが、適当な温度範囲に置換し得るものである。
Further, when the degree of interference to is set to 5, as shown in FIG. 5, the cross case is much more stable than the single case even if the update cycle changes. Incidentally, the degree of interference in an actual furnace generally does not exceed 0.5 at most. Further, although the vertical axis in FIG. 8 is expressed in %, it can be replaced with an appropriate temperature range.

以上、本発明の一実施例について説明したが、本発明は
その他の態様に於いても適用される。
Although one embodiment of the present invention has been described above, the present invention can also be applied to other aspects.

例えば、前述の実施例に於いて加熱炉10内の幅方向に
於いて加熱域が分割形成されていたが、被加熱物12の
進行方向に分割されていても良いのでおる。また、被加
熱物12は各加熱域にわたって一体のものでなくても良
く、部分的に分割されていても良いことは勿論である。
For example, in the above-mentioned embodiment, the heating area is divided in the width direction within the heating furnace 10, but it may be divided in the direction of movement of the object to be heated 12. Moreover, it goes without saying that the object to be heated 12 does not have to be integral over each heating area, and may be partially divided.

加熱炉10内において形成された加熱域A、B。Heating zones A and B formed within the heating furnace 10.

Cは8ゾーンでおったが、2または4以上のゾーン数に
適宜変更される。このような場合において、湿度調節計
から制御信号が連続的に演算器へ出力17− される加熱域が2以上でおっても差支えない。
C has 8 zones, but the number of zones may be changed to 2 or 4 or more as appropriate. In such a case, there is no problem even if there are two or more heating regions in which the control signal is continuously output from the humidity controller to the computing unit.

前述の実施例に於いて加熱装置としてバーナが用いられ
ていたが、ヒータ等の他の加熱手段であっても差支えな
い。
In the embodiments described above, a burner was used as the heating device, but other heating means such as a heater may also be used.

前述の実施例に於ける調節手段、りpス演算手段、及び
更新手段は、斯る各手段の機能を果たす尚、上述したの
はあくまでも本発明の一実施例であり、本発明はその精
神を逸脱しない範囲において種々変更が加えられ得るも
のである。
The adjusting means, the RIS calculation means, and the updating means in the above-mentioned embodiments perform the functions of each means. However, the above-mentioned is only one embodiment of the present invention, and the present invention does not depart from the spirit thereof. Various changes may be made without departing from the above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を備えた加熱炉の断面図で
ある。第2図は、第1図に備えられた温度制御系を示す
図である。第8図は第2図の温度制御系の過渡応答特性
の一例を示す図である。第4図および第5図は過渡応答
における所定時間後の温度振幅とサンプリング周期との
関係を、シングルの場合とクロスの場合とを対比して示
す図であシ、第4図は干渉度が0.8の状態、第5図は
干18− 法度が0.5の状態金それぞれ示している。 10:炉       12:被加熱物16.18,2
0:熱電対(温度センサ)22.24,26:バーナ(
加熱装置)66.68,70:温度調節計(調節手段)
78.80.82:演算器(クロス演算手段)出願人 
 大同特殊鋼株式会社 19− 第1図 第4図 サンプ゛Jンブ周期T(+り) 第5図 サンプリング回1!T(秒)
FIG. 1 is a sectional view of a heating furnace equipped with an embodiment of the present invention. FIG. 2 is a diagram showing the temperature control system provided in FIG. 1. FIG. 8 is a diagram showing an example of the transient response characteristics of the temperature control system shown in FIG. 2. Figures 4 and 5 are diagrams showing the relationship between the temperature amplitude after a predetermined time and the sampling period in the transient response, comparing the single case and the cross case. 0.8, Figure 5 shows the condition of 18 - 0.5, respectively. 10: Furnace 12: Heated object 16.18,2
0: Thermocouple (temperature sensor) 22. 24, 26: Burner (
Heating device) 66, 68, 70: Temperature controller (control means)
78.80.82: Arithmetic unit (cross computing means) Applicant
Daido Steel Co., Ltd. 19- Figure 1 Figure 4 Sampling period T (+) Figure 5 Sampling time 1! T (seconds)

Claims (2)

【特許請求の範囲】[Claims] (1)互に隣接して温度干渉する複数の加熱域を有する
炉において、該加熱域内の被加熱物を均一な温度に制御
する温度制御装置であって、前記複数の加熱域にそれぞ
れ設けられ、該加熱域の温度を表わす温度信号を出力す
る複数の温度センサと、 前記複数の加熱域にそれぞれ設けられ、該加熱域を加熱
する複数の加熱装置と、 予め定められた目標温度と前記温度信号が表わす各加熱
域の温度とを比較してそれ等の偏差を算出し、該偏差が
零となるように該加熱域の各々に対応した制御信号をそ
れぞれ出力する調節手段と、該各々の制御信号と前記加
熱域相互間の温度干渉度とに基づいて該加熱域に対応し
た操作量を表わす操作信号をそれぞれ算出するクロス演
算手段と全備え、前記加熱装置に該操作信号に従って前
記加熱域をそれぞれ加熱させる演算制御装置と を含むことを特徴とする複数の加熱域を有する炉の温度
制御装置。
(1) In a furnace having a plurality of heating zones that are adjacent to each other and have temperature interference, a temperature control device that controls a heated object in the heating zone to a uniform temperature, the temperature control device being provided in each of the plurality of heating zones. , a plurality of temperature sensors that output temperature signals representing the temperature of the heating regions; a plurality of heating devices that are respectively provided in the plurality of heating regions and heat the heating regions; a predetermined target temperature and the temperature. an adjusting means for comparing the temperatures of the respective heating regions represented by the signals to calculate a deviation therebetween and outputting a control signal corresponding to each of the heating regions so that the deviation becomes zero; The heating device is provided with a cross calculation means for calculating an operation signal representing an operation amount corresponding to the heating area based on the control signal and the degree of temperature interference between the heating areas, A temperature control device for a furnace having a plurality of heating zones, characterized in that the device includes a calculation control device that heats each of the heating zones.
(2)互に瞬接して温度干渉する複数の加熱域を有する
炉において、該加熱域内の被加熱物を均一な温度に加熱
する温度制御装置であって、前記複数の加熱域にそれぞ
れ設けられ、該加熱域の温度を表わす温度信号を出力す
る複数の温度センサと、 前記複数の加熱域にそれぞれ設けられ、該加熱域を加熱
する複数の加熱装置と、 予め定められた目標温度と前記温度信号が表わす各加熱
域の温度とを比較してそれ等の偏差を算出し、該偏差が
零となるように該加熱域の各々に対応した制御信号をそ
れぞれ出力する調節手段と、該加熱域の予め定められた
加熱域を除く他の加熱域に対応する制御信号を、所定の
時間保持するとともに該時間をおいて周期的に更新する
更新手段と、該更新手段によって更新埒れる制御信号お
よび前記予め定められた加熱域に対応する制御信号と前
記加熱域相互間の温度干渉度に基づいて該各加熱域に対
応した操作mk表わす操作信号をそれぞれ算出するクロ
ス演算手段とを備え、前記加熱装置に該操作信号に従っ
て前記加熱域をそれぞれ加熱させる演算制御装置りと を含むこと全特徴とする複数の加熱域を備えた炉の温度
制御装置。
(2) In a furnace having a plurality of heating zones that are in instant contact with each other and have temperature interference, a temperature control device that heats the object to be heated in the heating zone to a uniform temperature, the temperature control device being provided in each of the plurality of heating zones. , a plurality of temperature sensors that output temperature signals representing the temperature of the heating regions; a plurality of heating devices that are respectively provided in the plurality of heating regions and heat the heating regions; a predetermined target temperature and the temperature. an adjusting means that compares the temperature of each heating area represented by the signal and calculates a deviation thereof, and outputs a control signal corresponding to each of the heating area so that the deviation becomes zero; an updating means for holding a control signal corresponding to a heating area other than the predetermined heating area for a predetermined period of time and periodically updating it at intervals of the predetermined period; a control signal updated by the updating means; cross calculation means for respectively calculating an operation signal representing an operation mk corresponding to each heating area based on a control signal corresponding to the predetermined heating area and a degree of temperature interference between the heating areas; A temperature control device for a furnace equipped with a plurality of heating zones, characterized in that the device includes an arithmetic and control device that heats each of the heating zones according to the operation signal.
JP57145349A 1982-08-20 1982-08-20 Temperature controller for furnace with plural heating areas Granted JPS5935212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145349A JPS5935212A (en) 1982-08-20 1982-08-20 Temperature controller for furnace with plural heating areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145349A JPS5935212A (en) 1982-08-20 1982-08-20 Temperature controller for furnace with plural heating areas

Publications (2)

Publication Number Publication Date
JPS5935212A true JPS5935212A (en) 1984-02-25
JPH0459371B2 JPH0459371B2 (en) 1992-09-22

Family

ID=15383125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145349A Granted JPS5935212A (en) 1982-08-20 1982-08-20 Temperature controller for furnace with plural heating areas

Country Status (1)

Country Link
JP (1) JPS5935212A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156316A (en) * 1984-12-28 1986-07-16 Ohkura Electric Co Ltd Temperature controller of interference corresponding type pattern automatic switching type
JPS6355099U (en) * 1986-09-27 1988-04-13
JPH06281364A (en) * 1993-03-30 1994-10-07 Ngk Insulators Ltd Temperature control method for heating furnace
WO1999040497A1 (en) * 1998-02-03 1999-08-12 Komatsu Ltd. Temperature controller for zone division heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858077B2 (en) * 2017-05-25 2021-04-14 アズビル株式会社 Controller adjustment system and adjustment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156316A (en) * 1984-12-28 1986-07-16 Ohkura Electric Co Ltd Temperature controller of interference corresponding type pattern automatic switching type
JPH0527126B2 (en) * 1984-12-28 1993-04-20 Okura Denki Co Ltd
JPS6355099U (en) * 1986-09-27 1988-04-13
JPH06281364A (en) * 1993-03-30 1994-10-07 Ngk Insulators Ltd Temperature control method for heating furnace
BE1006992A3 (en) * 1993-03-30 1995-02-14 Ngk Insulators Ltd Method for controlling temperature of heat oven.
WO1999040497A1 (en) * 1998-02-03 1999-08-12 Komatsu Ltd. Temperature controller for zone division heater

Also Published As

Publication number Publication date
JPH0459371B2 (en) 1992-09-22

Similar Documents

Publication Publication Date Title
JP2013544969A (en) Method and apparatus for controlling furnace pressure in a continuous annealing furnace
GB1155052A (en) Method and Apparatus for the Optimisation of the Operation of Chemical Apparatus
JPS5935212A (en) Temperature controller for furnace with plural heating areas
GB1420852A (en) Method of regulating and stabilising the temperature of a fluid flowing from the outlet of a conditioning duct
US3319887A (en) Multi-zone furnace temperature and atmosphere control
JP2000242323A (en) Plant operation guidance system
Root et al. An experimental study of unstable states in a loop reactor
JP2825230B2 (en) Process control equipment
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
SE8200553L (en) DEVICE FOR REGULATING THE TEMPERATURE IN AN OVEN, IN PARTICULAR A TUNN OVEN
JPS55132663A (en) Baking method of coated pipe
Muske et al. Model-based control of a thermal regenerator. Part 2: control and estimation
SU1738762A1 (en) Method of control of heating conditions of regenerative glass-making furnace
SU1121545A1 (en) Method of controlling fuel supply to heating furnace
KR970002100A (en) Combustion control method and apparatus for waste incinerator
US3594127A (en) Methods and systems for monitoring and/or controlling the constituent-potential of heat - treating atmospheres
JPS61113728A (en) Strip temperature controlling method of continuous annealing furnace
JPS6117445Y2 (en)
SU572639A1 (en) Method of automatic control of heat-exchange apparatus
JPS62263516A (en) Temperature control method and instrument for heating furnace
JPH03140471A (en) Production equipment of semiconductor device
JPS5694118A (en) Combustion control for industrial heating furnace
JPS57164219A (en) Combustion controller
JPH0338590Y2 (en)
JPH01150716A (en) Method for controlling combustion of side combustion multi-zone type heating furnace