JPH0459371B2 - - Google Patents

Info

Publication number
JPH0459371B2
JPH0459371B2 JP57145349A JP14534982A JPH0459371B2 JP H0459371 B2 JPH0459371 B2 JP H0459371B2 JP 57145349 A JP57145349 A JP 57145349A JP 14534982 A JP14534982 A JP 14534982A JP H0459371 B2 JPH0459371 B2 JP H0459371B2
Authority
JP
Japan
Prior art keywords
heating
temperature
zones
control
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57145349A
Other languages
Japanese (ja)
Other versions
JPS5935212A (en
Inventor
Hiromitsu Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP57145349A priority Critical patent/JPS5935212A/en
Publication of JPS5935212A publication Critical patent/JPS5935212A/en
Publication of JPH0459371B2 publication Critical patent/JPH0459371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • G05D23/1934Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、互に隣接して温度干渉する複数の加
熱域を有する炉に於いて、それ等加熱域間に隔壁
を設けることなくその加熱域内の被加熱物を均一
な温度に制御する温度制御装置に関するものであ
る。 加熱炉内の被加熱物を均一な温度に加熱するた
めに、その加熱炉内を複数の隣接した加熱域に分
割し、夫々の加熱域に於いて夫々の目標温度に独
立に温度制御することが行われている。しかしな
がら、斯る場合に於いて高い温度制御精度を得る
ためには、加熱域間の相互干渉を小さくする必要
があるため加熱域間に隔壁を設けねばならず、加
熱炉の構造が複雑となるとともに加熱炉が高価と
なる欠点があつた。 本発明は、以上の事情を背景として為されたも
のであり、その目的とするところは、互に隣接し
て温度干渉する複数の加熱域を有する炉に於い
て、加熱域間に隔壁を設けることなく被加熱物を
均一な温度に加熱する温度制御装置を提供するこ
とにある。 斯る目的を達成するため、本発明の温度制御装
置は、 (1) 前記複数の加熱域に夫々設けられ、その加熱
域の温度を表わす温度信号を出力する複数の温
度センサと、 (2) 前記複数の加熱域に夫々設けられ、その加熱
域を加熱する複数の加熱装置と、 (3) 予め定められた目標温度と前記温度信号が表
わす各加熱域の温度とを比較してそれ等の偏差
を算出し、その偏差が零となるようにその加熱
域の各々に対応した制御信号を夫々出力する調
節手段と、その各々の制御信号を前記加熱域相
互間の温度干渉度とに基づいてその加熱域に対
応した操作量を表わす操作信号を夫々算出する
クロス演算手段とを備え、前記加熱装置にその
操作信号に従つて前記加熱域を夫々加熱させる
演算制御装置とを、含むことを特徴とする。 この様にすれば、各加熱域を加熱するための加
熱装置が、当該加熱域に対応する制御信号のみな
らず、他の加熱域に対応する制御信号と加熱域相
互間の温度干渉度とに基づいて算出された操作信
号によつて操作されるので、加熱域間に隔壁を備
えず比較的温度干渉が大きい炉にあつても被加熱
物を極めて均一に加熱し得るのである。即ち、従
来は加熱域間の温度干渉をできるだけ低くして各
加熱域を独立に温度制御していたのに対し、本発
明の温度制御装置によれば、加熱域相互間の温度
干渉度に基づいて、当該加熱域に対応する制御信
号と当該加熱域に影響する他の加熱域に対応する
制御信号とに基づいて当該加熱域のための操作信
号が算出されて、その加熱域相互間の温度干渉を
予め考慮した操作信号によつて当該加熱域が加熱
装置によつて加熱されるので、極めて高い温度制
御精度が得られるのである。 また、本発明の他の態様によれば、前記演算制
御装置が、前記調節手段によつて出力された制御
信号のうち前記加熱域の予め定められた加熱域を
除く他の加熱域に対応する制御信号を、所定の時
間保持するとともにその時間をおいて周期的に更
新する更新手段を、更に備えたことを特徴とす
る。 この様にすれば、予め定められた加熱域が前記
調節手段及びクロス演算手段によつて連続的に変
化させられる操作信号によつて連続的に温度制御
されるとともに、他の加熱域が更新手段によつて
周期的に更新される制御信号に基づいて算出され
た操作信号に従つて温度制御されるので、温度制
御系が一層安定となり更に高い温度制御特性が得
られるのである。 以下、本発明の一実施例を示す図面に基づいて
詳細に説明する。 第1図に於いて、炉10内に配設された被加熱
物12は、ローラ14によつて搬送されるように
なつており、その被加熱物12の送り方向に対し
て直角な方向、即ち炉10の幅方向に温度センサ
としての熱電対16,18,20、及び加熱装置
としてのバーナ22,24,26が取り付けられ
ている。このため、炉10内は、バーナ22によ
つて主として加熱され熱電対16によつて温度が
検知される第1加熱域Aと、バーナ24によつて
主として加熱され熱電対18によつて温度が検知
される第2加熱域Bと、バーナ26によつて主と
して加熱され熱電対20によつて温度が検知され
る第3加熱域Cとが、炉10の幅方向に隔壁を設
けることなく形成されている。従つて、それ等加
熱域A,B,Cは相互に所定の温度干渉を及ぼ
す。 斯る炉10には、第2図に示される制御装置が
備えられている。即ち、バーナ22,24,26
には、ガス配管28が調節弁30,32,34を
介して夫々接続されており、また、空気配管36
が空気調節弁38,40,42を介して夫々接続
されている。 ガス配管28及び空気配管36の基管には、流
量センサであるオリフイス44及び46が配設さ
れており、オリフイス44からは燃料ガスの総流
量を表わすガス流量信号GFがガス流量指示計4
8に供給されるとともに、乗算器50を介して流
量調節計52に供給される。乗算器50には、設
定器54または炉10の煙道等に設けられたO2
メータ56からの補正信号SAが供給されており、
乗算器50は補正信号SAをガス流量信号GFに乗
算して流量調節計52に供給する。また、オリフ
イス46からは空気流量信号AFが流量調節計5
2に供給されており、流量調節計52は予め設定
された所定の空燃比が得られるようにガス流量に
対する空気流量を決定し、その空気流量を表わす
流量指令信号CFを補正器58を介して乗算器6
0,62,64に供給する。 一方、熱電対16,18,20からは、第1加
熱域A、第2加熱域B、第3加熱域Cの温度を表
わす温度信号T1,T2,T3が、調節手段としての
温度調節計66,8,70に電圧/電流変換器7
2,74,76を介してそれぞれ供給されてい
る。温度調節計66,68,70にはそれぞれの
目標温度が予め設定されており、その目標温度と
各加熱域A,B,Cの実際の温度との偏差が算出
されるとともに、その偏差に基づいて、その偏差
が零となるように制御信号mT1,mT2,mT3が
温度調節計66,68,70から出力される。こ
こで各温度調節計66,68,70に設定される
目標温度は、一般に、共通の温度あるいは、各加
熱域A,B,Cの特性を考慮した共通温度に近い
異なる温度とされる。 それ等制御信号mT1,mT2,mT3は、各加熱
域A,B,Cに対応して設けられたクロス演算手
段としての演算器78,80,82に夫々供給さ
れる。温度調節計68及び70の入力側及び出力
側には、サンプリング装置の接点84が夫々直列
に介挿されており、所定の時間間隔(数十秒程
度)に約1秒間周期的に閉じられることによつ
て、温度調節計68及び70から制御信号mT2,
mT3がホールド回路85,85へ周期的に出力
されるようになつている。ホールド回路85,8
5には、その制御信号mT2,mT3が所定の時間
間隔だけ保持されるようになつており、新たな制
御信号mT2,mT3が供給されると、ホールド回
路85,85に保持された制御信号が新たな制御
信号mT2,mT3に更新されるようになつている。
即ち、サンプリング装置の接点84及びホールド
回路85,85が更新手段を形成しているのであ
る。 演算器78,80,82は、各々の制御信号
mT1,mT2,mT3と加熱域A,B,C相互間の
温度干渉度とに基づいて、各加熱域に対応した操
作量を表わす操作信号m1,m2,m3を夫々リミ
ツタ86,88,90を介して特性変換器92,
94,96及び前述の乗算器60,62,64に
夫々出力する。尚、リミツタ86,88,90
は、バーナ22,24,26の不安定な燃焼を避
けるために、一定以下の流量の燃料をカツトする
ためのものである。 ここで、炉10の各加熱域A,B,Cの温度を
T1,T2,T3とし、それ等各加熱域A,B,Cの
温度を制御するために、それ等加熱域に属する操
作機器である調節弁に供給する操作信号をm1,
m2,m3とすると、次式に示される如くの干渉線
形加熱モデル式(1)(2)(3)が得られる。 T1=m1+bm2+cm3 ――(1) T2=m2+am1+c′m3 ――(2) T3=m3+a′m1+b′m2 ――(3) 但し、上式のa,a′,b,b′,c,c′は加熱域
A,B,C相互間の干渉度を示す零より大きく1
よりも小さい数値であつて、加熱モデル毎に実験
的に決定されるものである。 そして、上記加熱モデル式(1),(2),(3)に基づい
て、制御信号mT1,mT2,mT3と操作信号m1,
m2,m3との関係を示す非干渉化制御演算式が次
のように導かれる。 m1=A1・mT1+B1・mT2+C1・mT3 ――(4) m2=A2・mT1+B2・mT2+C2・mT3 ――(5) m3=A3・mT1+B3・mT2+C3・mT3 ――(6) 、但し、 〔A1=1−b′c′/K,B1=b′c−b/K,
C1=bc′−c/K A2=a′c′−a/K,B2=1−a′c/K,C2
=ac−c′/K A3=ab′−a′/K,B3=a,b−b′/K,
C3=1−ab/K ∵K=a′bc′+ab′c+1−ab−a′c−b
′c′〕 である。 前記演算器78,80,82は、夫々上記非干
渉化制御演算式(4)(5)(6)に従つて操作信号m1,
m2,m3を算出するように構成されているのであ
る。 前記特性変換器92,94,96は、ガス調節
弁30,32,34の弁開度と流量との関係に基
づいて、操作信号m1,m2,m3とガス流量とが
線形の関係となるように操作信号m1,m2,m3
を夫々変換するものである。特性変換器92,9
4,96から出力される信号は、電流/空圧変換
器98,100,102を介してガス調節弁3
0,32,34に夫々供給される。 前記乗算器60,62,64は、流量調節計5
2から出力された流量指令信号CFを夫々操作信
号m1,m2,m3に乗算し、その結果を特性変換
器104,106,108及び電流/空圧変換器
110,112,114を夫々介して、空気調節
弁38,40,42に供給する。即ち、各加熱域
A,B,Cに於いて、ガス調節弁30,32,3
4によつて流された燃料に対して一定比率の空気
が空気調節弁38,40,42によつて流される
ようになつており、流量指令信号CFは燃料ガス
流量に対して流すべき空気流量の比率(空燃比)
を表わすものである。尚、特性変換器104,1
06,108は前述の特性変換器92,94,9
6と同様に構成され、乗算器60,62,64か
らの出力信号と空気流量とが線形の関係となるよ
うにされている。 以上の様に構成された制御装置に於いては、各
加熱域A,B,Cの温度制御のために用いられる
操作信号m1,m2,m3が、当該加熱域の制御信
号のみならず他の加熱域の制御信号と加熱域A,
B,C相互間の温度干渉度とから決定されるの
で、例えば、加熱域Aのための操作信号m1は当
該加熱域Aを温度制御するための制御信号mT1
のみならず、他の加熱域B,Cのための制御信号
mT2,mT3と加熱域相互間の温度干渉度から導
かれる係数(第(4)(5)(6)のA1乃至A3,B1乃至B3,
C1乃至C3)に基づいて決定されるので、加熱域
A,B,C相互間に隔壁を設けることなく極めて
好適な温度制御特性が得られるのである。即ち、
隔壁を設けて加熱域A,B,C間の相互干渉度を
低くするのではなく、予め相互干渉度の存在を考
慮し、他の加熱域のための制御信号を利用して当
該加熱域を温度制御するのである。 しかも、加熱域Aに対応する制御信号mT1が
連続的に変化させられるとともに、加熱域B,C
に対応する制御信号mT2,mT3が所定期間保持
され且つ周期的に更新されるようになつているの
で、簡単な構成によつて温度制御系が安定し一層
好ましい高精度の温度制御特性が得られるのであ
る。 本発明者の実験によれば、第1表に示される結
果が得られた。即ち、第3図に示されるように、
時間0秒に於いて共通の目標温度を50%とし、
The present invention provides temperature control for controlling a heated object within a heating zone to a uniform temperature in a furnace having a plurality of heating zones that are adjacent to each other and have temperature interference, without providing partition walls between the heating zones. It is related to the device. In order to heat the object to be heated in the heating furnace to a uniform temperature, the inside of the heating furnace is divided into a plurality of adjacent heating zones, and the temperature in each heating zone is controlled independently to each target temperature. is being carried out. However, in order to obtain high temperature control accuracy in such cases, it is necessary to reduce mutual interference between the heating zones, so partition walls must be provided between the heating zones, which complicates the structure of the heating furnace. Another drawback was that the heating furnace was expensive. The present invention was made against the background of the above-mentioned circumstances, and its purpose is to provide a partition wall between the heating zones in a furnace having a plurality of adjacent heating zones that interfere with each other in temperature. It is an object of the present invention to provide a temperature control device that heats an object to be heated to a uniform temperature without any heating. In order to achieve such an object, the temperature control device of the present invention includes: (1) a plurality of temperature sensors provided in each of the plurality of heating regions and outputting a temperature signal representing the temperature of the heating region; (2) (3) a plurality of heating devices provided in each of the plurality of heating regions to heat the heating region; (3) comparing a predetermined target temperature with the temperature of each heating region represented by the temperature signal; adjusting means for calculating the deviation and outputting a control signal corresponding to each of the heating areas so that the deviation becomes zero; and adjusting each control signal based on the degree of temperature interference between the heating areas. Cross calculation means for calculating respective operation signals representing operation amounts corresponding to the heating areas, and a calculation control device for causing the heating device to heat each of the heating areas according to the operation signals. shall be. In this way, the heating device for heating each heating zone can respond not only to the control signal corresponding to the heating zone, but also to the control signals corresponding to other heating zones and the degree of temperature interference between the heating zones. Since it is operated in accordance with the operation signal calculated based on this, even in a furnace that does not have partition walls between heating zones and has relatively large temperature interference, the object to be heated can be heated extremely uniformly. In other words, while conventionally the temperature of each heating zone was controlled independently by minimizing the temperature interference between the heating zones, the temperature control device of the present invention controls the temperature based on the degree of temperature interference between the heating zones. Then, the operation signal for the heating area is calculated based on the control signal corresponding to the heating area and the control signal corresponding to the other heating area that affects the heating area, and the temperature between the heating areas is calculated. Since the heating region is heated by the heating device in response to an operation signal that takes interference into account in advance, extremely high temperature control accuracy can be obtained. Further, according to another aspect of the present invention, the arithmetic and control device responds to other heating regions other than a predetermined heating region of the heating region among the control signals output by the adjustment means. The present invention is characterized in that it further includes updating means for holding the control signal for a predetermined period of time and periodically updating the control signal after the predetermined period of time. In this way, the temperature of the predetermined heating area is continuously controlled by the operation signal that is continuously changed by the adjusting means and the cross calculating means, and the temperature of the other heating area is controlled by the updating means. Since the temperature is controlled in accordance with the operation signal calculated based on the control signal periodically updated by , the temperature control system becomes more stable and higher temperature control characteristics can be obtained. DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below based on the drawings. In FIG. 1, a heated object 12 placed in a furnace 10 is conveyed by rollers 14 in a direction perpendicular to the feeding direction of the heated object 12, That is, thermocouples 16, 18, 20 as temperature sensors and burners 22, 24, 26 as heating devices are installed in the width direction of the furnace 10. Therefore, the inside of the furnace 10 is divided into a first heating area A, which is mainly heated by the burner 22 and whose temperature is detected by the thermocouple 16, and a first heating area A, which is mainly heated by the burner 24 and whose temperature is detected by the thermocouple 18. The second heating area B, which is detected, and the third heating area C, which is mainly heated by the burner 26 and whose temperature is detected by the thermocouple 20, are formed without providing a partition wall in the width direction of the furnace 10. ing. Therefore, these heating areas A, B, and C exert a certain temperature interference with each other. Such a furnace 10 is equipped with a control device shown in FIG. That is, burners 22, 24, 26
A gas pipe 28 is connected to each via control valves 30, 32, and 34, and an air pipe 36 is connected to the
are connected via air control valves 38, 40, and 42, respectively. Orifices 44 and 46, which are flow rate sensors, are installed in the base pipes of the gas pipe 28 and the air pipe 36, and the orifice 44 sends a gas flow signal GF representing the total flow rate of the fuel gas to the gas flow rate indicator 4.
8 and is also supplied to a flow rate regulator 52 via a multiplier 50. The multiplier 50 has O 2 installed in the setting device 54 or the flue of the furnace 10.
A correction signal SA from the meter 56 is supplied,
The multiplier 50 multiplies the gas flow rate signal GF by the correction signal SA and supplies the result to the flow rate controller 52 . Also, the air flow signal AF is sent from the orifice 46 to the flow controller 5.
The flow controller 52 determines the air flow rate relative to the gas flow rate so as to obtain a predetermined air-fuel ratio, and sends a flow rate command signal CF representing the air flow rate through a corrector 58. Multiplier 6
0,62,64. On the other hand, from the thermocouples 16, 18, 20, temperature signals T1, T2, T3 representing the temperatures of the first heating zone A, the second heating zone B, and the third heating zone C are sent to a temperature controller 66 as a regulating means. , 8, 70, the voltage/current converter 7
2, 74, and 76, respectively. Each of the temperature controllers 66, 68, and 70 has a target temperature set in advance, and the deviation between the target temperature and the actual temperature of each heating area A, B, and C is calculated, and the temperature is calculated based on the deviation. Control signals mT1, mT2, and mT3 are outputted from the temperature controllers 66, 68, and 70 so that the deviation becomes zero. Here, the target temperatures set for each of the temperature controllers 66, 68, and 70 are generally a common temperature or different temperatures close to the common temperature in consideration of the characteristics of each heating area A, B, and C. These control signals mT1, mT2, mT3 are supplied to calculation units 78, 80, 82 as cross calculation means provided corresponding to each heating area A, B, C, respectively. Contacts 84 of the sampling device are inserted in series on the input and output sides of the temperature controllers 68 and 70, respectively, and are periodically closed for about 1 second at predetermined time intervals (about several tens of seconds). control signals mT2, from temperature controllers 68 and 70,
mT3 is periodically output to hold circuits 85, 85. Hold circuit 85, 8
5, the control signals mT2, mT3 are held for a predetermined time interval, and when new control signals mT2, mT3 are supplied, the control signals held in the hold circuits 85, 85 are held. It is now updated to new control signals mT2 and mT3.
That is, the contact 84 of the sampling device and the hold circuits 85, 85 form the updating means. Arithmetic units 78, 80, 82 each control signal
Based on mT1, mT2, mT3 and the degree of temperature interference between heating zones A, B, and C, operation signals m1, m2, and m3 representing operation amounts corresponding to each heating zone are sent to limiters 86, 88, and 90, respectively. via the characteristic converter 92,
94, 96 and the aforementioned multipliers 60, 62, 64, respectively. In addition, Limita 86, 88, 90
is for cutting fuel at a flow rate below a certain level in order to avoid unstable combustion in the burners 22, 24, and 26. Here, the temperature of each heating zone A, B, C of the furnace 10 is
T1, T2, and T3, and in order to control the temperature of each heating area A, B, and C, the operation signal to be supplied to the control valve, which is an operating device belonging to each heating area, is m1,
Assuming m2 and m3, the interference linear heating model equations (1), (2), and (3) as shown in the following equations are obtained. T1=m1+bm2+cm3 --(1) T2=m2+am1+c'm3 --(2) T3=m3+a'm1+b'm2 --(3) However, a, a', b, b', c, c' in the above equation are 1 greater than zero indicating the degree of interference between heating areas A, B, and C
It is a numerical value smaller than , and is determined experimentally for each heating model. Based on the heating model equations (1), (2), and (3) above, control signals mT1, mT2, mT3 and operation signal m1,
The non-interference control equation showing the relationship between m2 and m3 is derived as follows. m1=A1・mT1+B1・mT2+C1・mT3 --(4) m2=A2・mT1+B2・mT2+C2・mT3 --(5) m3=A3・mT1+B3・mT2+C3・mT3 --(6) However, [A1=1− b′c′/K, B1=b′c−b/K,
C1=bc'-c/K A2=a'c'-a/K, B2=1-a'c/K, C2
=ac-c'/K A3=ab'-a'/K, B3=a, b-b'/K,
C3=1−ab/K ∵K=a′bc′+ab′c+1−ab−a′c−b
′c′]. The arithmetic units 78, 80, and 82 respectively generate the operation signals m1,
It is configured to calculate m2 and m3. The characteristic converters 92, 94, 96 are configured to establish a linear relationship between the operation signals m1, m2, m3 and the gas flow rate based on the relationship between the valve opening degrees of the gas control valves 30, 32, 34 and the flow rate. operation signals m1, m2, m3
, respectively. Characteristic converter 92,9
The signals output from the gas control valves 4 and 96 are passed through current/pneumatic converters 98, 100, and 102 to the gas control valves 3 and 3.
0, 32, and 34, respectively. The multipliers 60, 62, 64 are connected to the flow rate controller 5.
The flow rate command signal CF output from 2 is multiplied by the operation signals m1, m2, m3, respectively, and the results are transmitted through characteristic converters 104, 106, 108 and current/pneumatic converters 110, 112, 114, respectively. Supplied to air control valves 38, 40, 42. That is, in each heating area A, B, C, gas control valves 30, 32, 3
Air at a fixed ratio to the fuel flowed by 4 is flown by the air control valves 38, 40, and 42, and the flow rate command signal CF is the flow rate of air to be flowed relative to the fuel gas flow rate. Ratio (air fuel ratio)
It represents. Note that the characteristic converter 104,1
06, 108 are the aforementioned characteristic converters 92, 94, 9
6, and the output signals from the multipliers 60, 62, 64 and the air flow rate have a linear relationship. In the control device configured as described above, the operation signals m1, m2, m3 used for temperature control of each heating area A, B, C are not only control signals for the heating area but also other signals. Heating area control signal and heating area A,
Since it is determined from the degree of temperature interference between B and C, for example, the operation signal m1 for heating area A is the control signal mT1 for controlling the temperature of heating area A.
as well as control signals for other heating zones B and C.
Coefficients derived from the degree of temperature interference between mT2, mT3 and the heating regions (A1 to A3, B1 to B3 in sections (4), (5), and (6),
C1 to C3), extremely suitable temperature control characteristics can be obtained without providing partition walls between heating zones A, B, and C. That is,
Rather than lowering the degree of mutual interference between heating zones A, B, and C by providing partition walls, the existence of mutual interference is taken into account in advance, and control signals for other heating zones are used to control the heating zone. It controls the temperature. Moreover, the control signal mT1 corresponding to heating area A is continuously changed, and heating areas B and C
Since the corresponding control signals mT2 and mT3 are held for a predetermined period of time and periodically updated, the temperature control system is stabilized with a simple configuration, and more desirable and highly accurate temperature control characteristics can be obtained. It is. According to the inventor's experiments, the results shown in Table 1 were obtained. That is, as shown in FIG.
The common target temperature at time 0 seconds is 50%,

【表】 時間1000秒に於いて加熱域のうちのひとつの温
度調節計66の目標温度を70%にセツトして、外
乱を付与した場合の破線、実線、一点鎖線に示さ
れる各加熱域A,B,Cの温度変化を、所定の干
渉度を0.3または0.5と設定し、各加熱域A,B,
Cを独立に温度制御した場合(以下、シングルと
いう)と、第2図に示される制御系において前述
の非干渉化制御演算式(4),(5),(6)を用いて操作量
を決定し温度制御を行つた場合(以下クロスとい
う)とについて、シミユレーシヨンによつて観測
し、所定の時刻(1000秒後および2000秒後)に於
ける制御性を温度振幅で判断すると、干渉度が
0.3である場合には、接点84を開閉させず制御
量mT2,mT3を連続的に変化させたときでも、
第1表の最上段の2例に示されるように、クロス
の場合の方が、シングルの場合よりも安定であつ
た。またサンプリング装置を作動させたときで
も、第4図に示されるように、更新周期が15秒乃
至30秒に変化すると、シングルの場合は大幅に不
安定となるのに対し、クロスの場合は全く安定で
ある。 また、干渉度を0.5に設定した場合には、第5
図に示されるように、シングルの場合に比較して
クロスの場合の方が更新周期が変化しても大幅に
安定である。尚、実際の炉に於ける干渉度は、一
般に、最大でも0.5を超えることがない。また、
第3図に於ける縦軸は%表示であるが、適当な温
度範囲に置換し得るものである。 以上、本発明の一実施例について説明したが、
本発明はその他の態様に於いても適用される。 例えば、前述の実施例に於いて加熱炉10内の
幅方向に於いて加熱域が分割形成されていたが、
被加熱物12の進行方向に分割されていても良い
のである。また、被加熱物12は各加熱域にわた
つて一体のものでなくても良く、部分的に分割さ
れていても良いことは勿論である。 加熱炉10内において形成された加熱域A,
B,Cは3ゾーンであつたが、2または4以上の
ゾーン数に適宜変更される。このような場合にお
いて、温度調節計から制御信号が連続的に演算器
へ出力される加熱域が2以上であつても差支えな
い。 前述の実施例に於いて加熱装置としてバーナが
用いられていたが、ヒータ等の他の加熱手段であ
つても差支えない。 前述の実施例に於ける調節手段、クロス演算手
段、及び更新手段は、斯る各手段の機能を果たす
信号処理プログラムを備えた所謂マイクロコンピ
ユータによつて構成され得ることは言うまでもな
い。 尚、上述したのはあくまでも本発明の一実施例
であり、本発明はその精神を逸脱しない範囲にお
いて種々変更が加えられ得るものである。
[Table] Each heating area A shown by the broken line, solid line, and dashed-dotted line when the target temperature of the temperature controller 66 in one of the heating areas is set to 70% at a time of 1000 seconds and disturbance is applied. , B, C, the predetermined degree of interference is set to 0.3 or 0.5, and each heating area A, B,
When the temperature of C is controlled independently (hereinafter referred to as single), and in the control system shown in Figure 2, the manipulated variable is calculated using the non-interfering control equations (4), (5), and (6) described above. When temperature control is determined and temperature control is performed (hereinafter referred to as cross), the degree of interference is observed by simulation and the controllability at predetermined times (after 1000 seconds and after 2000 seconds) is judged by the temperature amplitude.
If it is 0.3, even when the control variables mT2 and mT3 are continuously changed without opening or closing the contact 84,
As shown in the two examples at the top of Table 1, the cross case was more stable than the single case. Furthermore, even when the sampling device is activated, as shown in Figure 4, when the update cycle changes from 15 seconds to 30 seconds, the single case becomes significantly unstable, while the cross case becomes completely unstable. It is stable. Also, if the degree of interference is set to 0.5, the fifth
As shown in the figure, the cross case is much more stable than the single case even if the update period changes. Incidentally, the degree of interference in an actual furnace generally does not exceed 0.5 at most. Also,
Although the vertical axis in FIG. 3 is expressed in %, it can be replaced with an appropriate temperature range. Although one embodiment of the present invention has been described above,
The invention also applies to other aspects. For example, in the above-mentioned embodiment, the heating area was divided in the width direction within the heating furnace 10;
It may be divided in the direction of movement of the object to be heated 12. Moreover, it goes without saying that the object to be heated 12 does not have to be integral over each heating area, and may be partially divided. A heating area A formed in the heating furnace 10,
B and C had three zones, but the number of zones was changed to two or four or more as appropriate. In such a case, there is no problem even if there are two or more heating regions in which control signals are continuously output from the temperature controller to the computing unit. Although a burner was used as the heating device in the embodiments described above, other heating means such as a heater may be used. It goes without saying that the adjustment means, cross operation means, and update means in the above-described embodiments can be constructed by a so-called microcomputer equipped with a signal processing program that performs the functions of each of these means. The above-mentioned embodiment is merely one embodiment of the present invention, and various modifications may be made to the present invention without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を備えた加熱炉の
断面図である。第2図は、第1図に備えられた温
度制御系を示す図である。第3図は第2図の温度
制御系の過渡応答特性の一例を示す図である。第
4図および第5図は過渡応答における所定時間後
の温度振幅とサンプリング周期との関係を、シン
グルの場合とクロスの場合とを対比して示す図で
あり、第4図は干渉度が0.3の状態、第5図は干
渉度が0.5の状態をそれぞれ示している。 10……炉、12……被加熱物、16,18,
20……熱電対(温度センサ)、22,24,2
6……バーナ(加熱装置)、66,68,70…
…温度調節計(調節手段)、78,80,82…
…演算器(クロス演算手段)、{85……ホールド
回路、84……接点}(更新手段)。
FIG. 1 is a sectional view of a heating furnace equipped with an embodiment of the present invention. FIG. 2 is a diagram showing the temperature control system provided in FIG. 1. FIG. 3 is a diagram showing an example of the transient response characteristics of the temperature control system shown in FIG. 2. FIGS. 4 and 5 are diagrams showing the relationship between the temperature amplitude after a predetermined time and the sampling period in the transient response, comparing the single case and the cross case. In FIG. 4, the degree of interference is 0.3. , and FIG. 5 shows a state where the degree of interference is 0.5. 10... Furnace, 12... Heated object, 16, 18,
20...Thermocouple (temperature sensor), 22, 24, 2
6... Burner (heating device), 66, 68, 70...
...Temperature controller (adjustment means), 78, 80, 82...
...Arithmetic unit (cross calculation means), {85...hold circuit, 84...contact} (update means).

Claims (1)

【特許請求の範囲】 1 互に隣接して温度干渉する複数の加熱域を有
する炉において、該加熱域内の被加熱物を均一な
温度に制御する温度制御装置であつて、 前記複数の加熱域にそれぞれ設けられ、該加熱
域の温度を表わす温度信号を出力する複数の温度
センサと、 前記複数の加熱域にそれぞれ設けられ、該加熱
域を加熱する複数の加熱装置と、 予め定められた目標温度と前記温度信号が表わ
す各加熱域の温度とを比較してそれ等の偏差を算
出し、該偏差が零となるように該加熱域の各々に
対応した制御信号をそれぞれ出力する調節手段
と、該各々の制御信号と前記加熱域相互間の温度
干渉度とに基づいて該加熱域に対応した操作量を
表わす操作信号をそれぞれ算出するクロス演算手
段とを備え、前記加熱装置に該操作信号に従つて
前記加熱域をそれぞれ加熱させる演算制御装置と を含むことを特徴とする複数の加熱域を有する炉
の温度制御装置。 2 互に隣接して温度干渉する複数の加熱域を有
する炉において、該加熱域内の被加熱物を均一な
温度に加熱する温度制御装置であつて、 前記複数の加熱域にそれぞれ設けられ、該加熱
域の温度を表わす温度信号を出力する複数の温度
センサと、 前記複数の加熱域にそれぞれ設けられ、該加熱
域を加熱する複数の加熱装置と、 予め定められた目標温度と前記温度信号が表わ
す各加熱域の温度とを比較してそれ等の偏差を算
出し、該偏差が零となるように該加熱域の各々に
対応した制御信号をそれぞれ出力する調節手段
と、該加熱域の予め定められた加熱域を除く他の
加熱域に対応する制御信号を、所定の時間保持す
るとともに該時間をおいて周期的に更新する更新
手段と、該更新手段によつて更新される制御信号
および前記予め定められた加熱域に対応する制御
信号と前記加熱域相互間の温度干渉度に基づいて
該各加熱域に対応した操作量を表わす操作信号を
それぞれ算出するクロス演算手段とを備え、前記
加熱装置に該操作信号に従つて前記加熱域をそれ
ぞれ加熱させる演算制御装置と を含むことを特徴とする複数の加熱域を備えた炉
の温度制御装置。
[Scope of Claims] 1. A temperature control device for controlling an object to be heated in the heating zones to a uniform temperature in a furnace having a plurality of heating zones that are adjacent to each other and have temperature interference, comprising: a plurality of temperature sensors that are respectively provided in the heating areas and output temperature signals representing the temperature of the heating areas; a plurality of heating devices that are respectively provided in the plurality of heating areas that heat the heating areas; and a predetermined target. adjusting means for comparing the temperature with the temperature of each heating area represented by the temperature signal, calculating a deviation therebetween, and outputting a control signal corresponding to each heating area so that the deviation becomes zero; , cross calculation means for calculating respective operation signals representing the operation amount corresponding to the heating area based on the respective control signals and the degree of temperature interference between the heating areas, the operation signal being applied to the heating device. 1. A temperature control device for a furnace having a plurality of heating zones, comprising: an arithmetic and control device that heats each of the heating zones. 2. In a furnace having a plurality of heating zones that are adjacent to each other and have temperature interference, a temperature control device that heats the object to be heated in the heating zone to a uniform temperature, which is provided in each of the plurality of heating zones, and a plurality of temperature sensors that output temperature signals representing the temperature of the heating regions; a plurality of heating devices that are respectively provided in the plurality of heating regions and heat the heating regions; and a predetermined target temperature and the temperature signal. an adjusting means for comparing the temperatures of the respective heating zones and calculating a deviation thereof, and outputting a control signal corresponding to each of the heating zones so that the deviation becomes zero; an updating means for holding a control signal corresponding to a heating area other than a predetermined heating area for a predetermined period of time and periodically updating it after the said period; a control signal updated by the updating means; cross calculation means for calculating a control signal corresponding to the predetermined heating area and an operation signal representing an operation amount corresponding to each heating area based on the degree of temperature interference between the heating areas; A temperature control device for a furnace equipped with a plurality of heating zones, characterized in that the heating device includes an arithmetic control device that causes the heating device to heat each of the heating zones according to the operation signal.
JP57145349A 1982-08-20 1982-08-20 Temperature controller for furnace with plural heating areas Granted JPS5935212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145349A JPS5935212A (en) 1982-08-20 1982-08-20 Temperature controller for furnace with plural heating areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145349A JPS5935212A (en) 1982-08-20 1982-08-20 Temperature controller for furnace with plural heating areas

Publications (2)

Publication Number Publication Date
JPS5935212A JPS5935212A (en) 1984-02-25
JPH0459371B2 true JPH0459371B2 (en) 1992-09-22

Family

ID=15383125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145349A Granted JPS5935212A (en) 1982-08-20 1982-08-20 Temperature controller for furnace with plural heating areas

Country Status (1)

Country Link
JP (1) JPS5935212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677775B (en) * 2017-05-25 2019-11-21 日商阿自倍爾股份有限公司 Controller adjustment system and adjustment method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156316A (en) * 1984-12-28 1986-07-16 Ohkura Electric Co Ltd Temperature controller of interference corresponding type pattern automatic switching type
JPS6355099U (en) * 1986-09-27 1988-04-13
JPH06281364A (en) * 1993-03-30 1994-10-07 Ngk Insulators Ltd Temperature control method for heating furnace
WO1999040497A1 (en) * 1998-02-03 1999-08-12 Komatsu Ltd. Temperature controller for zone division heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677775B (en) * 2017-05-25 2019-11-21 日商阿自倍爾股份有限公司 Controller adjustment system and adjustment method

Also Published As

Publication number Publication date
JPS5935212A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
JP5797764B2 (en) Method and apparatus for controlling furnace pressure in a continuous annealing furnace
JPH0459371B2 (en)
JP2901915B2 (en) Burner combustion control device
JP2000242323A (en) Plant operation guidance system
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JP4121239B2 (en) Combustion device
JP4634197B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JPH01150742A (en) Control device for hot water feeder
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JPH06174381A (en) Controlling equipment of atmosphere of furnace
JP2808736B2 (en) Water heater control device
JPH0565883B2 (en)
JPH0229442Y2 (en)
JPS6021639Y2 (en) Furnace pressure control device for combustion equipment
JPS6117445Y2 (en)
JPH03137707A (en) Temperature control method for thermostat for heating sample treatment
JPH03140471A (en) Production equipment of semiconductor device
JPS6140053B2 (en)
JPS5831405A (en) Temperature controlling system in heating furnace
JPH0338590Y2 (en)
SU1121545A1 (en) Method of controlling fuel supply to heating furnace
JPH01252819A (en) Combustion device
JPS60251228A (en) Method for controlling temperature of heat treating installation
TWI621001B (en) A controller achieving multi-variable control using a single-variable control unit
JPS6260612B2 (en)