JPS60251228A - Method for controlling temperature of heat treating installation - Google Patents

Method for controlling temperature of heat treating installation

Info

Publication number
JPS60251228A
JPS60251228A JP10712584A JP10712584A JPS60251228A JP S60251228 A JPS60251228 A JP S60251228A JP 10712584 A JP10712584 A JP 10712584A JP 10712584 A JP10712584 A JP 10712584A JP S60251228 A JPS60251228 A JP S60251228A
Authority
JP
Japan
Prior art keywords
heating furnace
temperature
heated
furnace
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10712584A
Other languages
Japanese (ja)
Inventor
Yukihisa Komiya
小宮 幸久
Tadao Senba
仙波 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Kawatetsu Galvanizing Co Ltd
Original Assignee
Daido Steel Co Ltd
Kawatetsu Galvanizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Kawatetsu Galvanizing Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10712584A priority Critical patent/JPS60251228A/en
Publication of JPS60251228A publication Critical patent/JPS60251228A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To maintain always constant the temp. of a steel strip in the outlet of the 2nd heating furnace in the stage of heat-treating the steel strip in the 1st heating furnace having fast responsiveness and the 2nd heating furnace having slow responsiveness by controlling the quantity of the heat input to both furnaces by the temp. of the steel strip in the outlet of both furnaces. CONSTITUTION:The steel strip 38 is heated to about 1,000 deg.C to burn the org. materials sticking thereto in the direct firing type 1st heating furnace 40 having fast responsiveness. Said strip is heated to about 1,200 deg.C in a reducing atmosphere and is thus annealed in the 2nd heating furnace 42 using radiant tubes 50 and having slow responsiveness. The temp. of the strip 38 in the outlet of the furnace 42 is measured by a thermometer 60 and if said temp. is lower than the target temp., the quantity of the heat input is increased by controlling the control valve 64 for the fuel supply pipe 46 of the furnace 40 with the signal thereof. The temp. of the strip in the outlet of the furnace 40 is measured by a thermometer 52 and the quantity of the heat input to the inside of the radiant tubes in the 2nd heating furnace is made higher as the temp. is higher so that the heating temp. of the steel strip by the 1st heating furnace having fast responsiveness and the heating furnace having slow responsiveness is maintained always constant.

Description

【発明の詳細な説明】 技術分野 本発明は熱処理設備の温度制御方法に関し、特に被加熱
部材の走行速度の変動に拘らずばらつきのない安定した
熱処理が得られるようにする技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a temperature control method for heat treatment equipment, and more particularly to a technique for achieving stable heat treatment without variation regardless of fluctuations in the running speed of a member to be heated.

先行技術 熱処理設備の一種に、応答の速い第一加熱炉内を走行さ
せた後それに引続いて応答の遅い第二加熱炉内を走行さ
せることにより被加熱部材に熱処理を施す形式のものが
ある。斯る形式の熱処理設備においては、一般に第一加
熱炉出口および第二加熱炉出口における被加熱部材の温
度が各々予め定められた一定の値となるようにそれぞれ
の投入熱量が調節される。しかしながら、斯る形式の熱
処理設備によれば、被加熱部材の走行速度変動のような
負荷変動が発生すると、第二加熱炉が応答するまでのし
ばらくの開被加熱部材に対する充分な熱処理が加えられ
得ない欠点があった。特に被加熱部材が高速にて連続走
行させられる場合には、充分な熱処理が加えられない不
良部分が大量となり、経済的損失がきわめて大きくなる
One type of prior art heat treatment equipment is one in which a member to be heated is subjected to heat treatment by running it through a first heating furnace with a fast response and then through a second heating furnace with a slow response. . In this type of heat treatment equipment, the amount of heat input is generally adjusted so that the temperature of the member to be heated at the outlet of the first heating furnace and the outlet of the second heating furnace each becomes a predetermined constant value. However, according to this type of heat treatment equipment, when a load fluctuation such as a change in the running speed of the heated member occurs, sufficient heat treatment is applied to the heated member for a while until the second heating furnace responds. There were disadvantages that I could not get. Particularly when the member to be heated is continuously moved at high speed, there will be a large number of defective parts that cannot be subjected to sufficient heat treatment, resulting in extremely large economic losses.

第1図はその一例の熱処理設備の略図であって、ストリ
ップ等の被加熱部材10が第一加熱炉12および第二加
熱炉14内を走行さゼられるようになっている。第一加
熱炉12および第二加熱炉14の出口には被加熱部材1
0の温度を検出するための測温計16および18がそれ
ぞれ設けられており、それ等測温計16および18から
は被加熱部材10の温度を表す信号が温度調節計20お
よび22へそれぞれ出力される。温度調節計20は第一
加熱炉12に燃料を供給するための燃料供給路24に設
けられた流量調節弁26へ調節信号を出力して第一加熱
炉12に投入される熱量を制御し、第一加熱炉12出口
にお&ノる被加熱部材10の温度を予め定められた一定
の値に調節する。同様に、温度調節計22も第二加熱炉
14に燃料を供給する燃料供給路28に設けられた流M
調節弁30に調節信号を出力し、第二加熱炉14出口に
おける被加熱部材10の温度を予め定められた一定の値
に調節する。なお、第一加熱炉12においては、たとえ
ばバーナで燃焼させられた燃焼ガスが直接的に被加熱部
材10へ及ぼされる直火式構造等のような応答の速い炉
体構造が採用されており、第二加熱炉14においては逆
に、たとえば燃料がラジアントチューブ内において燃焼
させられてそのラジアントチューブ壁面からの熱放射に
より被加熱部材10が加熱される形式のような応答の遅
い炉体構造が採用されている。
FIG. 1 is a schematic diagram of an example of the heat treatment equipment, in which a member to be heated 10 such as a strip is moved through a first heating furnace 12 and a second heating furnace 14. A member to be heated 1 is provided at the outlet of the first heating furnace 12 and the second heating furnace 14.
Temperature meters 16 and 18 are provided to detect the temperature of 0, respectively, and the temperature meters 16 and 18 output signals representing the temperature of the heated member 10 to temperature controllers 20 and 22, respectively. be done. The temperature controller 20 controls the amount of heat input to the first heating furnace 12 by outputting an adjustment signal to a flow rate adjustment valve 26 provided in a fuel supply path 24 for supplying fuel to the first heating furnace 12. The temperature of the member to be heated 10 placed at the outlet of the first heating furnace 12 is adjusted to a predetermined constant value. Similarly, the temperature controller 22 also has a flow M provided in the fuel supply path 28 that supplies fuel to the second heating furnace 14.
A control signal is output to the control valve 30 to adjust the temperature of the member to be heated 10 at the outlet of the second heating furnace 14 to a predetermined constant value. The first heating furnace 12 employs a fast-response furnace body structure, such as a direct-fired structure in which the combustion gas combusted by the burner is directly applied to the heated member 10. Conversely, the second heating furnace 14 employs a slow-response furnace body structure, such as one in which fuel is burned in a radiant tube and the member to be heated 10 is heated by heat radiation from the wall surface of the radiant tube. has been done.

斯る形式の熱処理装置においては第2図の実線に示す目
標とするヒートプロファイルに従って被加熱部材10に
熱処理が加えられるのであるが、たとえば被加熱部材1
0の走行速度が急激に高められると実際のヒートプロフ
ァイルは第2図の一点鎖線に示すように変化させられる
ので、温度調節計20および22はそれぞれ第一加熱炉
12および第二加熱炉14の出口における被加熱部材1
0の温度を目標値に近づけるためにそれぞれ第一加熱炉
12および第二加熱炉14における投入熱量を増加させ
る。しかしながら、第一加熱炉12の熱応答は速やかで
あるが第二加熱炉14の熱応答は極めて遅いため、第一
加熱炉12出口における被加熱部材10の温度は迅速に
目標値に一致させられるが、第二加熱炉14出口におけ
る被加熱部材10の温度は第2図の破線に示すように、
しばらくの間その目標温度に対して速やかに一致させら
れ得ない。また、被加熱部材10の走行速度が急激に遅
くなった状態においても、第二加熱炉14出口における
被加熱部材10の温度が目標温度に対して一定期間ずれ
た状態となることは同様であり、このような場合には実
際の被加熱部材10の温度を示す破線が第2図の実線に
対して対称位置に示された状態となる。したがって、斯
る形式の熱処理設備によれば、被加熱部材10の走行速
度が変動すると、一定期間の間、被加熱部材10に対し
て予め定められた条件での熱処理が施され得ない状態と
なってしまうのである。したがって、被加熱部材10が
高速にて走行させられる場合には大量の不良品が発生す
ることになる。
In this type of heat treatment apparatus, heat treatment is applied to the member to be heated 10 according to the target heat profile shown by the solid line in FIG.
When the running speed of the 0 is suddenly increased, the actual heat profile is changed as shown by the dashed line in FIG. Heated member 1 at the outlet
In order to bring the temperature of 0 closer to the target value, the amount of heat input into the first heating furnace 12 and the second heating furnace 14 is increased. However, since the thermal response of the first heating furnace 12 is quick, but the thermal response of the second heating furnace 14 is extremely slow, the temperature of the member to be heated 10 at the exit of the first heating furnace 12 can be quickly brought into agreement with the target value. However, the temperature of the member to be heated 10 at the exit of the second heating furnace 14 is as shown by the broken line in FIG.
It cannot be quickly matched to its target temperature for some time. Furthermore, even when the running speed of the heated member 10 suddenly slows down, the temperature of the heated member 10 at the outlet of the second heating furnace 14 remains deviated from the target temperature for a certain period of time. In such a case, the broken line indicating the actual temperature of the heated member 10 will be shown at a symmetrical position with respect to the solid line in FIG. Therefore, according to this type of heat treatment equipment, when the running speed of the heated member 10 changes, the heated member 10 cannot be subjected to heat treatment under predetermined conditions for a certain period of time. It becomes. Therefore, when the member to be heated 10 is made to run at high speed, a large amount of defective products will be produced.

発明が解決すべき問題点 以上のような不都合に対して、第二加熱炉14内を定温
制御する一方、第二加熱炉14出口における被加熱部材
10の温度に基づいて第一加熱炉12に対する投入熱量
を調節するようにした熱処理炉が考えられる。斯る形式
の熱処理炉によれば、応答の速い第一加熱炉12におけ
る投入熱量が第二加熱炉14出口における被加熱部材1
0の温度に応じて調節されるため、第二加熱炉14出口
における被加熱部材10の温度が遅れなく好適に制御さ
れる特徴があるが、第一加熱炉12および第二加熱炉1
4内のヒートプロファイルが不安定となり、特に熱処理
上重要な領域である第二加熱炉14内において被加熱部
材に対する充分な熱処理を施すことができない場合があ
る欠点があった。
Problems to be Solved by the Invention To address the above-mentioned disadvantages, while controlling the inside of the second heating furnace 14 at a constant temperature, the temperature of the member to be heated 10 at the outlet of the second heating furnace 14 is controlled based on the temperature of the member to be heated 10 at the outlet of the second heating furnace 14. A heat treatment furnace in which the amount of heat input can be adjusted is considered. According to this type of heat treatment furnace, the amount of heat input into the first heating furnace 12 which has a quick response is equal to the amount of heat input to the member to be heated 1 at the outlet of the second heating furnace 14.
0, the temperature of the member to be heated 10 at the exit of the second heating furnace 14 is suitably controlled without delay.
There is a drawback that the heat profile within the heating furnace 4 becomes unstable, and it may not be possible to perform sufficient heat treatment on the member to be heated, particularly within the second heating furnace 14, which is an important area for heat treatment.

i3図は斯る熱処理設備の一例を示すものである。Figure i3 shows an example of such heat treatment equipment.

なお、第1図と共通する部分には同一の符号を付して説
明を省略する。第二加熱炉14にはその内部温度を検出
するための炉内温度計32が設けられており、温度調節
計34はその炉内温度計32から発信される温度信号に
基づいて第二加熱炉14に投入される熱量を調節し、第
二加熱炉14内の温度を予め定められた一定の値に保持
する。一方、温度調節計36は、第二加熱炉14出口に
おける被加熱部材10の温度に基づいて流量調節弁26
を制御し、被加熱部材10の温度が予め定められた一定
の値となるように第一加熱炉12に投入される熱量を調
節する。斯る加熱炉によれば、第4図の実線に示す目標
ヒートプロファイルにて被加熱部材10に熱処理が施さ
れる。たとえば被加熱部材10の走行速度が急激に高く
なると、被加熱部材10の実際のヒートプロファイルは
第4図の一点鎖線に示す状態となるが、第一加熱炉12
における応答が極めて速いので、ここにおける投入熱量
が急激に増加させられる。このため、第4図の破線に示
すヒートプロファイルとなって、第二加熱炉14出口に
おける被加熱部材10の温度が一定に維持される。しか
しながら、第二加熱炉14において被加熱部材10とと
もに持ち込まれる熱量が第一加熱炉12内に投入される
熱量の増加に伴って増加するので、調節計34は第二加
熱炉14内の温度を一定に保つために第二加熱炉14に
対する投入熱量を減少させ、ヒートプロファイルが第5
図の破線に示す状態となる。この結果、調節計36は前
述と同様に第二加熱炉14. tJ1口における被加熱
部材10の温度を保つため、第一加熱炉12に対する供
給熱量をさらに増大させるので第5図の二点鎖線に示す
ように、ヒートプロファイルが徐々にずらされてしまう
。被加熱部材10の走行速度が急激に遅くなった場合は
、第4図および第5図における一点鎖線、破線、二点鎖
線が実線に示す供給ヒートプロファイルを境にして対称
位置となり、上述の場合と同様に、第二加熱炉14出口
における被加熱部材10の温度が維持されるものの、ヒ
ートプロファイルが目標プロファイルに対して大きくず
れ、不安定となってしまうのである。したがって、斯る
形式の熱処理炉によれば、被加熱部材10に対する熱処
理条件が予め定められた範囲からずれてしまうことにな
るのである。
Note that parts common to those in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted. The second heating furnace 14 is provided with an in-furnace thermometer 32 for detecting its internal temperature, and the temperature controller 34 uses the temperature signal transmitted from the in-furnace thermometer 32 to The amount of heat input into the second heating furnace 14 is adjusted to maintain the temperature inside the second heating furnace 14 at a predetermined constant value. On the other hand, the temperature controller 36 controls the flow rate control valve 26 based on the temperature of the member to be heated 10 at the outlet of the second heating furnace 14.
and adjusts the amount of heat input to the first heating furnace 12 so that the temperature of the member to be heated 10 becomes a predetermined constant value. According to such a heating furnace, the member to be heated 10 is subjected to heat treatment using the target heat profile shown by the solid line in FIG. For example, when the running speed of the member to be heated 10 suddenly increases, the actual heat profile of the member to be heated 10 becomes the state shown by the dashed line in FIG.
Since the response in is extremely fast, the amount of heat input here is rapidly increased. Therefore, the temperature of the member to be heated 10 at the outlet of the second heating furnace 14 is maintained constant, with the heat profile shown by the broken line in FIG. However, since the amount of heat brought into the second heating furnace 14 along with the member to be heated 10 increases as the amount of heat input into the first heating furnace 12 increases, the controller 34 controls the temperature inside the second heating furnace 14. In order to keep the heat profile constant, the amount of heat input to the second heating furnace 14 is reduced, and the heat profile becomes
The state shown by the broken line in the figure is reached. As a result, the controller 36 controls the second heating furnace 14. In order to maintain the temperature of the heated member 10 at tJ1, the amount of heat supplied to the first heating furnace 12 is further increased, so that the heat profile is gradually shifted as shown by the two-dot chain line in FIG. When the traveling speed of the member to be heated 10 suddenly slows down, the dashed-dotted lines, dashed lines, and dashed-double-dotted lines in FIGS. 4 and 5 become symmetrical positions with respect to the supply heat profile shown by the solid line, and in the above case Similarly, although the temperature of the member to be heated 10 at the exit of the second heating furnace 14 is maintained, the heat profile deviates greatly from the target profile and becomes unstable. Therefore, with this type of heat treatment furnace, the heat treatment conditions for the member to be heated 10 will deviate from a predetermined range.

発明の構成 本発明は以上の事情を背景として為されたものであり、
その目的とするところは、被加熱部材の走行速度の変動
に拘らず、予め定められた一定の熱処理を安定して施す
ことができる熱処理設備の温度制御方法を提供すること
にある。
Structure of the Invention The present invention has been made against the background of the above circumstances.
The object thereof is to provide a temperature control method for heat treatment equipment that can stably perform a predetermined constant heat treatment regardless of fluctuations in the traveling speed of a member to be heated.

斯る目的を達成するため、本発明の要旨とするところは
、前記第二加熱炉出口の被加熱部材の温度を検出し、そ
の被加熱部材の温度が低くなるほど前記第一加熱炉にお
ける投入熱量を増加させる一方、その第一加熱炉出口の
被加熱部材の温度を検出し、その被加熱部材の温度が高
くなるほど前記第二加熱炉における投入熱量を増加させ
ることにある。
In order to achieve such an object, the gist of the present invention is to detect the temperature of the member to be heated at the outlet of the second heating furnace, and the lower the temperature of the member to be heated, the lower the amount of heat input to the first heating furnace. At the same time, the temperature of the member to be heated at the outlet of the first heating furnace is detected, and as the temperature of the member to be heated becomes higher, the amount of heat input to the second heating furnace is increased.

発明の効果 このようにすれば、被加熱部材の走行速度の変動によっ
てたとえば第二加熱炉出口における被加熱部材の温度が
低くなったとしても、応答が速い第一加熱炉における投
入熱量が増加させられるので、第二加熱炉出口における
被加熱部材の温度が好適に維持される。また、第一加熱
炉に対する投入熱量の増大に伴って第一加熱炉出口にお
ける被加熱部材が温度上昇すると、第二加熱炉に対する
投入熱量が増大させられ、からこの投入熱量の増大に伴
って第二加熱炉出口の被加熱物温度が上昇し始めるとこ
れを一定に保つように第一加熱炉の投入熱量が制御され
るので、定常的には第一加熱炉出口における被加熱部材
の温度、換言すれば第二加熱炉入口における被加熱部材
の塩度と第二加熱炉出口における被加熱部材の温度とが
一定の関係に保たれる。すなわち、加熱炉内、特に第二
加熱炉内におけるヒートプロファイルが予め定められた
一定のものに維持される。したがって、被加熱部材に対
しては、その走行速度の変動に拘らず一定の熱処理を安
定して施すことができるのである。
Effects of the Invention With this method, even if the temperature of the heated member at the outlet of the second heating furnace decreases due to fluctuations in the traveling speed of the heated member, the amount of heat input to the first heating furnace, which has a quick response, can be increased. Therefore, the temperature of the member to be heated at the outlet of the second heating furnace is suitably maintained. Furthermore, when the temperature of the member to be heated at the outlet of the first heating furnace rises due to an increase in the amount of heat input into the first heating furnace, the amount of heat input into the second heating furnace is increased. When the temperature of the material to be heated at the outlet of the second heating furnace starts to rise, the amount of heat input to the first heating furnace is controlled to keep it constant. In other words, the salinity of the member to be heated at the inlet of the second heating furnace and the temperature of the member to be heated at the outlet of the second heating furnace are maintained in a constant relationship. That is, the heat profile within the heating furnace, particularly within the second heating furnace, is maintained at a predetermined constant level. Therefore, a constant heat treatment can be stably applied to the member to be heated regardless of fluctuations in its running speed.

実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings.

第6図において被加熱部材としての鋼等の金属製ストリ
ップ38は、第一加熱炉としての直火式加熱炉40内を
走行させられた後、それに引続いて第二加熱炉としての
焼鈍炉42内を走行させられるようになっている。それ
等直火式加熱炉40および焼鈍炉42は、たとえば連続
メッキ処理に先立ってストリップ38を1000℃程度
に加熱0 することによりその表面の有機物を除去する一方、12
00乃至1300℃程度の一定の焼鈍処理をストリップ
38に連続的に施すものである。上記、ストリップ38
はたとえば分速120m程度の速度をもってそれ等直火
式加熱炉40および焼鈍炉42内を10秒程度で通過さ
せられる。直火式加熱炉40は燃焼ガスが直接炉内に吹
き込まれる形式のものであって、燃料供給路46からバ
ーナ44に供給される燃料の供給量に応じて直火式加熱
炉40の炉内温度およびその炉内を通過させられたスト
リップ38の温度が比較的敏感に反応する速い熱応答性
を備えている。焼鈍炉42はそのバーナ48に供給され
た燃料がラジアントチューブ50内において燃焼させら
れるように構成されており、ラジアントチューブ50壁
面の輻射熱により焼鈍炉42内のストリップ38が加熱
されるようになっている。このため、焼鈍炉42は直火
式加熱炉40とは逆に遅い熱応答性を備えている。
In FIG. 6, a metal strip 38 such as steel as a member to be heated is run in a direct-fired heating furnace 40 as a first heating furnace, and then in an annealing furnace as a second heating furnace. It is designed to be able to run within 42. The direct-fired heating furnace 40 and the annealing furnace 42 heat the strip 38 to about 1000° C. prior to continuous plating treatment, for example, to remove organic substances on the surface of the strip 38, and
The strip 38 is continuously subjected to a constant annealing treatment at a temperature of about 00 to 1300°C. Above, strip 38
can be passed through the direct-fired heating furnace 40 and annealing furnace 42 in about 10 seconds at a speed of about 120 m/min, for example. The direct-fired heating furnace 40 is of a type in which combustion gas is directly blown into the furnace. It has a fast thermal response in which the temperature and the temperature of the strip 38 passed through the oven are relatively sensitive. The annealing furnace 42 is configured such that the fuel supplied to the burner 48 is combusted within the radiant tube 50, and the strip 38 within the annealing furnace 42 is heated by the radiant heat from the wall surface of the radiant tube 50. There is. Therefore, the annealing furnace 42 has a slow thermal response, contrary to the direct-fired heating furnace 40.

なお、焼鈍炉42内は水素ガスおよび窒素ガス等によっ
て還元性雰囲気とされており、ストリップ1 38の表面酸化が防止されている。
Note that the inside of the annealing furnace 42 is made into a reducing atmosphere with hydrogen gas, nitrogen gas, etc., and surface oxidation of the strip 138 is prevented.

直火式加熱炉40の出口にはストリップ38の温度を検
出するための第一ストリップ温度計52が設けられてお
り、温度調節言154は第一ストリップ温度計52から
の温度信号に基づいてバーナ48に燃料を供給する燃料
供給路56に設けられた流量調節弁58を制御し、直火
式加熱炉40の出口におけるストリップ38の温度が上
昇するほど焼鈍炉42に対する投入熱量を増加させる一
方、逆にストリップ38の温度が低下するほど焼鈍炉4
2に対する投入熱量を減少させる。また、焼鈍炉42の
出口にはストリップ38の温度を検出する第二ストリッ
プ温度計60が設けられており、温度調節計62は、第
二ストリップ温度計60からの温度信号に基づき燃料供
給路46に設けられた流量調節弁64に信号反転器66
を介して制御信号を出力し、焼鈍炉42出口におけるス
トリップ38の温度が一定となるようにバーナ44に対
する燃料供給量を制御する。すなわち、焼鈍炉42出口
におけるストリップ38の温度が高すぎる2 場合には直火式加熱炉40に対する投入熱量を減少させ
、逆にストリップ38の温度が低すぎる場合には投入熱
量を増加させるのである。
A first strip thermometer 52 for detecting the temperature of the strip 38 is provided at the outlet of the direct-fired heating furnace 40, and a temperature control word 154 controls the burner temperature based on the temperature signal from the first strip thermometer 52. 48 is controlled, and the amount of heat input to the annealing furnace 42 is increased as the temperature of the strip 38 at the outlet of the direct-fired heating furnace 40 increases, Conversely, the lower the temperature of the strip 38, the lower the temperature of the annealing furnace 4.
Reduce the input heat amount for 2. Further, a second strip thermometer 60 is provided at the outlet of the annealing furnace 42 to detect the temperature of the strip 38, and the temperature controller 62 controls the fuel supply path 46 based on the temperature signal from the second strip thermometer 60. A signal inverter 66 is connected to the flow control valve 64 provided in the
A control signal is outputted through the annealing furnace 42 to control the amount of fuel supplied to the burner 44 so that the temperature of the strip 38 at the outlet of the annealing furnace 42 is constant. That is, if the temperature of the strip 38 at the outlet of the annealing furnace 42 is too high, the amount of heat input to the direct-fired heating furnace 40 is decreased, and conversely, if the temperature of the strip 38 is too low, the amount of heat input is increased. .

したがって、たとえば、ストリップ38の走行速度が急
激に減少させられると、第7図に示すように、目標ヒー
トプロファイル(実線)に対して一点鎖線に示すヒート
プロファイルとなる。温度調節耐62は、焼鈍炉42出
口におけるストリップ38の温度が下がるように直火式
加熱炉40に対する投入熱量を減少させる。直火式加熱
炉40の熱応答性は高いので速やかに直火式加熱炉40
内におけるストリップ38に対する加熱量が減少させら
れ、焼鈍炉42出口におけるストリップ38の温度が目
標ヒートプロファイルの温度と一致させられる。第7図
の破線はこの状態を示す。以上の状態において、直火式
加熱炉40出口におけるストリップ38の温度は未だ目
標ヒートプロファイルの温度よりも高いので、温度調節
計54は焼鈍炉42に対する投入熱量を増加させる。こ
のため、焼鈍炉42の入口と出口とにおけるストリ3 ツブ38の温度差は、目標ヒートプロファイルに近づく
のであるが、焼鈍炉42出日におけるストリップ38の
温度が目標値よりも高められるので、温度調節計62は
直火式加熱炉40に対する投入熱量を減少させる。この
結果、第7図の破線に示すヒートプロファイルは実線に
示すヒートプロファイルに近づけられて、それに一致さ
せられる。
Therefore, for example, if the running speed of the strip 38 is suddenly reduced, the target heat profile (solid line) becomes a heat profile shown by a dashed line, as shown in FIG. The temperature control resistor 62 reduces the amount of heat input to the direct-fired heating furnace 40 so that the temperature of the strip 38 at the exit of the annealing furnace 42 is lowered. Since the direct-fired heating furnace 40 has high thermal response, the direct-fired heating furnace 40 can be quickly replaced.
The amount of heat applied to the strip 38 in the annealing furnace 42 is reduced so that the temperature of the strip 38 at the exit of the annealing furnace 42 matches the temperature of the target heat profile. The broken line in FIG. 7 indicates this state. In the above state, the temperature of the strip 38 at the outlet of the direct-fired heating furnace 40 is still higher than the target heat profile temperature, so the temperature controller 54 increases the amount of heat input to the annealing furnace 42. Therefore, the temperature difference between the strip 3 and the tube 38 at the entrance and exit of the annealing furnace 42 approaches the target heat profile. The controller 62 reduces the amount of heat input to the direct-fired heating furnace 40 . As a result, the heat profile shown by the broken line in FIG. 7 is brought closer to and matched with the heat profile shown by the solid line.

なお、ストリップ38の走行速度が急速に増加させられ
た場合は、第7図の一点鎖線および破線が実線に示す目
標ヒートプロファイルを境いにして対称位置となり、同
様の作動に従って目標プロファイルに一致させられる。
In addition, when the running speed of the strip 38 is rapidly increased, the dashed-dotted line and the broken line in FIG. It will be done.

このように、本実施例によれば、ストリップ38の走行
速度変動に拘らず焼鈍炉42出口におけるストリップ3
8の温度が速やかに目標値に一致させられるとともに、
焼鈍炉42内および直火式加熱炉40内のヒートプロフ
ァイルが目標ヒートプロファイルに一致させられるので
、ストリップ38に対して予め定められた一定条件の熱
処理がばらつきなく安定に施されることができるのであ
4 る。
As described above, according to this embodiment, the strip 3 at the outlet of the annealing furnace 42 is
8 temperature is quickly brought into agreement with the target value, and
Since the heat profiles in the annealing furnace 42 and the direct-fired heating furnace 40 are made to match the target heat profile, the strip 38 can be stably subjected to heat treatment under predetermined conditions without variation. A4 Ru.

上記第6図に示す実施例は本発明を適用するための基本
的な構成のみを示しているが、第8図に示すように他の
制御ループを付加しても差支えないのである。すなわち
、温度調節計68はカスケード制御用のものであって、
温度調節計54から供給される目標信号と焼鈍炉42に
設けられた炉内温度計70からの温度信号との差が零と
なるように調節信号を流量調節計72に供給する。流量
調節計72は、オリフィス74から供給される実際の燃
料流量を表す信号と温度調節計68からの信号との差が
零となるよう流量調節弁58を制御する。なお、69は
第1ストリツプ温度計52から温度調節計54へ供給さ
れる信号を反転させるための信号反転器であるオリフィ
ス74.流量調節計72.流量調節弁58が焼鈍炉42
に対する燃料流量を安定に制御するためのフィードバッ
ク制御ループを構成しており、炉内温度計70.温度調
節計68.流量調節計72.流量調節弁58が焼鈍炉4
2の炉内温度を安定に制御するための5 フィードバック制御ループを構成しているのである。直
火式加熱炉40においても同様であり、温度調節計76
は直火式加熱炉40に設けられた炉内温度計78からの
温度信号と温度調節計62からの目標温度信号との差が
零となるように流量調節計80に流量信号を供給する。
Although the embodiment shown in FIG. 6 shows only the basic configuration for applying the present invention, other control loops may be added as shown in FIG. 8. That is, the temperature controller 68 is for cascade control,
An adjustment signal is supplied to the flow rate controller 72 so that the difference between the target signal supplied from the temperature controller 54 and the temperature signal from the in-furnace thermometer 70 provided in the annealing furnace 42 becomes zero. Flow rate controller 72 controls flow rate regulating valve 58 so that the difference between the signal representing the actual fuel flow rate supplied from orifice 74 and the signal from temperature controller 68 is zero. The orifice 74.69 is a signal inverter for inverting the signal supplied from the first strip thermometer 52 to the temperature controller 54. Flow rate controller 72. The flow rate control valve 58 is connected to the annealing furnace 42
It constitutes a feedback control loop to stably control the fuel flow rate to the furnace temperature gauge 70. Temperature controller 68. Flow rate controller 72. The flow rate control valve 58 is connected to the annealing furnace 4
This constitutes a feedback control loop for stably controlling the temperature inside the furnace. The same applies to the direct-fired heating furnace 40, and the temperature controller 76
supplies a flow rate signal to the flow rate controller 80 so that the difference between the temperature signal from the in-furnace thermometer 78 provided in the direct-fired heating furnace 40 and the target temperature signal from the temperature controller 62 becomes zero.

流量調節計80はその流量信号とオリフィス82から供
給される実際の流量との差が零となるように流量調節弁
64を操作するのである。
The flow rate controller 80 operates the flow rate control valve 64 so that the difference between the flow rate signal and the actual flow rate supplied from the orifice 82 becomes zero.

本実施例によれば、前述の実施例の効果に加えて燃料供
給路46.56における燃料流量と、直火式加熱炉40
.焼鈍炉42における炉内温度が外乱に対して安定とな
り、熱処理装置全体が一層安定に温度制御される利点が
ある。なお、第6図および第8図の直火式加熱炉40お
よび焼鈍炉42は制御系の構成を説明するために用いた
略図であって、それぞれの炉内は一般に複数のゾーンに
分割されており、バーナ44.またはバーナ48および
ラジアントチューブ50がそれぞれのゾーンに各々設け
られている。
According to this embodiment, in addition to the effects of the above-described embodiments, the fuel flow rate in the fuel supply path 46, 56 and the direct-fired heating furnace 40
.. There is an advantage that the temperature inside the annealing furnace 42 becomes stable against disturbances, and the temperature of the entire heat treatment apparatus can be controlled more stably. The direct-fired heating furnace 40 and annealing furnace 42 in FIGS. 6 and 8 are schematic diagrams used to explain the configuration of the control system, and the inside of each furnace is generally divided into a plurality of zones. Burner 44. Alternatively, a burner 48 and a radiant tube 50 are provided in each zone.

6 前述の効果は、以下に説明するように、本発明者等によ
って行われたシュミレーションによっても確かめられて
いる。
6. The above-mentioned effects have also been confirmed through simulations conducted by the present inventors, as described below.

第9図乃至第11図は前記第1図に示す熱処理設備に関
するものであって、第9図はその設備の略図、第10図
は制御系を示すブロック線図である。ここで、第一加熱
炉12および第二加熱炉14は一次遅れ系のプロセスと
仮定し、その伝達関数C,(S)およびG2(S)は次
式(11,(21に示す如くとする。
9 to 11 relate to the heat treatment equipment shown in FIG. 1, FIG. 9 is a schematic diagram of the equipment, and FIG. 10 is a block diagram showing the control system. Here, it is assumed that the first heating furnace 12 and the second heating furnace 14 are first-order lag system processes, and the transfer functions C, (S) and G2 (S) are as shown in the following equations (11 and (21). .

ま ただし、T1<T2 また温度調節計20および22の伝達関数PiD(S)
は(3)式に示す如<PI軸動作みとした。温度調節計
20および22の設定値に1およびに27 をたとえばOから0.5 Yへ、および0.3Yから0
゜8Yヘステツプ的に変化させると、ブロック線図にお
けるY3およびY7、換言すれば第一加熱炉12の温度
および第二加熱炉14出日の温度は第11図に示す如く
変化する。
Also, the transfer function PiD(S) of the temperature controllers 20 and 22
As shown in equation (3), <PI axis movement was assumed. Set the temperature controllers 20 and 22 to 1 and 27, for example from O to 0.5 Y, and from 0.3 Y to 0.
When the temperature is changed stepwise to 8Y, Y3 and Y7 in the block diagram, in other words, the temperature of the first heating furnace 12 and the temperature at the beginning of the second heating furnace 14 change as shown in FIG.

■ また、第12図乃至第14図は前記第3図の熱処理設備
に関するものであって、第12図はその設備を示す略図
、第13図は制御ブロック線図である。ここにおいて、
第一加熱炉12および第二加熱炉14の伝達関数Gt 
(S)、G2 (S)。
12 to 14 relate to the heat treatment equipment shown in FIG. 3, FIG. 12 is a schematic diagram showing the equipment, and FIG. 13 is a control block diagram. put it here,
Transfer function Gt of the first heating furnace 12 and the second heating furnace 14
(S), G2 (S).

および温度調節計36の伝達関数PiD(S)は前記(
11,(2L (31とした。温度調節計36の設定値
に3を、たとえば0.3Yから0.8 Yヘステップ的
に変化させると、ブロック線図におけるY3およびY7
、換言ずれば第一加熱炉12および第二加熱炉14の出
口温度は第14図に示す如く変化する。
And the transfer function PiD(S) of the temperature controller 36 is the above (
11, (2L (31).If the setting value of the temperature controller 36 is changed to 3 in steps from 0.3Y to 0.8Y, for example, Y3 and Y7 in the block diagram
In other words, the outlet temperatures of the first heating furnace 12 and the second heating furnace 14 change as shown in FIG.

8 さらに、第15図乃至第17図は前記第7図の熱処理設
備に関するものであって、第15図はその設備を説明す
る略図、第16図はその制御プロ・ツク線図である。こ
こにおいて、直火式加熱炉40および焼鈍炉42の伝達
関数C,(S)およびG2(S)は、前記(11,(2
1式のものとし、また温度調節計54および62の伝達
関数PID(S)は前記(3)式のものとした。温度調
節計54および62の設定値に4およびに5をたとえば
0がら0゜5Yへ、および0.3 Yから0.8Yヘス
テツプ的に変化させれば制御ブロック線図のY3および
Y6、換言すれば直火式加熱炉40出口の温度および焼
鈍炉出口のストリップ温度は第17図に示す如く変化す
る。
8. Furthermore, FIGS. 15 to 17 relate to the heat treatment equipment shown in FIG. 7. FIG. 15 is a schematic diagram for explaining the equipment, and FIG. 16 is a control diagram thereof. Here, the transfer functions C, (S) and G2 (S) of the direct-fired heating furnace 40 and the annealing furnace 42 are (11, (2
1 type, and the transfer functions PID(S) of the temperature controllers 54 and 62 were set to the above-mentioned formula (3). If the set values of temperature controllers 54 and 62 are changed stepwise from 4 and 5 from 0 to 0.5Y, and from 0.3Y to 0.8Y, Y3 and Y6 in the control block diagram, in other words, are changed. For example, the temperature at the outlet of the direct-fired heating furnace 40 and the strip temperature at the outlet of the annealing furnace change as shown in FIG.

すなわち、第11図、第14TI!Jおよび第17図の
シュミレーション結果に示すように、前記第1図に示す
熱処理設備の第二加熱炉I4出口における被加熱部+4
10の温度は、応答の遅れが大きく、また第3図に示す
熱処理設備における第一加熱炉12および第二加熱炉1
4出口における被加熱部9 材10の温度は不安定であり、また第一加熱炉12出口
における被加熱部材10の温度が大きく上昇して所定の
ヒートプロファイルが得られない。
That is, Fig. 11, 14th TI! J and the simulation results in FIG. 17, the heated part +4 at the exit of the second heating furnace I4 of the heat treatment equipment shown in FIG.
At a temperature of 10, there is a large response delay, and the temperature of the first heating furnace 12 and the second heating furnace 1 in the heat treatment equipment shown in FIG.
The temperature of the member 10 to be heated at the fourth outlet is unstable, and the temperature of the member 10 to be heated at the outlet of the first heating furnace 12 increases significantly, making it impossible to obtain a predetermined heat profile.

これに対して、第6図に示す熱処理設備における焼鈍炉
42出口のストリップ3Bの温度の安定性(応答性)は
極めて良く、また直火式加熱炉40出口におけるストリ
ップ38の温度と焼鈍炉42出口におけるストリップ3
8の温度との差も適切に得られて特に、焼鈍炉42内に
おいて所定のヒートプロファイルが安定して得られるこ
とがわかる。
On the other hand, the stability (responsiveness) of the temperature of the strip 3B at the outlet of the annealing furnace 42 in the heat treatment equipment shown in FIG. Strip 3 at the exit
It can be seen that the difference from the temperature of No. 8 can be appropriately obtained, and in particular, a predetermined heat profile can be stably obtained in the annealing furnace 42.

以上、本発明の一実施例を説明したが、本発明はその他
の態様においても適用される。
Although one embodiment of the present invention has been described above, the present invention is also applicable to other aspects.

たとえば、前述の実施例において直火式加熱炉40およ
び焼鈍炉42にはバーナ44,48が設けられていたが
、電気ヒータ等地の加熱手段が設けられていても良いし
、また直火式加熱炉40および焼鈍炉42の代わりに他
の目的の加熱炉が設けられていても良いのである。要す
るに、応答の速い加熱炉と応答の遅い加熱炉とを通して
被加熱0 部材が走行させられる熱処理のための温度制御系であれ
ば本発明が適用され得るのである。
For example, in the above-described embodiment, the direct-fired heating furnace 40 and the annealing furnace 42 were provided with burners 44 and 48, but they may also be provided with ground heating means such as an electric heater, or Instead of the heating furnace 40 and the annealing furnace 42, heating furnaces for other purposes may be provided. In short, the present invention can be applied to any temperature control system for heat treatment in which a member to be heated is run through a heating furnace with a fast response and a heating furnace with a slow response.

また、前述の第6図および第8図において、温度調節計
54.62.68.76や流量調節計72.80の代わ
りにプロセス制御用コンピュータを設け、このコンピュ
ータが予め記憶された制御プログラムを実行することに
より、前述の実施例と同様の温度制御または流量制御が
行われるようにしても差支えない。
In addition, in FIGS. 6 and 8 described above, a process control computer is provided in place of the temperature controller 54, 62, 68, 76 and the flow rate controller 72, 80, and this computer executes a pre-stored control program. By executing this, the same temperature control or flow rate control as in the above-described embodiment may be performed.

また、第6図の信号反転器66は温度調節計54と62
を共通の型式に統一するためのものであって、第ニスト
リップ温度計60と温度調節計62との間に設けられて
も良く、あるいは温度調節計54と62を相互に逆動作
のものとすれば除去されても差支えない。第8図の信号
反転器69も同様である。
Further, the signal inverter 66 in FIG.
The temperature controllers 54 and 62 may be provided between the second strip thermometer 60 and the temperature controller 62, or the temperature controllers 54 and 62 may be configured to operate in opposite directions. If so, there is no problem with it being removed. The same applies to the signal inverter 69 in FIG.

なお、上述したのはあくまでも本発明の一実施例であり
、本発明はその精神を逸脱しない範囲において種々の変
更を加えられ得るものである。
The above-mentioned embodiment is merely one embodiment of the present invention, and the present invention can be modified in various ways without departing from its spirit.

【図面の簡単な説明】[Brief explanation of the drawing]

1 第1図および第3図は従来の熱処理設備を示すモデル図
である。第2図、第4図および第5図は上記従来の加熱
設備の温度制御作動を説明するヒートプロファイル図で
ある。第6図および第8図は本発明が適用された熱処理
設備の一例をそれぞれ示すモデル図である。第7図は第
6図の実施例の作動を説明するヒートプロファイル図で
ある。 第9図、第12図、第15図は前記第1図、第3図、第
6図の熱処理設備を表す略図であり、第10図、第13
図、第16図はそれぞれ第1図、第3図、第6図の熱処
理設備の制御系を示すブロック線図である。第11図、
第14図、および第17図は第10図、第13図、およ
び第16図の制御系を示すブロック線図に基づいたシュ
ミレーションの結果をそれぞれ示す図である。 38ニストリツプ(被加熱部材) 40:直火式加熱炉(第一加熱炉) 42:焼鈍炉(第二加熱炉) 2 第1図 第3図 第2図 第4図 第5図 第7図 第6図 −161− 令間
1 FIGS. 1 and 3 are model diagrams showing conventional heat treatment equipment. FIG. 2, FIG. 4, and FIG. 5 are heat profile diagrams illustrating the temperature control operation of the above-mentioned conventional heating equipment. FIG. 6 and FIG. 8 are model diagrams each showing an example of heat treatment equipment to which the present invention is applied. FIG. 7 is a heat profile diagram illustrating the operation of the embodiment shown in FIG. FIGS. 9, 12, and 15 are schematic diagrams showing the heat treatment equipment shown in FIGS. 1, 3, and 6, and FIGS.
16 are block diagrams showing control systems of the heat treatment equipment shown in FIGS. 1, 3, and 6, respectively. Figure 11,
FIGS. 14 and 17 are diagrams showing the results of simulations based on the block diagrams showing the control systems in FIGS. 10, 13, and 16, respectively. 38 Ni strip (heated member) 40: Direct-fired heating furnace (first heating furnace) 42: Annealing furnace (second heating furnace) 2 Figure 1 Figure 3 Figure 2 Figure 4 Figure 5 Figure 7 Figure 6-161- Reima

Claims (1)

【特許請求の範囲】 応答の速い第一加熱炉内を走行させた後それに引続いて
応答の遅い第二加熱炉を走行させることにより被加熱部
材に熱処理を施す形式の熱処理設備の温度制御方法であ
って、 前記第二加熱炉出口の被加熱部材の温度を検出し、該被
加熱部材の温度が低くなる程前記第−加熱炉における投
入熱量を増加させる一方、該第−加熱炉出口の被加熱部
材の温度を検出し、該被加熱部材の温度が高くなる程前
記第二加熱炉における投入熱量を増加させることを特徴
とする熱処理設備の温度制御方法。
[Claims] A temperature control method for heat treatment equipment in which a member to be heated is subjected to heat treatment by running a first heating furnace with a fast response and then running a second heating furnace with a slow response. The temperature of the member to be heated at the outlet of the second heating furnace is detected, and as the temperature of the member to be heated becomes lower, the amount of heat input to the first heating furnace is increased. A temperature control method for heat treatment equipment, comprising: detecting the temperature of a member to be heated; and increasing the amount of heat input into the second heating furnace as the temperature of the member to be heated increases.
JP10712584A 1984-05-26 1984-05-26 Method for controlling temperature of heat treating installation Pending JPS60251228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10712584A JPS60251228A (en) 1984-05-26 1984-05-26 Method for controlling temperature of heat treating installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10712584A JPS60251228A (en) 1984-05-26 1984-05-26 Method for controlling temperature of heat treating installation

Publications (1)

Publication Number Publication Date
JPS60251228A true JPS60251228A (en) 1985-12-11

Family

ID=14451126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10712584A Pending JPS60251228A (en) 1984-05-26 1984-05-26 Method for controlling temperature of heat treating installation

Country Status (1)

Country Link
JP (1) JPS60251228A (en)

Similar Documents

Publication Publication Date Title
JP5797764B2 (en) Method and apparatus for controlling furnace pressure in a continuous annealing furnace
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
US4416623A (en) Muffle furnace
US4577278A (en) Method and system for controlling a selected zone in a fuel fired furnace
JPS60251228A (en) Method for controlling temperature of heat treating installation
EP4023987A1 (en) Method for improving furnace temperature uniformity
US4174097A (en) Furnace for bright annealing of copper
JP2008303407A (en) Method for controlling temperature of continuous heat treatment furnace for steel strip
JP4223238B2 (en) Steel strip heating temperature control method
JP6631824B1 (en) Heating method of steel sheet and continuous annealing equipment in continuous annealing
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
JPH0459371B2 (en)
JP3046467B2 (en) Heating furnace heating control method
Voicu et al. Digital Control Systems for Thermal Regimes in Industrial Furnaces.
JPS61113728A (en) Strip temperature controlling method of continuous annealing furnace
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
SU885158A1 (en) Method of stabilizing temperature condition of glass smelting furnace
SU556481A1 (en) Device for automatic control of the pyrolysis process in a tube furnace
SU1738763A1 (en) Method of control of heating conditions of regenerative glass-making furnace
SU897836A1 (en) Method of automatic control of coke burn out in tubular pyrolysis furnace
SU1738762A1 (en) Method of control of heating conditions of regenerative glass-making furnace
JPH04308044A (en) Method for controlling combustion in heating furnace
SU693101A1 (en) Method of automatic control of multi-zone continuous furnace heating mode
SU842088A2 (en) Method of automatic control of captax production process
JPS6070127A (en) Method for controlling temperature of strip with continuous annealing furnace