JPH01150716A - Method for controlling combustion of side combustion multi-zone type heating furnace - Google Patents

Method for controlling combustion of side combustion multi-zone type heating furnace

Info

Publication number
JPH01150716A
JPH01150716A JP62308996A JP30899687A JPH01150716A JP H01150716 A JPH01150716 A JP H01150716A JP 62308996 A JP62308996 A JP 62308996A JP 30899687 A JP30899687 A JP 30899687A JP H01150716 A JPH01150716 A JP H01150716A
Authority
JP
Japan
Prior art keywords
zone
combustion
furnace
burners
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62308996A
Other languages
Japanese (ja)
Other versions
JPH0584411B2 (en
Inventor
Yoshihiro Murase
村瀬 悦裕
Masato Mazawa
正人 真沢
Seiji Narasaki
楢崎 誠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62308996A priority Critical patent/JPH01150716A/en
Publication of JPH01150716A publication Critical patent/JPH01150716A/en
Publication of JPH0584411B2 publication Critical patent/JPH0584411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/06Sampling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To enable a stable uniform heating to be performed when a high turn down operation is carried out by a method wherein some detected values of a plurality of thermometers installed within each of the zones are weighted to obtain their means value, and an amount of fuel and air in respect to all the burners in the zones are totally controlled with a zone representative temperature calculated in reference to a corrected value corresponding to an ignition distributing pattern. CONSTITUTION:A representative furnace temperature for use in controlling a cyclic combustion is accurately determined, controlled in response to this representative furnace temperature and a cyclic uniform heating when a high turn down operation is carried out stably. That is, in a combustion control system in which a plurality of burners within each of the zones of a side combustion multi-zone type heating furnace are ignited in sequence in a periodic manner and diminished to performed a controlling of combustion for carrying out a high turn down control, values of a plurality of thermometers installed within each of the zones are weighted by an arrangement of the thermometers so as to obtain their mean values and then an amount of fuel-air in respect to an zone representative temperature Tpv expressed by an equation (I) calculated by the corrected values corresponding to a fire diminishing and ignition distribution pattern of the burners in the zone.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、サイド焚多帯式加熱炉における。広範囲の燃
焼負荷変化が可能な燃焼制御、すなわち高ターンダウン
燃焼制御、を行うために、ゾーン内に設置した複数個の
バーナを順次周期的に点火。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a side-fired multi-zone heating furnace. Multiple burners installed in a zone are ignited in sequence and periodically in order to perform combustion control that allows for wide-range combustion load changes, that is, high turndown combustion control.

消火させる燃焼制御方式に関するものである。This relates to a combustion control method for extinguishing a fire.

〔従来の技術〕[Conventional technology]

従来、サイド焚多帯式加熱炉の燃焼制御は、炉内に設置
した1ケ所あるいは複数ケ所の熱電対を用いて測定した
炉内の温度と目標温度との差に基づいて、炉温調節器に
より燃料および空気の調節弁を操作して炉内温度を目標
温度に合致させる制御を行なっており、一般に、加熱炉
各ゾーンには。
Conventionally, combustion control for side-fired multi-zone heating furnaces is based on the difference between the temperature inside the furnace and the target temperature, which is measured using thermocouples installed at one or more locations inside the furnace. The fuel and air control valves are operated to control the temperature inside the furnace to match the target temperature, and generally each zone of the heating furnace has a

複数個のバーナが設置され、各ゾーンのバーナ燃焼に使
用される燃料および空気量は一括制御されている。
A plurality of burners are installed, and the amount of fuel and air used for burner combustion in each zone is collectively controlled.

各ゾーン′の燃料および空気量の範囲は、炉内鋼材の焼
は不足をさけるために、最大負荷時に必要な流量を最大
流量としている。その時、流量計や調節弁のハードウェ
ア上の制約により、最低流量がおのずから制約されると
共に、ゾーン内の炉幅方向均一加熱のために、炉幅方向
中央部まで熱が届くような一定火炎長を確保するために
必要な最低流量もあり、最小流量を任意に選定すること
ができない。
The range of the amount of fuel and air in each zone is such that the maximum flow rate is the flow rate required at the maximum load to avoid insufficient burning of the steel in the furnace. At that time, the minimum flow rate is naturally restricted due to hardware constraints of flowmeters and control valves, and in order to uniformly heat the zone in the width direction of the furnace, the flame length must be constant so that the heat reaches the center of the furnace width direction. There is also a minimum flow rate required to ensure the minimum flow rate, and the minimum flow rate cannot be arbitrarily selected.

操炉上では、トラブル等により発生する保定、または熱
片装入による低負荷燃焼など、低負荷燃焼操業も必要で
あり、高ターンダウン燃焼制御が操炉上必須となってい
る。
During furnace operation, low-load combustion operations such as holding down due to trouble or low-load combustion by charging hot pieces are also required, and high turndown combustion control is essential for furnace operation.

現状の技術では、流量制御系で決定される流量比より必
要火炎長確保のための流量比の方が小さく、必要火炎長
確保のための最低流量の制約によす、高ターンダウン比
、すなわち最大・最小流量比が決定される。
With current technology, the flow rate ratio for ensuring the required flame length is smaller than the flow rate ratio determined by the flow rate control system, and a high turndown ratio, i.e., based on the minimum flow rate constraint for ensuring the required flame length, is lower than the flow rate ratio determined by the flow control system. The maximum/minimum flow ratio is determined.

上述した様な低負荷燃焼を行う場合、この必要火炎長確
保のための最低流量制約によって決定されるターンダウ
ン比以上のターンダウン比を確保するために、ゾーン内
のバーナの一部を消火し、間引き燃焼を行ない、点火し
ているバーナの燃焼負荷を増加し、炉幅方向中央部まで
熱を届かせる方法が考えられている(特開昭60−50
113号)。
When performing low-load combustion as described above, part of the burner in the zone is extinguished in order to ensure a turndown ratio that is higher than the turndown ratio determined by the minimum flow rate constraint to ensure the required flame length. , a method has been considered in which thinning combustion is performed to increase the combustion load on the lit burner and to allow heat to reach the center in the width direction of the furnace (Japanese Patent Application Laid-Open No. 60-50).
No. 113).

この場合、炉長方向(鋼材移動方向)に長時間、鋼材が
止まった場合、点火バーナに近い位置と消火バーナに近
い位置の間で温度差が生じ、炉長方向の均一加熱がさま
たげられるため、消火バーナ位置を順次周期的に変更す
る方法(以下サイクリック燃焼とする)が提案されてい
る(特願昭61−164350号)。
In this case, if the steel remains in the furnace length direction (steel material movement direction) for a long time, a temperature difference will occur between the position near the ignition burner and the position near the extinguishing burner, which will prevent uniform heating in the furnace length direction. A method of sequentially and periodically changing the extinguishing burner position (hereinafter referred to as cyclic combustion) has been proposed (Japanese Patent Application No. 61-164350).

たとえば、第1図、第2図に示すようなサイド焚多帯式
加熱fの場合、第3図、第4図に示すようなゾーンの天
井あるいは炉床の1ケ所に温度計を設置し、第5図に示
すような制御システムにより燃焼制御が行なわれる。温
度計9により得られた炉温と目標温度の差を用いて、炉
温調節器14により炉温か許容範囲に入っているか判断
し、許容範囲を越えていたら燃料流量を減少し、許容範
囲に到達していない場合は、燃料流量を増加するという
方法で燃料流量調節器15により燃料流量調節弁10を
作動させている。また、空気流量も燃料流量と同様に燃
料と空気の比率が一定になる様に空気流量調節器16に
より空気流量調節弁17を作動させている。
For example, in the case of side-firing multi-zone heating f as shown in Figures 1 and 2, a thermometer is installed at one location on the ceiling or hearth of the zone as shown in Figures 3 and 4. Combustion control is performed by a control system as shown in FIG. Using the difference between the furnace temperature obtained by the thermometer 9 and the target temperature, the furnace temperature regulator 14 determines whether the furnace temperature is within the permissible range. If it is outside the permissible range, the fuel flow rate is reduced to bring the temperature within the permissible range. If the fuel flow rate has not been reached, the fuel flow rate control valve 10 is operated by the fuel flow rate regulator 15 to increase the fuel flow rate. Further, like the fuel flow rate, the air flow rate control valve 17 is operated by the air flow rate regulator 16 so that the ratio of fuel and air is constant.

一方、低負荷燃焼(低T/D)時の炉幅方向均一加熱を
達成するためには、第6図に示すようにゾーン当りのT
/D比(燃焼負荷率)の低下とともに燃焼バーナ数を減
少し1点火バーナ本数を少なくし、第7図に示すように
バーナ1本当りのT/D比(燃焼負荷率)を増やす必要
があり、また、炉長方向に生じる点火バーナと消火バー
ナ付近の温度差をなくシ、炉長方向の均一加熱を達成す
るために第8図に示す様にバーナ点火位置をある所定時
間毎に切換える操作を、遮断弁作動制御装置18により
燃料遮断弁11〜13.空気遮断弁19〜21を作動さ
せて行う、すなわち、ゾーン当りのT/D比に対応して
第8図のモード(全バーナ燃焼、1列間引又は2列間引
)を選択し、■列間用モード又は2列間用モードのとき
には。
On the other hand, in order to achieve uniform heating in the width direction of the furnace during low load combustion (low T/D), it is necessary to increase the T per zone as shown in Figure 6.
As the /D ratio (combustion load factor) decreases, it is necessary to reduce the number of combustion burners, reduce the number of ignition burners per burner, and increase the T/D ratio (combustion load factor) per burner, as shown in Figure 7. In addition, in order to eliminate the temperature difference between the ignition burner and the extinguishing burner that occurs in the furnace length direction, and to achieve uniform heating in the furnace length direction, the burner ignition position is switched at certain predetermined intervals as shown in Figure 8. The fuel cutoff valves 11 to 13. are operated by the cutoff valve operation control device 18. This is done by operating the air cutoff valves 19 to 21, that is, selecting the mode (all burner combustion, 1 row thinning or 2 row thinning) shown in FIG. 8 corresponding to the T/D ratio per zone, and When in between-column mode or between-two-column mode.

第8図に示すパターン11t 21y 31* 11+
  ・・・又は、パターン12*22*3□、12.・
・・と点火、消火バーナを切換える。
Pattern shown in FIG. 8 11t 21y 31* 11+
...or pattern 12*22*3□, 12.・
...and switches the ignition and extinguishing burner.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかしながら、上述のバーナの燃焼制御法においては、
許容偏差以内であるがゾーン内バーナの点火、消火によ
りゾーン内の温度分布に急激な変化が経時的に発生する
ため、従来のような上述した1ケ所あるいは、炉幅方向
の数ケ所の温度計によるゾーン内の炉温制御(例えば特
開昭60−11018号公報)を行うと、温度計の検出
値が第9図に示すようにハンチングが起り、正常な制御
が不可能になったり、バーナの点火、消火を実施しない
場合と異なる炉温となり、制御用のゾーンの代表炉温の
決定が困難になる。
However, in the burner combustion control method described above,
Although the deviation is within the tolerance, rapid changes in the temperature distribution within the zone occur over time due to the ignition and extinguishing of the burners in the zone, so it is necessary to use the conventional thermometer at one location or several locations along the width of the furnace. When the furnace temperature in the zone is controlled by (for example, Japanese Patent Application Laid-Open No. 11018/1982), hunting occurs in the detected value of the thermometer as shown in Figure 9, making normal control impossible or causing burner failure. The furnace temperature will be different than when ignition and extinguishing are not performed, making it difficult to determine the representative furnace temperature of the control zone.

したがって、本発明の目的は、代表炉温を合理的に決定
してサイドバーナ焚加熱炉の高ターンダウン操業時のサ
イクリック均一加熱を安定して行うことを目的とする。
Therefore, an object of the present invention is to rationally determine the representative furnace temperature and stably perform cyclic uniform heating during high turndown operation of a side burner-fired heating furnace.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明においては、サイクリ
ック燃焼における制御用の代表炉温を正確に決定し該代
表炉温に基づいて制御して高ターンダウン操業時のサイ
クリック均一加熱を安定に行なう、すなわち、サイド焚
多帯式加熱炉の各ゾーン内の複数個のバーナを順次周期
的に点火及び消火させ高ターンダウン制御を行う燃焼制
御方式において、各ゾーン内に任意に設置した複数個の
温度計の値を温度計の配置による重みづけ平均し、ゾー
ン内バーナの消火2点火分布パターンに対応した補正値
により算出したゾーン代表温度Tpv、n:炉幅方向の
温度計の数、 m:炉長方向の温度計の数。
In order to achieve the above object, the present invention accurately determines a representative furnace temperature for control in cyclic combustion, and controls based on the representative furnace temperature to stabilize cyclic uniform heating during high turndown operation. In other words, in a combustion control method in which multiple burners in each zone of a side-fired multi-zone heating furnace are sequentially and periodically ignited and extinguished to achieve high turndown control, multiple burners are arbitrarily installed in each zone. The zone representative temperature Tpv is calculated by weighting and averaging the values of the thermometers according to the arrangement of the thermometers, and using the correction value corresponding to the extinguishing and 2 ignition distribution pattern of the burners in the zone, n: number of thermometers in the width direction of the furnace, m : Number of thermometers in the furnace length direction.

Tij:炉幅方向iの番目、炉長方向j番目の位置の温
度計指示値。
Tij: Thermometer reading at the i-th position in the furnace width direction and the j-th position in the furnace length direction.

αi:炉幅方向i番目の温度計の重みづけ係数。αi: Weighting coefficient of the i-th thermometer in the furnace width direction.

βj:炉長方向j番目の温度計の重みづけ係数、Kよ:
ゾーン内バーナの消火1点火分布パターンに対応した補
正値、 に基づいてゾーン内全バーナに対する燃料及び空気量を
一括制御する。
βj: Weighting coefficient of the jth thermometer in the furnace length direction, K:
The amount of fuel and air for all burners in the zone is collectively controlled based on the correction value corresponding to the extinguishing 1 ignition distribution pattern of the burners in the zone.

〔作用〕[Effect]

これによれば、ゾーン内の温度分布を加味した平均的な
炉温かサイクリック燃焼しない場合と同様に評価できる
ことで、サイクリック燃焼に移行した場合においてもし
ない場合と同様に制御でき。
According to this, since it is possible to evaluate the average furnace temperature in the same manner as when cyclic combustion is not performed, taking into account the temperature distribution within the zone, it is possible to control the case when transitioning to cyclic combustion in the same way as when it is not performed.

ハンチング等の制御不可能な状態にも陥いらず正常な制
御が可能となる。
Normal control is possible without falling into an uncontrollable state such as hunting.

本発明の特徴は、温度計の設置位置における指示値とそ
の重みづけ係数αi、βj↓;より平均的な炉温を算出
し、バーナ点火、消火による急激な温度変化を与える火
炎からの放射熱の温度計への影響、すなわち特定のバー
ナを消火に他のバーナを点火に固定している1点火バー
ナの切換えのない場合(サイクリック燃焼をしない場合
)との偏差、を補正値に1により補正し、サイクリック
燃焼をしない場合と同等の炉温を与えるものである。
The features of the present invention include the indicated value at the installation position of the thermometer and its weighting coefficients αi, βj↓; calculating a more average furnace temperature; The effect on the thermometer, that is, the deviation from the case where one burner is fixed to extinguish and the other burner is fixed to ignition (when there is no cyclic combustion), is determined by a correction value of 1. This corrects the temperature and gives the same furnace temperature as without cyclic combustion.

本発明の実施例では、温度計を炉幅方向3ケ所に一列に
並べて炉長方向に2列所設置した。
In the embodiment of the present invention, thermometers were arranged in a row at three locations in the width direction of the oven, and were installed in two rows in the oven length direction.

【実施例〕【Example〕

第10図に5本発明のサイドバーナー燃焼制御方法を実
施する連続式加熱炉の一例を示し、第11図に、第10
図に示す連続式加熱炉の■−■線断面を、第12図に、
第10図に示す連続式加熱炉の1ゾーンの■−■線から
見おろした平面図を示す。これらの図において、1はパ
スライン、2は被加熱材、3は炉体、4は加熱空間、5
は炉体3の側面に設けられたバーナ(サイドバーナ)、
6はバーナ5から出る火炎、7は仕切り壁、8は側壁、
80は炉から被加熱材を抽出する抽出口である。27〜
32は上部ゾーンの温度計、33〜35は下部ゾーンの
温度計である。
FIG. 10 shows an example of a continuous heating furnace in which the side burner combustion control method of the present invention is implemented, and FIG.
The cross section of the continuous heating furnace shown in the figure is shown in Figure 12.
FIG. 10 shows a plan view of one zone of the continuous heating furnace shown in FIG. 10, looking down from the line ■-■. In these figures, 1 is a pass line, 2 is a material to be heated, 3 is a furnace body, 4 is a heating space, and 5 is a heating space.
is a burner (side burner) installed on the side of the furnace body 3,
6 is the flame emitted from the burner 5, 7 is the partition wall, 8 is the side wall,
80 is an extraction port for extracting the material to be heated from the furnace. 27~
32 is a thermometer for the upper zone, and 33 to 35 are thermometers for the lower zone.

図示しないスキッド上に載置された被加熱材2は、パス
ライン1を通って、炉内を抽出口80に向って移送され
る。炉体3は仕切り壁7によって複数のゾーンに分けら
れ、各ゾーン毎にそのゾーン内のバーナ5の燃焼制御が
行なわれる。すなわち、各ゾーン毎に炉内温度制御が行
なわれる。
The material to be heated 2 placed on a skid (not shown) passes through the pass line 1 and is transported inside the furnace toward the extraction port 80 . The furnace body 3 is divided into a plurality of zones by a partition wall 7, and combustion control of the burner 5 within the zone is performed for each zone. That is, the temperature inside the furnace is controlled for each zone.

第12図を参照すると、1ゾーンには3対のサイドバー
ナ5(A−F)があり、これらがバーナ対単位で燃焼制
御される。
Referring to FIG. 12, there are three pairs of side burners 5 (A-F) in one zone, and combustion of these is controlled in burner pair units.

第13図は、加熱炉の一つのゾーンにおける3対のバー
ナおよび弁配置、ならびにこの3対のバーナの燃焼を制
御するシステムの構成図である。
FIG. 13 is a block diagram of the three pairs of burners and valve arrangement in one zone of the furnace and the system for controlling the combustion of the three pairs of burners.

第13図において、10は燃料流量調節弁、11〜13
は遮断弁、17は空気流量調節弁、19〜21は遮断弁
である。第1対A: B、第2対C9Dおよび第3対E
、Fの、バーナ5は、それぞれ1対が1つの単位として
制御される。
In FIG. 13, 10 is a fuel flow control valve, 11 to 13
17 is an air flow control valve, and 19 to 21 are cutoff valves. 1st pair A: B, 2nd pair C9D and 3rd pair E
, F, each pair of burners 5 is controlled as one unit.

この実施例の連続式加熱炉のサイドバーナ燃焼制御方法
においては、1ゾーンの上、千単位(各単位3対)で燃
焼制御を行なうので、例えば、第13図に示す3対(総
数N=6.総対数Nl =3)のバーナ単位で入熱量Q
c1(指示値)が与えられると、これと、1個のサイド
バーナの、入熱量9oから、バーナの最大対数n1を次
の通りに算出する。
In the side burner combustion control method for a continuous heating furnace of this embodiment, combustion control is performed in units of 1,000 (3 pairs in each unit) above one zone, so for example, 3 pairs (total number N = 6. Heat input Q per burner with total logarithm Nl = 3)
When c1 (instruction value) is given, the maximum logarithm n1 of the burner is calculated from this and the heat input amount 9o of one side burner as follows.

2(n t + 1)・q o >Qct≧2nt・+
Iaなお、これを−収約に、バーナ総数N、燃焼バーナ
数n、所要人熱量Qcで表現すると。
2(nt + 1)・q o >Qct≧2nt・+
IaIn addition, if this is expressed as a -conversion, the total number of burners N, the number of combustion burners n, and the required amount of human heat Qc.

(n+1)・qo >Qc≧n’+t。(n+1)・qo>Qc≧n’+t.

N≧n である、そして、燃料調節弁10の開度を、Qcx対応
の燃料を供給する開度に設定し、遮断弁11〜13の開
閉により、n1対のバーナをオン(燃焼:燃料供給)、
N1 (=3)−nt対のバーナをオフ(非燃焼:燃料
遮断)にし、第8図に示すモード(全バーナ燃焼モード
、1列間引モード、2列間引モード)で、各対のバーナ
のオンオフパターン(全バーナ燃焼モードでは全バーナ
連続点火、1列間引モードではパターン11〜31.2
列間引モードではパターン12〜32)。
N≧n, and the opening degree of the fuel control valve 10 is set to the opening degree that supplies fuel corresponding to Qcx, and the n1 pair of burners is turned on (combustion: fuel supply) by opening and closing the shutoff valves 11 to 13. ),
N1 (=3)-nt pairs of burners are turned off (non-combustion: fuel cutoff), and each pair is Burner on/off pattern (in all burner combustion mode, all burners are ignited continuously; in 1 row thinning mode, patterns 11 to 31.2
Patterns 12 to 32) in column thinning mode.

なお、第8図で、○印がオン(点火)、X印がオフ(消
火)であり、この実施例では2分の周期で切換える。こ
れらの判断を第13図の遮断弁作動制御装置18により
行う。
In FIG. 8, the circle mark indicates on (ignition) and the x mark indicates off (extinguishing), and in this embodiment, switching is performed at a cycle of 2 minutes. These judgments are made by the shutoff valve operation control device 18 shown in FIG.

この実施例では、バーナA−Fはすべて同じ構造および
寸法であり、遮断弁11〜13もすべて同じ構造および
寸法であり、1個の流量調節弁10を通して、オン(燃
焼)設定されたバーナ全部に、総合計で入熱量Q c 
1対応の燃料を供給するので、オン設定されたバーナそ
れぞれには等しく、Qe1/2n1  (入熱量単位)
対応の燃料が供給される。
In this example, the burners A-F are all of the same construction and dimensions, the isolation valves 11-13 are also all of the same construction and dimensions, and through one flow control valve 10, all burners in the on (combustion) setting are , the total amount of heat input Q c
1 corresponding fuel is supplied, so each burner that is set to on has the same amount of Qe1/2n1 (heat input unit)
Corresponding fuel is supplied.

第6図および第7図に、このような燃焼制御を行なった
場合における特性図を示している。すなわち、第6図は
、加熱炉の1ゾーンの上区画当りのT/D比(燃焼負荷
率)と燃焼バーナ数の関係を示し、第7図は加熱炉の1
ゾーンの上区画当りのT/D比(燃焼負荷率)とバーナ
1本当りのT/D比(燃焼負荷率)の関係を示している
。これらは、それぞれ、加熱炉の1つのゾーンにおいて
、燃焼負荷率の変化により、燃焼バーナ数(第8図に示
す全燃焼モードか、−列間用モードか、2列間引きモー
ドか)が変わり、その結果、バーナ1本当りの燃焼負荷
率も変わるので、低いゾーン当り燃焼負荷率10〜30
%でも、バーナ1本当りの燃焼負荷率を低下させずに、
運転できる様子を示している。
FIGS. 6 and 7 show characteristic diagrams when such combustion control is performed. That is, FIG. 6 shows the relationship between the T/D ratio (combustion load factor) and the number of combustion burners per upper section of one zone of the heating furnace, and FIG.
It shows the relationship between the T/D ratio (combustion load factor) per upper section of the zone and the T/D ratio (combustion load factor) per burner. In each zone of the heating furnace, the number of combustion burners (full combustion mode, inter-row mode, or 2-row thinning mode shown in FIG. 8) changes depending on the combustion load rate, and As a result, the combustion load rate per burner changes, so the combustion load rate per low zone is 10 to 30.
%, without reducing the combustion load rate per burner.
It shows that it can be driven.

このとき、ゾーン代表温度の式において炉幅方向の温度
計の数は、n=3.炉長方向の温度計の数はm==2と
なり、ゾーン代表温度’l’pvは、となる、ここで炉
幅方向の第1列の温度計T11゜”β21 、’ra 
1及び第2列の温度計’rt 2 、T22 。
At this time, in the zone representative temperature equation, the number of thermometers in the oven width direction is n=3. The number of thermometers in the furnace length direction is m = = 2, and the zone representative temperature 'l'pv is, where the thermometers T11゜''β21, 'ra in the first row in the furnace width direction are
1 and 2nd row thermometer 'rt 2 , T22.

Ta2は、第12図の温度計27〜29及び30〜32
に対応し、それらの重みづけ係数は、列内の配置位置対
応の係数α1.α2.α3と列配置の係数β1.β2と
の積αi・βjである。これらの重みづけ係数は、当該
温度計が代表する炉内の面積で決定され1本実施例の場
合では第12図に点線で示す様に、ゾーンの炉幅方向、
炉長方向平面を炉幅方向に3分割、炉長方向に2分割し
、6つの等面積に区分し、そのそれぞれの中央に温度計
を設置し、炉温分布を均等に6つの温度計にふりわける
ことによりα1=1.α2=1.α3=1、β1=1.
β2=1となる。この重みづけ係数により重みづけ平均
された値は、ゾーン内の炉温分布を考慮した平均的な炉
温として算出される。
Ta2 is thermometers 27 to 29 and 30 to 32 in FIG.
, and their weighting coefficients are the coefficients α1 . α2. α3 and column arrangement coefficient β1. The product with β2 is αi·βj. These weighting coefficients are determined by the area in the furnace that the thermometer represents, and in the case of this embodiment, as shown by the dotted line in FIG.
The furnace length direction plane is divided into 3 parts in the furnace width direction and 2 parts in the furnace length direction, divided into 6 equal areas, and a thermometer is installed in the center of each of them to evenly distribute the furnace temperature to the 6 thermometers. By dividing α1=1. α2=1. α3=1, β1=1.
β2=1. The weighted average value using this weighting coefficient is calculated as an average furnace temperature in consideration of the furnace temperature distribution within the zone.

サイクリック燃焼時には、各温度計の指示値がバーナの
点火、消火毎に第9図に示すような上下の変動を繰り返
すが、1つの温度計の指示値に着目するとある一定周期
(6分)で指示値が変動し。
During cyclic combustion, the readings on each thermometer repeatedly fluctuate up and down as shown in Figure 9 each time the burner is lit and extinguished. The indicated value will fluctuate.

全温度計に着目するとこのような変動周期は同一である
が1位相が互にずれている。このような各温度計の指示
温度を平均した前記「平均的な炉温」は該変動を平滑化
したものとなる。このように平滑化した炉温(各温度計
の指示値の重み付は平均値)を平均温度としてサイクリ
ック燃焼しない場合と同じ値にする補正値がKえである
Focusing on all the thermometers, these fluctuation cycles are the same, but one phase is shifted from each other. The above-mentioned "average furnace temperature", which is the average of the temperatures indicated by each thermometer, is obtained by smoothing out the fluctuations. The correction value that makes the furnace temperature smoothed in this way (the weighting of the indicated value of each thermometer is an average value) to the same value as the average temperature when cyclic combustion is not performed is K.

Kえは、加熱炉炉型、耐火物構成及びバーナの点火特性
等加熱炉によって決定される定数であり、サイクリック
燃焼において、どのパターン(第8図)を実行している
かによって定まるものである。
K is a constant determined by the heating furnace, such as the furnace type, refractory composition, and burner ignition characteristics, and is determined by which pattern (Figure 8) is being executed in cyclic combustion. .

例えば、第8図に示す全バーナ燃焼では、全バーナ連続
燃焼であるので、Km=O又は所要値に設定する。第8
図に示す1列間引モードの3パターン11〜13および
2列間引モードの3パターン12〜3aでは1例えば第
8図の1列間引モードのパターン11 (バーナA、B
を消火、バーナC〜Dを点火)を例にとると、このパタ
ーンを連続しているときと、このパターンをサイクリッ
ク燃焼に含んでいるときでは、同一パターンでも、サイ
クリック燃焼のときには消火から点火への切換えがある
ので、同一時間(例えばサイクリック燃焼の切換パター
ン切換周期である2分)において、連続のときとは炉温
影響度が異なり、温度計による検出値が異なることにな
る。これを補正するのが補正値に11 (パターン11
実行中にに、に割り当てられる補正値)である、第8図
の3モード7パターン(全バーナ燃焼モードが1パター
ン)の場合、したがってに1は、Koo(全バーナ燃焼
モードで割り当てるもの)* Kt t〜Kig(パタ
ーン11〜31に割り当てるもの)およびに21〜に2
3(パターン12〜32に割り当てるもの)の7種とな
る。
For example, in the all-burner combustion shown in FIG. 8, since all burners are continuous combustion, Km is set to O or a required value. 8th
In the three patterns 11 to 13 of the one-row thinning mode shown in the figure and the three patterns 12 to 3a of the two-row thinning mode shown in the figure, for example, pattern 11 of the one-row thinning mode (burner A, B
For example, when this pattern is continuous and when this pattern is included in cyclic combustion, even if the pattern is the same, when cyclic combustion Since there is a switch to ignition, at the same time (for example, 2 minutes, which is the switching period of the cyclic combustion switching pattern), the influence of the furnace temperature is different from that during continuous combustion, and the detected value by the thermometer is different. To correct this, the correction value is 11 (pattern 11
In the case of the 3-mode 7 pattern (all-burner combustion mode is one pattern) in Fig. 8, which is the correction value assigned to during execution), 1 is therefore Koo (assigned in all-burner combustion mode) * Kt t~Kig (assigned to patterns 11~31) and 21~2
3 (assigned to patterns 12 to 32).

第14図に、第8図に示す1列間引モードで、パターン
11〜1.を2分周期で切換えたサイクリック燃焼のと
きの平均炉温TPV″ (実線:にえの項を含まないT
pv計算式で算出した値)と、パターン11〜13のそ
れぞれを連続としたときの各パターンの各2分間の平均
炉温Tpv’  (点線:に、の項を含まないTpν計
算式で算出した値:サイクリック燃焼のときのパターン
に対応付けている)と、を示す、この第14図に示すよ
うに、同一パターンでもサイ0クリツク燃焼とするとき
の算出炉温がサイクリック燃焼しないときの算出炉温か
らずれるので、このずれ量(偏差)を予め求めておいて
補正値に、とする。
FIG. 14 shows patterns 11 to 1. in the one-row thinning mode shown in FIG. Average furnace temperature TPV'' during cyclic combustion in which the period is changed over every 2 minutes (solid line: TPV not including the term
pv calculation formula) and the average furnace temperature Tpv' for each 2-minute period of each pattern when each of patterns 11 to 13 are continuous (dotted line: calculated using the Tpν calculation formula that does not include the term As shown in Figure 14, even with the same pattern, the calculated furnace temperature when cyclic combustion is used is the same as when cyclic combustion is not performed. Since the calculated furnace temperature deviates, the amount of deviation (deviation) is determined in advance and used as a correction value.

この実施例では、第8図のバーナA、Bが消火した場合
(パターン11)の補正値Kllは、第14図に示す、
パターン11のサイクリック燃焼時としない時の差とし
て、に11=10とする。
In this example, the correction value Kll when burners A and B in FIG. 8 are extinguished (pattern 11) is as shown in FIG. 14.
The difference between pattern 11 when cyclic combustion is performed and when it is not performed is set to 11=10.

また、同様にバーナC,Dが消火した場合(パターン2
1)の補正値に12は、第14図よりに12 =5とす
る。また、バーナE、Fが消火した場合(パターン31
)の補正値に111を第14図よりに13=0とする。
Similarly, when burners C and D are extinguished (pattern 2
The correction value of 1) is set to 12 = 5 according to FIG. Also, when burners E and F are extinguished (pattern 31
) is set to 111 and 13=0 according to FIG.

2列間引モードのパターン12〜32に割り当てる補正
値に21〜に23も同様に定める。
Correction values 21 to 23 are similarly determined to be assigned to patterns 12 to 32 in the two-column thinning mode.

以上の係数α1.α2.αa、β1.β2及び補正値K
l 1 ””K18 e K21〜に2 aによるゾー
ンの代表温度Tpvの計算を第13図の温度演算装置2
6により行う、温度演算装置26によりゾーン代表温度
Tpvが得られ、温度調節1114により目標炉温Ts
vと比較し、必要な燃料量及び空気量を決定する。流量
制御装置15は、必要な燃料量及び空気量が流れる様に
流調弁10.17を操作し制御を行う。
The above coefficient α1. α2. αa, β1. β2 and correction value K
Calculate the representative temperature Tpv of the zone using l 1 "" K18 e K21 ~ 2 a using the temperature calculation device 2 in Fig. 13.
6, the zone representative temperature Tpv is obtained by the temperature calculation device 26, and the target furnace temperature Ts is obtained by the temperature adjustment 1114.
v and determine the required amount of fuel and air. The flow control device 15 operates and controls the flow regulating valves 10.17 so that the required amount of fuel and air flows.

以上の制御を行った結果第151に示すように従来サイ
クリック燃焼を行った場合、炉温か大きく振動し、制御
が困難であったものが、スムーズな炉温変化となり、燃
焼制御性が向上した。
As a result of the above control, as shown in No. 151, when conventional cyclic combustion was performed, the furnace temperature fluctuated greatly and was difficult to control, but the furnace temperature changed smoothly and combustion controllability was improved. .

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の燃焼制御方法によれば
、サイクリック燃焼する場合における炉温制御性を向上
し、サイクリック燃焼をしない場合と同等の制御性が得
られる。
As explained above, according to the combustion control method of the present invention, furnace temperature controllability in the case of cyclic combustion is improved, and controllability equivalent to that in the case of no cyclic combustion can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサイド焚連続式加熱炉の縦断面図、第2図は第
1図に示す連続式加熱炉のI−1線断面図、第3図は、
第1図に示す連続式加熱炉のn−■線断面図である。第
4図は第1図に示す連続式加熱炉の■−m線の上から下
を見おろした1ゾーンの平面図、第5図は従来方式の制
御システムを示すブロック図である。第6図はサイクリ
ック燃焼を実施した場合のゾーン当りの負荷率(横軸)
と燃焼させるバーナ個数(縦軸)との関係を示すグラフ
、第7図はゾーン当りの負荷率(横軸)と燃焼させるバ
ーナ1個の負荷率(縦軸)との関係を示すグラフ、第8
図は第2図に示す1ゾーンの制御パターンを示す平面図
、第9図は従来の燃焼制御による通常時(サイクリック
燃焼しない場合)とサイクリック燃焼時の検出炉温の推
移を示すグラフである。 第10図は本発明の一実施例を適用するサイド焚連続式
加熱炉の縦断面図、第11図は第10図に示す連続式加
熱炉のIV−mV線断面図、第12図は、第10図に示
す連続式加熱炉の■−v線の上から下を見おろした1ゾ
ーンの平面図、第13図は本発明を一態様で実施する制
御システムを示すブロック図、第14図は本発明の一実
施例における重みづけ平均炉温のサイクリック燃焼実施
時と実施しない場合の違いを表わすグラフ、第15図は
本発明の実施例と従来例との検出炉温を示すグラフであ
る。 1:パスライン       2:被加熱材3:炉体 
         4:加熱空間5:バーナ(サイドバ
ーナ)  6:火炎7:仕切壁         8:
側壁9:温度計         10:燃焼調節弁1
1.12,13 :燃料遮断弁    14:温度調節
器15:燃料調節器       16:空気調節器1
7:空気調節弁     18:遮断弁制御装置19.
20,21 :空気遮断弁    22:燃料配管23
:オリイフィス      24:空気配管25:オリ
イフィス 26;ゾーン代表温度演算器27.28,2
9,30,31,32,33,34.35 :温度計8
0:抽出口         90:熱電対穿 51図 声9図 吟間(min) 声10図 声11図 舅12図
Fig. 1 is a longitudinal sectional view of a side-fired continuous heating furnace, Fig. 2 is a sectional view taken along line I-1 of the continuous heating furnace shown in Fig. 1, and Fig. 3 is a longitudinal sectional view of a side-fired continuous heating furnace.
FIG. 2 is a sectional view taken along the line n-■ of the continuous heating furnace shown in FIG. 1. FIG. FIG. 4 is a plan view of one zone of the continuous heating furnace shown in FIG. 1, looking down from above the line 1-m, and FIG. 5 is a block diagram showing a conventional control system. Figure 6 shows the load factor per zone (horizontal axis) when cyclic combustion is performed.
Figure 7 is a graph showing the relationship between the load factor per zone (horizontal axis) and the load factor of one burner being burned (vertical axis). 8
The figure is a plan view showing the control pattern for one zone shown in Fig. 2, and Fig. 9 is a graph showing the transition of the detected furnace temperature under normal combustion control (without cyclic combustion) and during cyclic combustion. be. FIG. 10 is a longitudinal sectional view of a side-fired continuous heating furnace to which an embodiment of the present invention is applied, FIG. 11 is a sectional view taken along the line IV-mV of the continuous heating furnace shown in FIG. 10, and FIG. Fig. 10 is a plan view of one zone of the continuous heating furnace looking down from above the ■-v line, Fig. 13 is a block diagram showing a control system implementing one embodiment of the present invention, and Fig. 14 is a FIG. 15 is a graph showing the difference in weighted average furnace temperature between when cyclic combustion is performed and when cyclic combustion is not performed in an embodiment of the present invention, and FIG. 15 is a graph showing detected furnace temperatures between the embodiment of the present invention and the conventional example. . 1: Pass line 2: Heated material 3: Furnace body
4: Heating space 5: Burner (side burner) 6: Flame 7: Partition wall 8:
Side wall 9: Thermometer 10: Combustion control valve 1
1.12, 13: Fuel cutoff valve 14: Temperature regulator 15: Fuel regulator 16: Air regulator 1
7: Air control valve 18: Shutoff valve control device 19.
20, 21: Air cutoff valve 22: Fuel pipe 23
: Orifice 24: Air piping 25: Orifice 26; Zone representative temperature calculator 27, 28, 2
9, 30, 31, 32, 33, 34.35: Thermometer 8
0: Extraction port 90: Thermocouple hole 51 Figure 9 figure Ginma (min) Voice 10 figure Voice 11 figure 12 figure

Claims (1)

【特許請求の範囲】 サイド焚多帯式加熱炉の各ゾーン内の複数個のバーナを
順次周期的に点火及び消火させ、高ターンダウン制御を
行う燃焼制御方式において、各ゾーン内に設置した複数
個の温度計の検出値を温度計の配置による重みづけ平均
し、ゾーン内バーナの消火、点火分布パターンに対応し
た補正値により、算出したゾーン代表温度Tpv ▲数式、化学式、表等があります▼ n:炉幅方向の温度計の数、 m:炉長方向の温度計の数、 Tij:炉幅方向i番目、炉長方向j番目の位置の温度
計指示値、 αi:炉幅方向i番目の温度計の重みづけ係数、βj:
炉長方向j番目の温度計の重みづけ係数、K_l:温度
計の検出値の読取時のゾーン内バーナの消火、点火分布
パターンに対応した 補正値、 によりゾーン内全バーナに対する燃料及び空気量を一括
制御することを特徴としたサイド焚多帯式加熱炉の燃焼
制御方法。
[Claims] In a combustion control method that performs high turndown control by sequentially and periodically igniting and extinguishing a plurality of burners in each zone of a side-fired multi-zone heating furnace, a plurality of burners installed in each zone are provided. The zone representative temperature Tpv is calculated by weighting and averaging the detection values of each thermometer according to the arrangement of the thermometers, and using correction values corresponding to the extinguishing and ignition distribution pattern of the burners in the zone. ▲Mathematical formulas, chemical formulas, tables, etc. are available▼ n: number of thermometers in the furnace width direction, m: number of thermometers in the furnace length direction, Tij: thermometer reading at the i-th position in the furnace width direction and j-th position in the furnace length direction, αi: i-th position in the furnace width direction The weighting factor of the thermometer, βj:
The weighting coefficient of the j-th thermometer in the furnace length direction, K_l: Correction value corresponding to the extinguishing and ignition distribution pattern of the burner in the zone when reading the detected value of the thermometer, and calculates the amount of fuel and air for all burners in the zone. A combustion control method for a side-fired multi-zone heating furnace characterized by collective control.
JP62308996A 1987-12-07 1987-12-07 Method for controlling combustion of side combustion multi-zone type heating furnace Granted JPH01150716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308996A JPH01150716A (en) 1987-12-07 1987-12-07 Method for controlling combustion of side combustion multi-zone type heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308996A JPH01150716A (en) 1987-12-07 1987-12-07 Method for controlling combustion of side combustion multi-zone type heating furnace

Publications (2)

Publication Number Publication Date
JPH01150716A true JPH01150716A (en) 1989-06-13
JPH0584411B2 JPH0584411B2 (en) 1993-12-01

Family

ID=17987669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308996A Granted JPH01150716A (en) 1987-12-07 1987-12-07 Method for controlling combustion of side combustion multi-zone type heating furnace

Country Status (1)

Country Link
JP (1) JPH01150716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269852A (en) * 1994-03-28 1995-10-20 Ngk Insulators Ltd Combustion control method of burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269852A (en) * 1994-03-28 1995-10-20 Ngk Insulators Ltd Combustion control method of burner

Also Published As

Publication number Publication date
JPH0584411B2 (en) 1993-12-01

Similar Documents

Publication Publication Date Title
AU2010246518A1 (en) Method for reducing NOx emissions from a burner assembly, comprising several burners, and burner assembly for carrying out said method
US6638061B1 (en) Low NOx combustion method and apparatus
US4577278A (en) Method and system for controlling a selected zone in a fuel fired furnace
JPH01150716A (en) Method for controlling combustion of side combustion multi-zone type heating furnace
JPS6127657B2 (en)
US4311456A (en) Blast furnace stove
EP4023987A1 (en) Method for improving furnace temperature uniformity
KR101038116B1 (en) apparatus and method of furnace pressure control in regenerative reheating furnace
JPS6011018A (en) Combustion control of side burner in direct firing type heating furnace
JPS5935212A (en) Temperature controller for furnace with plural heating areas
KR101720696B1 (en) Combustor control device and combustor control method of multitude heating furnace
JPS6284223A (en) Temperature control method for heating furnace
JPS57110624A (en) Method for controlling combustion of continuous annealing furnace
KR20010113993A (en) Method of and apparatus for controlling burners of industrial furnace by temperature tracking
JP4121239B2 (en) Combustion device
RU1789045C (en) Method of heating control of blanks in multizone internally fired furnace
JPS5867831A (en) Method for heating steel strip in direct firing type heating furnace
SU1121545A1 (en) Method of controlling fuel supply to heating furnace
KR101852620B1 (en) Apparatus of hot sove
JPS6280222A (en) Combustion controlling apparatus in furnace with many burners
CN117739704A (en) Full-automatic accurate temperature regulation control method for multiple burners of composite heating furnace
JP3556086B2 (en) Combustion control device and combustion control method for waste melting furnace
JPH075948B2 (en) Hot stove control method
JPH0835015A (en) Method for controlling flow rate of combustion gas in heating furnace for strip continuous heat treatment equipment
JPS57164219A (en) Combustion controller