JPS5934886A - Immobilization of enzyme to surface of porous particle - Google Patents

Immobilization of enzyme to surface of porous particle

Info

Publication number
JPS5934886A
JPS5934886A JP57146661A JP14666182A JPS5934886A JP S5934886 A JPS5934886 A JP S5934886A JP 57146661 A JP57146661 A JP 57146661A JP 14666182 A JP14666182 A JP 14666182A JP S5934886 A JPS5934886 A JP S5934886A
Authority
JP
Japan
Prior art keywords
enzyme
group
defined above
carbon atoms
porous particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57146661A
Other languages
Japanese (ja)
Other versions
JPH0361426B2 (en
Inventor
Minoru Kumakura
熊倉 稔
Noboru Kasai
昇 笠井
Masao Tamada
正男 玉田
Isao Kaetsu
嘉悦 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP57146661A priority Critical patent/JPS5934886A/en
Publication of JPS5934886A publication Critical patent/JPS5934886A/en
Publication of JPH0361426B2 publication Critical patent/JPH0361426B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To prepare immobilized enzyme consisting of an enzyme immobilized firmly to the surface of a porous particle, by coating the surface of a porous particle with a mixture of an aqueous solution of an enzyme and a polymerizable vinyl monomer giving an amorphous polymer, and irradiating the particle with ionizing radiation. CONSTITUTION:A proper amount of a mixture of (A) one or more polymerizable vinyl monomers giving amorphous polymers, such as hydroxyethyl methacrylate, diethylene glycol methacrylate, glycidyl acrylate, etc. and (B) an aqueous solution of an enzyme is applied to the surface of a porous particle having a pore size of preferably 50-5000Angstrom and particle diameter of about 0.5-5mm., e.g. by spraying, immersion, etc. and irradiated with ionizing radiation at 0--100 deg.C at a rate of 10<2>-10<6>rad/hr and total dose of 10<4>-10<6>rad to polymerize the polymerizable vinyl monomer.

Description

【発明の詳細な説明】 本発明は多孔質粒子の表面に酵素を固定化する方法に関
する。より詳細に述べると、本発明は酵素の水溶液およ
びガラス化性ビニル系重合性単量体から成る混合物を多
孔質粒子の表面に被覆した後型離性放射線ケ照射して酵
素を粒子表面に固定することから成る多孔質粒子の表面
に酵素を固定化する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for immobilizing enzymes on the surface of porous particles. More specifically, the present invention involves coating the surfaces of porous particles with a mixture consisting of an aqueous enzyme solution and a vitrifiable vinyl polymerizable monomer, and then irradiating the particles with release radiation to fix the enzyme on the particle surface. The present invention relates to a method for immobilizing an enzyme on the surface of porous particles.

本発明πよって製造された固定化酵素を5多孔質固定化
酵素粒子“と呼称する。
The immobilized enzyme produced by the method of the present invention is referred to as "5-porous immobilized enzyme particle".

酵素を利用して有用な反応を行わしめ医薬品。Pharmaceutical products that use enzymes to carry out useful reactions.

食料品などを生産する医薬9食品工業は近年益々発展を
遂げつつある。しかしながら、従来の酵素利用の形態は
酵素を水に溶解して溶液相で反応を行わしめる場を常と
し、反応終了後酵素は廃液として系外に排出せしめられ
るため、酵素反応工程は回分式とならざるを得す、従っ
て、酵素の利用効率は極めて低いという欠点があった。
The pharmaceutical and food industry, which produces foodstuffs, has been steadily developing in recent years. However, in the conventional way of using enzymes, the enzyme is dissolved in water and the reaction is carried out in a solution phase, and after the reaction is completed, the enzyme is discharged from the system as waste liquid, so the enzyme reaction process is a batch process. Therefore, the enzyme utilization efficiency was extremely low.

そのため、近年、酵素を高分子物質中に結合もしくは分
散せしめ、多孔質ゲルあるいは粉粒状態となして反復連
続使用の可能な複合体として酵素反応に供しようとする
、いわゆる酵素の固定化の研究が活発に行われるように
なった。
Therefore, in recent years, research has been carried out on so-called enzyme immobilization, in which enzymes are bound or dispersed in polymeric substances, formed into porous gels or powders, and subjected to enzyme reactions as complexes that can be used repeatedly and continuously. has become actively carried out.

酵素の固定化は、1960年代から活発に研究され始め
、現在各国で盛んに研究が進められている。″固定化酵
素″とは、ある一定の空間内に閉じ込められた状態にあ
り、連続的に酵素反応を行ない、かつ反応後酵素を回収
して再利用できる状態にある酵素のことであり、これは
包括型酵素と結合型酵素に分類される。前者は包括法(
酵素を水に不溶性の高分子などの担体によって包み込み
閉じ込める方法)によって作られ、後者は担体結合法(
酵素を水に不溶性の担体に、共有結合やイオン結合によ
って化学的に結合したり吸着させたりする方法)で作ら
れる。
Enzyme immobilization has been actively researched since the 1960s and is currently being actively pursued in various countries. An "immobilized enzyme" is an enzyme that is confined within a certain space, performs enzymatic reactions continuously, and can be recovered and reused after the reaction. are classified into comprehensive enzymes and combined enzymes. The former is the comprehensive law (
The latter is produced by the carrier binding method (a method in which enzymes are wrapped and confined in a carrier such as a water-insoluble polymer), and the latter is produced by a carrier binding method (
It is produced by chemically bonding or adsorbing an enzyme to a water-insoluble carrier through covalent or ionic bonds.

固定化の技術で最も重要な問題になるのは、いかにもと
の酵素の活性を損なわずに、かつその持続性(安定性)
が大きいように固定化するかという点である。担体結合
法、特に共有結合法は固定化効果の持続性が大きいので
熱心に試みられているが、固定化条件の設定がむずかし
いといわれている。一方、包括法は、酵素を物理的に閉
じ込める方法なので、担体の構造を工夫すれば比較的高
い活性を保って強固に固定化することも困難ではない。
The most important issue in immobilization technology is how to maintain the activity of the original enzyme and its sustainability (stability).
The question is whether to fix it so that it is large. Carrier bonding methods, particularly covalent bonding methods, are being enthusiastically attempted because of their long-lasting immobilization effect, but it is said that it is difficult to set the immobilization conditions. On the other hand, the entrapment method physically confines the enzyme, so if the structure of the carrier is devised, it is not difficult to maintain relatively high activity and firmly immobilize the enzyme.

酵素以外の有効な補助成分を酵素とともに包括して活性
を高めたり、複数成分より成る比較的複雑な酵素反応系
をそのまま固定できる可能性があることも包括法の魅力
である。包括の方法としては、これまで格子型とマイク
ロカプセル型が知られており、それぞれ網目構造化した
高分子ゲルおよび高分子のマイクロカプセルの中に酵素
ヲ閉じ込める方法である。所で、従来の包括法は、酵素
の担体からの脱離が大きいという欠点があり、また担体
の粒子表面に酵素を固定化することは不可能とされてい
た。担体の表面に酵素を固定化することは、固定化酵素
を用いて大きい分子量の基質を用いて酵素反応を行わせ
しめる上に必要条件であり、低分子量の基質の酵素反応
の場合においても拡散律則の問題が無視できるので効率
よく反応を進行させることができる。
Another attractive feature of the comprehensive method is that it is possible to enhance the activity by including effective auxiliary components other than enzymes together with the enzyme, and to immobilize relatively complex enzyme reaction systems consisting of multiple components as they are. As entrapment methods, the lattice type and the microcapsule type are known, and these methods confine the enzyme in a network-structured polymer gel and polymer microcapsule, respectively. However, the conventional entrapment method has the drawback that the enzyme is largely detached from the carrier, and it has also been considered impossible to immobilize the enzyme on the particle surface of the carrier. Immobilizing an enzyme on the surface of a carrier is a necessary condition for carrying out enzymatic reactions using immobilized enzymes with large molecular weight substrates, and even in the case of enzymatic reactions with low molecular weight substrates, the diffusion law is maintained. Since the problem of regulation can be ignored, the reaction can proceed efficiently.

本発明者等は担体からの酵素の脱離を防止するために、
多孔性の吸着剤9重合性単量体、および酵素又は菌体水
溶液を均一に混合して得た混合液に放射線を照射して組
成物を製造する方法を提案した(特公昭56−5398
8)。この従来法の場合、多孔性吸着剤を粉末状にして
単量体あるいは酵素水溶液と混合し、系全体を重合で固
めて、重合後固定化物を砕いて一定の大きさの固定化物
を得るという方法である。この従来の方法だと粒子表面
に最初から酵素を固定化することは不可能であり、拡散
律則型の固定化物になり、高分子量の基質の酵素反応に
は使用できないという欠点がある。そのため、本発明者
等は表面積の大きい粒子状の固定化物を粉砕操作をする
ことなしに簡単に得る方法について研究を重ねた結果、
多孔質の粒子の表面に酵素を強固に固定化できる方法を
見い出して本発明を完成させた。
In order to prevent the enzyme from detaching from the carrier, the present inventors
proposed a method for producing a composition by uniformly mixing a porous adsorbent, a polymerizable monomer, and an aqueous enzyme or bacterial cell solution, and irradiating the mixture with radiation (Japanese Patent Publication No. 56-5398
8). In the case of this conventional method, the porous adsorbent is powdered and mixed with a monomer or enzyme aqueous solution, the entire system is solidified by polymerization, and after polymerization, the immobilized material is crushed to obtain an immobilized material of a certain size. It's a method. This conventional method has the disadvantage that it is impossible to immobilize the enzyme on the particle surface from the beginning, resulting in a diffusion-controlled immobilization product, which cannot be used for enzymatic reactions with high-molecular-weight substrates. Therefore, the present inventors have conducted repeated research on a method for easily obtaining particulate immobilized substances with a large surface area without pulverization.
The present invention was completed by discovering a method for firmly immobilizing enzymes on the surface of porous particles.

従って、本発明の主なる目的は多孔質粒子の表面に酵素
を強固に固定した固定化酵素およびその製造方法を提供
することである。
Therefore, the main object of the present invention is to provide an immobilized enzyme in which the enzyme is firmly immobilized on the surface of porous particles, and a method for producing the same.

本発明のより特定的な目的は酵素の水溶液およびガラス
化性ビニル系重合性単量体から成る混合物を多孔質粒子
の表面に被覆した後電離性放射線を照射して該重合性単
量体を粒子表面で重合して酵素を粒子表面に固定化する
ことから成る多孔質粒子表面に酵素を固定化する方法を
提供することである。
A more specific object of the present invention is to coat the surfaces of porous particles with a mixture consisting of an aqueous enzyme solution and a vitrifiable vinyl polymerizable monomer, and then irradiate the porous particles with ionizing radiation to remove the polymerizable monomer. An object of the present invention is to provide a method for immobilizing an enzyme on the surface of a porous particle, which comprises immobilizing the enzyme on the particle surface by polymerizing on the particle surface.

本発明の他の目的および利点は、以下遂次間らかにされ
る。
Other objects and advantages of the invention will be successively identified below.

本発明の構成を明らかにする; 本発明に従って、酵素の水溶液およびガラス化性ビニル
系重合性単量体を混合し、これを選択された多孔質粒子
の表面に被覆した後、温度な0°C〜−100℃の低温
に維持して、電離性放射線を照射して該重合性単量体を
重合させて酵素を粒子表面に固定化することによって多
孔質粒子表面に固定化された酵素が製造される。
Clarifying the structure of the present invention: According to the present invention, an aqueous enzyme solution and a vitrifiable vinyl polymerizable monomer are mixed, and after coating the surfaces of selected porous particles, the mixture is heated to 0°C. The enzyme immobilized on the surface of the porous particles is maintained at a low temperature of -100°C and irradiated with ionizing radiation to polymerize the polymerizable monomer and immobilize the enzyme on the surface of the porous particles. Manufactured.

本発明の特徴の一つは、重合性単量体としてガラス化性
ビニル系重合性単量体を使用することである。ガラス化
性重合性単量体は、低温で結晶化せずに過冷却状態とな
り、重合性を失わない性質をもった重合性単量体である
。過冷却状態におけるガラス化性重合性単量体の重合は
、非晶質状態での固相重合といってよいものであり、低
温領域での重合性が大きいので、生体の固定化など低温
重合の応用にきわめて有用な手段である。通常酵素は熱
的に不安定であるので酵素活性を失活させないためにも
固定化は低温である程理想的である。
One of the features of the present invention is that a vitrifiable vinyl polymerizable monomer is used as the polymerizable monomer. The vitrifying polymerizable monomer is a polymerizable monomer that does not crystallize at low temperatures but becomes supercooled and does not lose its polymerizability. Polymerization of vitrifying polymerizable monomers in a supercooled state can be called solid-phase polymerization in an amorphous state, and since the polymerizability is high in a low-temperature region, it can be used for low-temperature polymerization such as immobilization of living organisms. This is an extremely useful tool for applications. Since enzymes are usually thermally unstable, it is ideal to immobilize at a lower temperature in order to prevent deactivation of enzyme activity.

低温で有効に重合を行なうことが出来る手段としては放
射線重合法であり、放射線によって低温で大きな重合性
を有するのはガラス化性ビニル系重合性単量体であるこ
とを考えると、本発明はガラス化性重合性単量体を使用
することによって成立したものといい得る。所で、ガラ
ス化性重合性単量体は分子内に適度の強さの水素結合性
の官能基・かさ高いあるいは著しく非対称性の置換基・
エーテル結合のような回転の自由エネルギーの小さい結
合などを含んでいるもので、下記の一般式で表わされる
ものの中から1種又は2種以上が使用される; a、 CH2=CX−C=O(CH2)nOR+ここで
XはH又は入チル基、R1はH又はCH2=CX−C− ここでXはH又はメチル基、そしてnは4〜1oの整数
; b、 CH2=cx  c−o  (R2)m  Cc
x=cn20       0 ここでXはH又はメチル基、馬は−CH2CH20−。
The radiation polymerization method is a method that can effectively carry out polymerization at low temperatures, and considering that vitrifiable vinyl polymerizable monomers have high polymerizability at low temperatures by radiation, the present invention It can be said that this was achieved by using a vitrifying polymerizable monomer. By the way, vitrifying polymerizable monomers contain hydrogen-bonding functional groups with moderate strength, bulky or significantly asymmetric substituents,
It contains a bond with low rotational free energy such as an ether bond, and one or more of those represented by the following general formula are used; a, CH2=CX-C=O (CH2)nOR+ where X is H or a methyl group, R1 is H or CH2=CX-C- where X is H or a methyl group, and n is an integer from 4 to 1o; b, CH2=cx c-o (R2)m Cc
x=cn20 0 where X is H or a methyl group, and horse is -CH2CH20-.

−CH−CH20−、又は−CH2−CHO−。-CH-CH20- or -CH2-CHO-.

1 H3cH3 そしてmは1〜3の整数; ここでXはH又はメチル基; d、 CH2=CX COR3()  R4ここでXは
H又はメチル基、R3は1〜10個の炭素原子を有する
直鎖又は分枝鎖アルキレン基、そしてR4は1〜10個
の炭素原子を有するビニル又はアルキル基; 1    \OR7 ここでR3はアルカン(01〜C5)−イル−イシド。
1 H3cH3 and m is an integer from 1 to 3; where X is H or a methyl group; d, CH2=CX COR3() R4 where X is H or a methyl group, R3 is a straight chain having 1 to 10 carbon atoms; a chain or branched alkylene group, and R4 is a vinyl or alkyl group having 1 to 10 carbon atoms; 1\OR7 where R3 is an alkane(01-C5)-yl-isido.

アルキレン(C,=C5)アミノ基% R6および馬は
各々H,1〜5個の炭素原子を有するアルキル基、1〜
5個の炭素原子を有するアルキルアミノ基、1〜5個の
炭素原子を有するヒドロキシルアルキル基。
alkylene (C,=C5) amino group % R6 and H are each H, an alkyl group having 1 to 5 carbon atoms, 1 to
Alkylamino groups with 5 carbon atoms, hydroxylalkyl groups with 1 to 5 carbon atoms.

アリル又はビニル基; f= CH2=CX−C−R30R80−R4ここでX
、R3およびR4は上で定義した通り、R8はR3と同
じ、R3およびR8は同じ各々異ってぃ−る;ここでX
、R3およびR4は上で定義した通り;ここでX、R3
および山は上で定義した通り;ここでXは上で定義した
通り、そしてR1□はベンジル、トルイル、キシリル、
フェニル、フルフリル。
Allyl or vinyl group; f=CH2=CX-C-R30R80-R4 where X
, R3 and R4 are as defined above, R8 is the same as R3, R3 and R8 are the same and each different; where X
, R3 and R4 are as defined above; where X, R3
and mountains as defined above; where X is as defined above and R1□ is benzyl, tolyl, xylyl,
Phenyl, furfuryl.

ナフチル、フタリル、シクロヘキシル、シクロフェニル
、シクロヘプチル、シクロブチル、ピリジル又はろ−オ
キソピロリジニル基; 八R9C(CH20CCX=CH2)!「 ここでXは上で定義した通り、そしてR−まエチル又は
プロピル基;又は ここでXは上で定義した通り、そしてRIOはイソプロ
ピレン、インブチレン、1〜5個の炭素原子を有する分
枝鎖アルキレン基、 1 0HRu ここでR11は上で定義した通り。
Naphthyl, phthalyl, cyclohexyl, cyclophenyl, cycloheptyl, cyclobutyl, pyridyl or ro-oxopyrrolidinyl group; 8R9C(CH20CCX=CH2)! "where X is as defined above and R-ethyl or propyl group; or where Branched alkylene group, 10HRu where R11 is as defined above.

そして、本発明で使用するガラス化性ビニル系重合性単
量体を具体的に例示すると;ヒドロキシエチルメタクリ
レート、ヒドロキシエチルアクリレート、ヒドロキシプ
ロピルアクリレート、ヒドロキシプロピルメタクリレー
ト、ジエチレングリコールメタクリレート、ジエチレン
グリコールアクリレート、トリエチレングリコールメタ
クリレート、トリエチレングリコールアクリレート、テ
トラエチレングリコールアクリレート、テトラエチレン
グリコールメタクリレート、ポリエチレングリコールメ
タクリレート、ポリエチレングリコールアクリレート、
ジエチレングリコールジメタクリレート、ジエチレング
リコールジアクリレート、メトキシジエチレングリコー
ルジメタクリレート、メトキシジエチレングリコールジ
アクリレート、メトキシテトラエチレングリコールジメ
タクリレート、ネオペンチルグリコールジメタクリレー
ト、ヘキサンジオールモノメタクリレート。
Specific examples of the vitrifiable vinyl polymerizable monomers used in the present invention include: hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, diethylene glycol methacrylate, diethylene glycol acrylate, triethylene glycol methacrylate. , triethylene glycol acrylate, tetraethylene glycol acrylate, tetraethylene glycol methacrylate, polyethylene glycol methacrylate, polyethylene glycol acrylate,
Diethylene glycol dimethacrylate, diethylene glycol diacrylate, methoxydiethylene glycol dimethacrylate, methoxydiethylene glycol diacrylate, methoxytetraethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, hexanediol monomethacrylate.

グリシジルメタクリレート、グリシジルアクリレート、
ヘプタンジオールモノメタクリレート、ブタンジオール
モノメタクリレート、エチレングリコールジアクリレー
ト、プロピレングリコールジメタクリレートなどがある
glycidyl methacrylate, glycidyl acrylate,
Examples include heptanediol monomethacrylate, butanediol monomethacrylate, ethylene glycol diacrylate, and propylene glycol dimethacrylate.

本発明において用いられる多孔質粒子としては、アルミ
ナ粒子、活性炭粒子、モレキューラーンーブ粒子等があ
るが、これら多孔粒子の孔径は50〜5000へのもの
が好ましく粒子の大きさは05〜5 mm zが好まし
い。多孔質材としては種々な物質があるが本発明におい
て用いられる多孔質粒子は単なる吸着剤としてではなく
多孔質表面基材として酵素分子を表面に接着させるので
孔径は大きい方がよい。また多孔質粒子はある程度の機
械的強度に耐えるものでないと固定化酵素粒子を反応槽
に充填して攪拌し連続反応に使用できない。
The porous particles used in the present invention include alumina particles, activated carbon particles, molecular annealing particles, etc., but the pore diameter of these porous particles is preferably 50 to 5,000. mm z is preferred. There are various materials that can be used as porous materials, but the porous particles used in the present invention do not act as mere adsorbents, but act as porous surface substrates that allow enzyme molecules to adhere to the surface, so the larger the pore size, the better. In addition, unless the porous particles can withstand a certain degree of mechanical strength, they cannot be used for continuous reactions by filling a reaction vessel with immobilized enzyme particles and stirring them.

従って、アルミナ粒子などはこれらの点で好適である。Therefore, alumina particles and the like are suitable in these respects.

本発明の効果が特に顕著であり本発明の方法を適用する
のに好適な酵素の例として、グルコアミラーゼ、アミラ
ーゼ、セルラーゼ、ヘミセルラーゼ、β−グルコシダー
ゼ、グルコースインメラーゼ、トリプシン、キモトリプ
シン、ジノ2−ゼ、ウリカーゼ、エステラーゼ、グルコ
ースオキシダーゼなどがある。
Examples of enzymes that have particularly remarkable effects of the present invention and are suitable for applying the method of the present invention include glucoamylase, amylase, cellulase, hemicellulase, β-glucosidase, glucose imerase, trypsin, chymotrypsin, and dino2- enzyme, uricase, esterase, glucose oxidase, etc.

本発明において酵素の水溶液および重合性単量体の混合
物を多孔質粒子の表面に被覆させる方法は、例えば、ス
プレー吹き付け、混合物中へ多孔質粒子を浸漬する等如
何なる方法でもよいが、要は多孔質粒子表面に薄く被覆
することが重要である。一番簡単な被覆方法は、多孔質
粒子を容器に入れ攪拌しながら酵素の水溶液と単量体の
混合物を少しづつ加えてゆく方法である。この被覆操作
で重要な点は酵素および単量体水溶液の混合物な過剰量
加えないことである。
In the present invention, the surface of the porous particles may be coated with the aqueous solution of the enzyme and the mixture of the polymerizable monomer by any method such as spraying or immersing the porous particles in the mixture. It is important to coat the surface of the particles thinly. The simplest coating method is to place the porous particles in a container and gradually add a mixture of the enzyme aqueous solution and the monomer while stirring. The important point in this coating operation is not to add an excessive amount of the mixture of enzyme and monomer aqueous solution.

本発明では酵素と重合性単量体の混合物の適当量を多孔
質粒子に均一に被覆した後、これをO℃〜−100℃の
低温に急速に冷却し被覆を固化し。
In the present invention, porous particles are uniformly coated with an appropriate amount of a mixture of an enzyme and a polymerizable monomer, and then rapidly cooled to a low temperature of 0°C to -100°C to solidify the coating.

この状態で電離性放射線を照射することによって多孔質
粒子表面に酵素が固定ブヒされた粒子を製造することが
できる。多孔質粒子表面にできるだけ酵素を露出させる
には、多孔質粒子にあらかじめ一定濃度の重合性単量体
を被覆させた粒子表面に酵素又はその水溶液を被覆させ
ればよい。この様に、多孔質粒子表面に酵素および重合
性単量体の水溶液を薄く被覆して急速に重合させ酵素を
多孔質粒子表面に固定化する方法は低温放射線重合方法
でのみ不能であり、これは本発明の重要な特徴である。
By irradiating the porous particles with ionizing radiation in this state, it is possible to produce particles in which enzymes are immobilized on the surface of the porous particles. In order to expose the enzyme as much as possible on the surface of the porous particles, the enzyme or its aqueous solution may be coated on the surface of the porous particles, which have been previously coated with a polymerizable monomer at a certain concentration. In this way, the method of coating the surface of porous particles with a thin aqueous solution of an enzyme and a polymerizable monomer and rapidly polymerizing the enzyme to immobilize the enzyme on the surface of the porous particles is only possible with the low-temperature radiation polymerization method; is an important feature of the invention.

本発明で使用される電離性放射線はα線、β線。The ionizing radiation used in the present invention is alpha rays and beta rays.

γ線、X線、電子線であり、使用可能な線量は104〜
10’ radの範囲である。所で、酵素活性に対する
放射線の照射効果は照射の温度と線量に著しく依存して
おり、0℃以上、106rad以上の照射条件では照射
による失活が急激に増大する。逆にD℃〜−100℃の
温度範囲で10’ 〜10’ radの照射条件で速や
かに反応させる限り酵素活性に対する照射の影響はほと
んど認められない。
γ-rays, X-rays, and electron beams, and the usable dose is 104~
It is in the range of 10' rad. Incidentally, the effect of radiation irradiation on enzyme activity is significantly dependent on the irradiation temperature and dose, and deactivation due to irradiation increases rapidly under irradiation conditions of 0° C. or higher and 106 rad or higher. On the contrary, as long as the reaction is carried out quickly under irradiation conditions of 10' to 10' rad in the temperature range of D°C to -100°C, almost no effect of irradiation on enzyme activity is observed.

本発明の多孔質固定化酵素粒子は下記の様な利点、特徴
がある。
The porous immobilized enzyme particles of the present invention have the following advantages and characteristics.

(イ)酵素を反覆連続して長期間使用出来、又表面積が
大きく取扱い易℃・0゛ (ロ)酵素が粒子表面部に固定化されているので水に不
溶性の基質の酵素反応にも用いることが出来る。
(a) The enzyme can be used repeatedly and continuously for a long period of time, and the large surface area makes it easy to handle at 0°C. (b) The enzyme is immobilized on the particle surface, so it can also be used for enzyme reactions with water-insoluble substrates. I can do it.

実施例1 0.5係グルコアミラ一ゼ水溶液5部とヒドロキシメチ
ルメタクリレート5部を混合し、これを直径2〜6mm
のアルミナ600部が入った容器に攪拌しながら少しづ
つ加えてゆき、添加後もよく容器内を混合して、粒子表
面に酵素単量体水溶液を均一に被覆した後これを一78
℃に冷却した。この状態でγ線をI X 10’ r/
hrの線量率で1時間照射した。照射後容器を室温にし
、容器内の内容物を取り出すと粒子表面に固定化された
固定化酵素粒子が得られた。この粒子を室温にて風乾し
た後酵素反応に用いた。この得られた粒子100gをカ
ラムに充填し、マルトースを基質として連続酵素反応を
行った。2 cc/hrの流速で60℃で1ケ月酵素反
応を続けた所、グルコース生成収率は95チで一定であ
った。
Example 1 5 parts of 0.5 glucoamylase aqueous solution and 5 parts of hydroxymethyl methacrylate were mixed, and this was mixed into a diameter of 2 to 6 mm.
Add it little by little while stirring to a container containing 600 parts of alumina. After addition, mix the inside of the container well to uniformly coat the surface of the particles with the enzyme monomer aqueous solution.
Cooled to ℃. In this state, the γ-ray is I x 10' r/
Irradiation was performed for 1 hour at a dose rate of hr. After irradiation, the container was brought to room temperature and the contents inside the container were taken out to obtain immobilized enzyme particles immobilized on the particle surface. The particles were air-dried at room temperature and then used in an enzyme reaction. A column was filled with 100 g of the obtained particles, and a continuous enzymatic reaction was performed using maltose as a substrate. When the enzymatic reaction was continued at 60° C. for one month at a flow rate of 2 cc/hr, the yield of glucose production remained constant at 95 cm.

実施例2 5チセルラ一ゼ水溶液6部とヒドロキシプロピルアクリ
レート4部を混合し、これを直径2〜6朋のアルミナ4
00部が入った容器に攪拌しつつ少しづつ加えてゆき、
実施例1と同じ方法で被覆した後、−78℃の温度でγ
線をI X 10’ rad/hrの線量率で1時間照
射した。このようにして得られた固定化セルラーゼ粒子
で水に不溶性の基質であろろ00メツシユのセルロース
粉末5チ水溶液を基質として回分酵素反応を行った。す
なわち、粒子20.9と5多セルロース水溶液ろorn
lを100m1の三角フラスコに入れ、40℃にて振と
うしながら48時間の回分酵素反応を行った結果、1ケ
月間の回分反応でグルコース生成率は60%で一定であ
った。
Example 2 6 parts of 5-cellulase aqueous solution and 4 parts of hydroxypropyl acrylate were mixed, and this was mixed with alumina 4 with a diameter of 2 to 6 mm.
Add it little by little while stirring to the container containing 00 parts.
After coating in the same way as in Example 1, γ at a temperature of -78 °C
The radiation was applied for 1 hour at a dose rate of I x 10' rad/hr. A batch enzymatic reaction was carried out with the thus obtained immobilized cellulase particles using an aqueous solution of cellulose powder 5T of Roro 00 mesh, which is a water-insoluble substrate, as a substrate. That is, particles 20.9 and 5 polycellulose aqueous solution funnel
1 was placed in a 100 ml Erlenmeyer flask and subjected to batch enzymatic reaction for 48 hours with shaking at 40°C. As a result, the glucose production rate remained constant at 60% during the batch reaction for one month.

実施例ろ 0.5%β−グルコシダーゼ水溶液6部とヒドロキシエ
チルアクリレート7部を混合し、これを直径1〜4mm
の活性炭粒子が入った容器に攪拌しながら少しづつ加え
てゆき、よく粒子に被覆した後、これを−24℃に冷却
し5 X I Q” rad/hrの線量率でβ線を2
時間照射した。重合後、粒子を風乾した後、セルビオー
スを基質として連続酵素反応を行った。固定化β−グル
コシダーゼ粒子50gをカラムに充填し、5係セルビオ
ース水溶液を3cc/hrの流速で流し、40’Cで2
ケ月間連続酵素反応を行ったが、グルコース生成率は8
0%で一定で変化しなかった。
Example 6 parts of 0.5% β-glucosidase aqueous solution and 7 parts of hydroxyethyl acrylate were mixed, and this was mixed into a 1-4 mm diameter
The activated carbon particles were added little by little with stirring to a container containing activated carbon particles, and after the particles were well coated, the mixture was cooled to -24°C and β rays were absorbed at a dose rate of 5 x IQ” rad/hr.
Irradiated for hours. After polymerization, the particles were air-dried and then subjected to continuous enzymatic reactions using cellbiose as a substrate. A column was packed with 50 g of immobilized β-glucosidase particles, and a 5-cell cellbiose aqueous solution was passed through the column at a flow rate of 3 cc/hr.
Continuous enzymatic reaction was carried out for several months, but the glucose production rate was 8.
It remained constant at 0% and did not change.

特許出願人 日本原子力研究所 (外2名)Patent applicant: Japan Atomic Energy Research Institute (2 others)

Claims (1)

【特許請求の範囲】 1 酵素の水溶液および1種以上のガラス化性ビニル系
重合性単量体から成る混合物な多孔質粒子の表面に被覆
し、ついでO℃〜−100℃の低温に保って電離性放射
線を102〜10’ rad/hr  の線量率で10
4〜10°rad照射することから成る多孔質粒子の表
面部に酵素を強固に固定する方法。 2、多孔質粒子が孔径5Uさ5,0OOA、直径0.5
〜5mmを有することを特徴とする特許請求の範囲第1
項に記載の方法。 6、 ガラス化性ビニル系重合性単量体が下記の一般式
から選択される1種以上であることを特徴とする特許請
求の範囲81項に記載の方法。 a、CH2=CX C0(CH2)no&ここでXはH
又はメチル基、R1はH又はCH2=CX−C− 1 0(1) ここでXは■(又はメチル基、そしてnは4〜10の整
数; ここでXはH又はメチル基、R2は−CL CI(20
−。 モしてmは1〜乙の整数; ここでXはH又はメチル基; d、CH2=CX−C−0−R3−0−R。 1 ここでXはH又はメチル基I R3は1〜10個の炭素
原子を有する直鎖又は分枝鎖アルキレン基。 そしてR4は1〜10個の炭素原子を有するビニル又は
アルキル基; ここで島はアルカン(C□〜C,)−イルーイV(2) ド、アルキVン(C1〜C3)アミン基、&オよびR7
は各々H,1〜5個の炭素原子を有するアルキル基、1
〜5個の炭素原子を有するアルキルアミノ基、1〜5個
の炭素原子を有するヒドロキシルアルキル基、アリル又
はビニル基;f、CH2=CX  CR30R80R4
ここでX、R3およびR4は上で定義した通り、R8は
馬と同じ、R3およびR8は同じ各々異っている; ここでX、R3およびR4は上で定義した通り;ここで
X、R3およびR4は上で定義した通り;i 、 CH
2=CX−C−0−R。 1 ここでXは上で定義した通り、そして1(11はベンジ
ル、トルイル、キシリル、フェニル、フルフリル、ナフ
チル、フタリル、シクロヘキシル。 シクロフェニル、シクロヘプチル、シクロブチル、ピリ
ジル又は6−オキソピロリジニル基;八R,−C−(C
H2−0−C−CX=CH2)31 ここでXは上で定義した通り、そして糧まエチル又はプ
ロピル基;又は ここでXは上で定義した通り、そしてRloはイソプロ
ピレン、イソブチレン、1〜5個の炭素原子を有する分
枝鎖アルキレン基、 ここでR11は上で定義した通り。
[Claims] 1. A mixture of an aqueous enzyme solution and one or more vitrifying vinyl polymerizable monomers is coated on the surface of porous particles, and then kept at a low temperature of 0°C to -100°C. ionizing radiation at a dose rate of 102 to 10' rad/hr.
A method for firmly immobilizing enzymes on the surface of porous particles, which consists of irradiating at 4 to 10 degrees. 2. Porous particles have a pore size of 5U, 5,0OOA, and a diameter of 0.5
Claim 1, characterized in that the diameter is 5 mm.
The method described in section. 6. The method according to claim 81, wherein the vitrifiable vinyl polymerizable monomer is one or more selected from the following general formula. a, CH2=CX C0(CH2) no & where X is H
or methyl group, R1 is H or CH2=CX-C- 1 0 (1) where X is ■ (or methyl group, and n is an integer from 4 to 10; CL CI (20
−. m is an integer from 1 to O; where X is H or a methyl group; d, CH2=CX-C-0-R3-0-R. 1 where X is H or a methyl group I R3 is a straight or branched alkylene group having 1 to 10 carbon atoms. and R4 is a vinyl or alkyl group having 1 to 10 carbon atoms; where the island is an alkane (C□~C,)-IruiV(2) de, an alkane (C1~C3) amine group, &O and R7
are each H, an alkyl group having 1 to 5 carbon atoms, 1
alkylamino group with ~5 carbon atoms, hydroxylalkyl group with 1 to 5 carbon atoms, allyl or vinyl group; f, CH2=CX CR30R80R4
where X, R3 and R4 are as defined above, R8 is the same as horse, R3 and R8 are the same and each different; where X, R3 and R4 are as defined above; where X, R3 and R4 as defined above; i, CH
2=CX-C-0-R. 1 where X is as defined above and 1 (11 is a benzyl, tolyl, xylyl, phenyl, furfuryl, naphthyl, phthalyl, cyclohexyl; cyclophenyl, cycloheptyl, cyclobutyl, pyridyl or 6-oxopyrrolidinyl group; 8R, -C-(C
H2-0-C-CX=CH2)31 where X is as defined above and is an ethyl or propyl group; or where X is as defined above and Rlo is isopropylene, isobutylene, 1- a branched alkylene group having 5 carbon atoms, where R11 is as defined above.
JP57146661A 1982-08-24 1982-08-24 Immobilization of enzyme to surface of porous particle Granted JPS5934886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146661A JPS5934886A (en) 1982-08-24 1982-08-24 Immobilization of enzyme to surface of porous particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146661A JPS5934886A (en) 1982-08-24 1982-08-24 Immobilization of enzyme to surface of porous particle

Publications (2)

Publication Number Publication Date
JPS5934886A true JPS5934886A (en) 1984-02-25
JPH0361426B2 JPH0361426B2 (en) 1991-09-19

Family

ID=15412762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146661A Granted JPS5934886A (en) 1982-08-24 1982-08-24 Immobilization of enzyme to surface of porous particle

Country Status (1)

Country Link
JP (1) JPS5934886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030041A1 (en) * 2015-08-14 2017-02-23 大阪ガスケミカル株式会社 Function-developing particles and process for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132884A (en) * 1981-02-10 1982-08-17 Japan Atom Energy Res Inst Immobilizing method of enzyme

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132884A (en) * 1981-02-10 1982-08-17 Japan Atom Energy Res Inst Immobilizing method of enzyme

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030041A1 (en) * 2015-08-14 2017-02-23 大阪ガスケミカル株式会社 Function-developing particles and process for producing same
JPWO2017030041A1 (en) * 2015-08-14 2017-08-24 大阪ガスケミカル株式会社 Function-expressing particles and method for producing the same

Also Published As

Publication number Publication date
JPH0361426B2 (en) 1991-09-19

Similar Documents

Publication Publication Date Title
Gombotz et al. Immobilization of biomolecules and cells on and within synthetic polymeric hydrogels
US8906404B2 (en) Three dimensional porous polymeric structure having a pore-size range of 1/10 to 10 times the average pore size
US4927761A (en) Immobilization of cells with alginate and agarose
JPS5934886A (en) Immobilization of enzyme to surface of porous particle
JPH03259083A (en) Immobilization of biocatalyst
EP0014003B1 (en) Complex particles containing active protein substances and processes for their production, application and regeneration
CN113231049B (en) Cross-linked agarose affinity medium, and preparation method and application thereof
JP7345478B2 (en) Cell culture media enhanced with pH-adjusting biodegradable polymers and poly(glycerol sebacic acid)
JPH0780282A (en) Polymeric hydrogel granular material, production thereof and immobilization of bacteria using the same
JPS637785A (en) Immobilization of microorganism
WO1984002270A1 (en) Microfine particles having target-seeking properties
JPS5942889A (en) Preparation of immobilized proliferated microbial cell composition containing fibrous porous material
Kaetsu et al. Immobilization of enzymes by radiation
JPH0716585A (en) Water-containing granulated carrier for organism treatment apparatus and method for manufacturing the carrier
JPH0638730A (en) Carrier for culturing animal cell
Yoshida et al. Immobilization of enzymes by radiation-induced copolymerization of 2-hydroxyethyl methacrylate and other hydrophilic or hydrophobic comonomers
JP4343562B2 (en) Granular carrier for enzyme or microbial cell immobilization
JPH0343076A (en) Cell cultivation carrier
JPS6219836B2 (en)
JPS5946595B2 (en) Method for immobilizing biologically active substances on microparticle carriers
JPS6219838B2 (en)
JPS5911182A (en) Preparation of granule of immobilized enzyme or microbial cell
JPS58129976A (en) Immobilization of microbial cell
JPH04108377A (en) Base material for cell culture
JPS6344997A (en) Immobilizing filter for biological treatment